Skip to main content

Infinite Particle Systems with Hard-Core and Long-Range Interaction

  • Conference paper
  • First Online:
Dirichlet Forms and Related Topics (IWDFRT 2022)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 394))

  • 531 Accesses

Abstract

A system of Brownian hard balls is regarded as a reflecting Brownian motion in the configuration space and can be represented by a solution to a Skorohod-type equation. In this article, we consider the case that there are an infinite number of balls, and the interaction between balls is given by the long-range pair interaction. We discuss the existence and uniqueness of strong solutions to the infinite-dimensional Skorohod equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.Q. Chen, On reflecting diffusion processes and Skorohod decomposition. Probab. Theory Relat. Fields 94, 281–315 (1993)

    Article  Google Scholar 

  2. M. Fukushima, A construction of reflecting barrier Brownian motions for bounded domains. Osaka J. Math. 94, 183–215 (1968)

    MathSciNet  MATH  Google Scholar 

  3. M. Fukushima, Regular representations of Dirichlet spaces. Trans. Amer. Math. Soc. 155, 455–743 (1971)

    Article  MathSciNet  Google Scholar 

  4. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, 2nd edn. (Walter de Gruyter, Berlin, 2010)

    Book  Google Scholar 

  5. M. Fradon, S. Roelly, H. Tanemura, An infinite system of Brownian balls with infinite range interaction. Stoch. Process. Appl. 90, 43–66 (2000)

    Article  MathSciNet  Google Scholar 

  6. S. Gohsh, Continuum percolation for Gaussian zeroes and Ginibre eigenvalues. Ann. Probab. 44, 3357–3384 (2016)

    MathSciNet  MATH  Google Scholar 

  7. O. Kallenberg, in Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling, vol. 77 (Springer, Cham, 2017)

    Google Scholar 

  8. H. Osada, Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions. Commun. Math. Phys. 176, 117–131 (1996)

    Article  MathSciNet  Google Scholar 

  9. H. Osada, Tagged particle processes and their non-explosion criteria. J. Math. Soc. Jpn. 62, 867–894 (2010)

    Article  MathSciNet  Google Scholar 

  10. H. Osada, Infinite-dimensional stochastic differential equations related to random matrices. Probab. Theory Relat. Fields 153, 471–509 (2012)

    Article  MathSciNet  Google Scholar 

  11. H. Osada, Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials. Ann. Probab. 41, 1–49 (2013)

    Article  MathSciNet  Google Scholar 

  12. H. Osada, Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials II : Airy random point field. Stoch. Process. Appl. 123, 813–838 (2013)

    Article  MathSciNet  Google Scholar 

  13. H. Osada, H. Tanemura, Cores of Dirichlet forms related to random matrix theory. Proc. Japan Acad. Ser. A Math. Sci. 90, 145–150 (2014)

    Article  MathSciNet  Google Scholar 

  14. H. Osada, H. Tanemura, Infinite-dimensional stochastic differential equations and tail \(\sigma \)-fields. Probab. Theory Relat. Fields 177, 1137–1242 (2020)

    Article  MathSciNet  Google Scholar 

  15. D. Ruelle, Super-stable interactions in classical statistical mechanics. Commun. Math. Phys. 18, 127–159 (1970)

    Article  Google Scholar 

  16. Y. Saisho, Stochastic differential equations for multidimensional domain with reflecting boundary. Probab. Theory Relat. Fields 104, 455–477 (1987)

    Article  MathSciNet  Google Scholar 

  17. Y. Saisho, H. Tanaka, Stochastic differential equations for mutually reflecting Brownian balls. Osaka J. Math. 23, 725–740 (1986)

    MathSciNet  MATH  Google Scholar 

  18. H. Tanemura, A system of infinitely many mutually reflecting Brownian balls in \(\mathbb{R}^d\). Probab. Theory Relat. Fields 104, 399–426 (1996)

    Article  Google Scholar 

  19. H. Tanemura, Uniqueness of Dirichlet forms associated with systems of infinitely many Brownian balls in \(\mathbb{R}^d\). Probab. Theory Relat. Fields 109, 275–299 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The author is supported in part by JSPS KAKENHI Grant Numbers JP.16H06338, JP.19H01793.

The author thanks Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Tanemura .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A.1  Solutions of (ISKE)

We give precise definitions of solutions of the (ISKE).

Let \(\overline{\mathcal {B}}\) and \(\overline{\mathcal {B}}_t\) be the completions of \(\mathcal {B}(W((\mathbb {R}^d)^\mathbb {N})\) and \(\mathcal {B}_t (W((\mathbb {R}^d)^\mathbb {N})\) with respect to \(P_{Br}^{\infty }= P({\boldsymbol{B}}\in \cdot )\), respectively.

Definition A.1

(Strong Solutions Starting at \({\boldsymbol{x}}\)) A weak solution \(\boldsymbol{X}\) of (ISKE) with (3.10) and (3.11) and an \((\mathbb {R}^d)^{\mathbb {N}}\)-valued \(\{\mathcal {F}_t\}_{t\ge 0}\)-Brownian motion \({\boldsymbol{B}}\) on \(({\varOmega }, \mathcal {F}, P, \{ \mathcal {F}\}_{t\ge 0})\) is called a strong solution starting at \({\boldsymbol{x}}\) if \(\boldsymbol{X}_0={\boldsymbol{x}}\) a.s. and if there exists a function \(F_{\boldsymbol{x}}: W_0((\mathbb {R}^d)^\mathbb {N}) \rightarrow W((\mathbb {R}^d)^\mathbb {N})\) such that \(F_{\boldsymbol{x}}\) is \(\overline{\mathcal {B}}/ \mathcal {B}(W((\mathbb {R}^d)^\mathbb {N})\)-measurable, and \(\overline{\mathcal {B}}_t/ \mathcal {B}_t(W((\mathbb {R}^d)^\mathbb {N})\)-measurable for each t and that \(F_{\boldsymbol{x}}\) satisfies \(\boldsymbol{X} = F_{\boldsymbol{x}}({\boldsymbol{B}})\) a.s. We also call \(\boldsymbol{X}= F_{\boldsymbol{x}}({\boldsymbol{B}})\) a strong solution starting at \({\boldsymbol{x}}\). Additionally, we call \(F_{\boldsymbol{x}}\) itself a strong solution starting at \({\boldsymbol{x}}\).

Definition A.2

(Unique Strong Solution Starting at \({\boldsymbol{x}}\)) We say (ISKE) with (3.10) and (3.11) has a unique strong solution starting at \({\boldsymbol{x}}\) if there exists a function \(F_{\boldsymbol{x}}: W_0((\mathbb {R}^d)^\mathbb {N}) \rightarrow W((\mathbb {R}^d)^\mathbb {N})\) such that, for any weak solution \((\hat{\boldsymbol{X}}, \hat{{\boldsymbol{L}}}, \hat{{\boldsymbol{B}}})\) of (ISKE) with (3.10) and (3.11) \(\hat{\boldsymbol{X}} = F_{\boldsymbol{x}}(\hat{{\boldsymbol{B}}})\) a.s. and if, for any \((\mathbb {R}^d)^\mathbb {N}\)-valued \(\{\mathcal {F}_t\}_{t\ge 0}\)-Brownian motion \({\boldsymbol{B}}\) defined on \(({\varOmega }, \mathcal {F}, P, \{\mathcal {F}\}_{t\ge 0})\) with \({\boldsymbol{B}}_0=0\), the process \(\boldsymbol{X}=F_{\boldsymbol{x}}({\boldsymbol{B}})\) is a strong solution of (ISKE) with (3.10) and (3.11) starting at \({\boldsymbol{x}}\). We also call \(F_{\boldsymbol{x}}\) a unique strong solution starting at \({\boldsymbol{x}}\).

We next present a variant of the notion of a unique strong solution.

Definition A.3

(A Unique Strong Solution Under a Constraint) For a condition (Cond), we say (ISKE) with (3.10) and (3.11) has a unique strong solution starting at \({\boldsymbol{x}}\) under the constraint of (Cond) if there exists a function \(F_{\boldsymbol{x}}: W_0((\mathbb {R}^d)^\mathbb {N}) \rightarrow W((\mathbb {R}^d)^\mathbb {N})\) such that for any weak solution \((\hat{\boldsymbol{X}}, \hat{{\boldsymbol{B}}})\) of (ISKE) with (3.10) and (3.11) starting at \({\boldsymbol{x}}\) satisfying (Cond), it holds that \(\hat{\boldsymbol{X}} = F_{\boldsymbol{x}}(\hat{{\boldsymbol{B}}})\) a.s. and if, for any \((\mathbb {R}^d)^\mathbb {N}\)-valued \(\{\mathcal {F}_t\}_{t\ge 0}\)-Brownian motion \({\boldsymbol{B}}\) on \(({\varOmega }, \mathcal {F}, P, \{\mathcal {F}\}_{t\ge 0})\) with \({\boldsymbol{B}}_0=0\), the process \(\boldsymbol{X}=F_{\boldsymbol{x}}({\boldsymbol{B}})\) is a strong solution of (ISKE) with (3.10) and (3.11) starting at \({\boldsymbol{x}}\) satisfying (Cond). We also call \(F_{\boldsymbol{x}}\) a strong solution starting at \({\boldsymbol{x}}\) under the constraint of (Cond).

For a family of strong solutions \(\{F_{\boldsymbol{x}}\}\) satisfying (MF), we put

$$ P_{\{F_{\boldsymbol{x}}\}} = \int P(F_{\boldsymbol{x}}({\boldsymbol{B}})\in \cdot ) P \circ \boldsymbol{X}_0^{-1}(d{\boldsymbol{x}}). $$

Let \((\boldsymbol{X}, {\boldsymbol{L}}, {\boldsymbol{B}})\) be a solution of (ISKE) with (3.10) and (3.11) under P. Suppose that \((\boldsymbol{X}, {\boldsymbol{B}})\) is a unique strong solution under \(P_{\boldsymbol{x}}\) for \(P\circ \boldsymbol{X}_0^{-1}\)-a.s. \({\boldsymbol{x}}\). Let \(\{F_{\boldsymbol{x}}\}\) be a family of the unique strong solution given by \((\boldsymbol{X}, {\boldsymbol{B}})\) under \(P_{\boldsymbol{x}}\). Then, (MF) is automatically satisfied and \(P_{\{F_{\boldsymbol{x}}\}}= P\circ \boldsymbol{X}^{-1}\).

Definition A.4

(A Family of Unique Strong Solutions Under Constraints) For a condition (Cond), we say (ISKE) with (3.10) and (3.11) has a family of unique strong solutions \(\{F_{\boldsymbol{x}}\}\) starting at \({\boldsymbol{x}}\) for \(P\circ \boldsymbol{X}_0^{-1}\)-a.s. \({\boldsymbol{x}}\) under the constraints of (MF) and (Cond) if \(\{F_{\boldsymbol{x}}\}\) satisfies (MF) and \(P_{\{F_{\boldsymbol{x}}\}}\) satisfies (Cond). Furthermore, (i) and (ii) are satisfied.

  1. (i)

    For any weak solution \((\hat{\boldsymbol{X}}, \hat{{\boldsymbol{B}}})\) under \(\hat{P}\) of (ISKE) with (3.10) and (3.11) with \(\hat{P}\circ \boldsymbol{X}_0^{-1} \prec P\circ \boldsymbol{X}_0^{-1}\) satisfying (Cond), it holds that, for \(\hat{P}\circ \boldsymbol{X}_0^{-1}\)-a.s. \({\boldsymbol{x}}\), \(\hat{\boldsymbol{X}}=F_{\boldsymbol{x}}(\hat{{\boldsymbol{B}}})\) \(\hat{P}_{\boldsymbol{x}}\)-a.s., where \(\hat{P}_{\boldsymbol{x}}= \hat{P}(\cdot | \hat{\boldsymbol{X}}_0 ={\boldsymbol{x}})\).

  2. (ii)

    For an arbitrary \((\mathbb {R}^d)^\mathbb {N}\)-valued \(\{\mathcal {F}_t\}\)-Brownian motion \({\boldsymbol{B}}\) on \(({\varOmega }, \mathcal {F}, P, \{\mathcal {F}\}_{t\ge 0})\) with \({\boldsymbol{B}}_0=\textbf{0}\), \(F_{\boldsymbol{x}}({\boldsymbol{B}})\) is a strong solution of (ISKE) with (3.10) and (3.11) starting at \({\boldsymbol{x}}\) for \(P\circ \boldsymbol{X}_0^{-1}\)-a.s. \({\boldsymbol{x}}\).

1.2 A.2  Definition of (IFC)

In this subsection, we introduce (IFC) for our situation. Let \(\mathbb {I}\) be a finite subset of \(\mathbb {N}\). Put \(\mathbb {I}^c = \mathbb {N} \setminus \mathbb {I}\). For \({\boldsymbol{y}}= (y^1, y^2, \ldots ) \in \boldsymbol{S}_\textrm{hard}\), we put \({\boldsymbol{y}}^{\mathbb {I}} = (y^j)_{j\in \mathbb {I}}\) and \({\boldsymbol{y}}^{\mathbb {I}^c} = (y^j)_{j\in \mathbb {I}^c}\) Let \((\boldsymbol{X}, {\boldsymbol{B}})= ((X^j)_{j\in \mathbb {N}}, (B^j)_{j\in \mathbb {N}})\) be a weak solution of (ISKE) starting at \({\boldsymbol{x}}=(x^j)_{j\in \mathbb {N}}\) defined on \(({\varOmega }, \mathcal {F}, P, \{\mathcal {F}_t\})\). We consider the SDE

$$\begin{aligned} dY_t^{\mathbb {I},j}&= dB_t^j + b^{\mathbb {I},j}_{\boldsymbol{X}} (t,\textbf{Y}_t^{\mathbb {I}})dt +\sum \limits _{k\in \mathbb {I}\setminus \{j\}}(Y_t^{\mathbb {I},j} - Y_t^{\mathbb {I},k}) dL_t^{\mathbb {I},jk} \nonumber \\&\qquad +\sum \limits _{k\in \mathbb {I}^c}^\infty (Y_t^{\mathbb {I},j} - X_t^{k}) dL_t^{\mathbb {I},jk}, \quad j\in \mathbb {I},\qquad \qquad \qquad \qquad (\text {SKE}_{{\boldsymbol{X}}}(\mathbb {I}))\nonumber \\ Y_0^{\mathbb {I},j}&= X_0^j=x^j, \quad j\in \mathbb {I},\nonumber \end{aligned}$$

where \(L_t^{\mathbb {I},jk}\), \(j\in \mathbb {I}\), \(k\in \mathbb {N}\) are increasing functions satisfying

$$\begin{aligned}&L_t^{\mathbb {I},jk}=\int \limits _0^t \textbf{1}(|Y_s^{\mathbb {I},j}-Y_s^{\mathbb {I},k}|=r)dL_s^{\mathbb {I},jk}, \quad j,k \in \mathbb {I}, \\&L_t^{\mathbb {I},jk}=\int \limits _0^t \textbf{1}(|Y_s^{\mathbb {I},j}-X_s^k|=r)dL_s^{\mathbb {I},jk}, \quad j\in \mathbb {I}, \ k\in \mathbb {I}^c. \end{aligned}$$

We denote by \(\mathcal {C}^\mathbb {I}\) the completion of \(\mathcal {B}(W_\textbf{0}((\mathbb {R}^{d})^{\mathbb {I}})\times W((\mathbb {R}^d)^{\mathbb {N}}))\) with respect to \(P_{{\boldsymbol{x}}}\circ ({\boldsymbol{B}}^\mathbb {I}, \boldsymbol{X}^{\mathbb {I}^c})^{-1}\). Let \((\textbf{v}, {\boldsymbol{w}})\in W_\textbf{0}((\mathbb {R}^{d})^\mathbb {I})\times W((\mathbb {R}^d)^{\mathbb {N}})\). We denote by \(\mathcal {C}_t^\mathbb {I}\) the completion of \(\sigma [(\textbf{v}_s, {\boldsymbol{w}}_s) : 0\le s \le t]\) with respect to \(P_{{\boldsymbol{x}}}\circ ({\boldsymbol{B}}^\mathbb {I}, \boldsymbol{X}^{\mathbb {I}^c})^{-1}\).

Definition A.5

(Strong Solution for \((\boldsymbol{X},{\boldsymbol{B}})\) Starting at \({\boldsymbol{x}}^\mathbb {I}\)) \(\textbf{Y}^\mathbb {I}\) is called a strong solution of \((\textrm{SKE}_{\boldsymbol{X}}(\mathbb {I}))\) for \((\boldsymbol{X},{\boldsymbol{B}})\) under \(P_{{\boldsymbol{x}}}\) if \((\textbf{Y}^\mathbb {I}, {\boldsymbol{B}}^{\mathbb {I}}, \boldsymbol{X}^{\mathbb {I}^c})\) satisfies \((\textrm{SKE}_{\boldsymbol{X}}(\mathbb {I}))\) and there exists a \(\mathcal {C}^\mathbb {I}\)-measurable function

$$ F_{{\boldsymbol{x}}}^\mathbb {I}:W_\textbf{0}((\mathbb {R}^d)^\mathbb {I}) \times W((\mathbb {R}^d)^{\mathbb {I}^c}) \rightarrow W((\mathbb {R}^d)^{\mathbb {I}}) $$

such that \(F_\textbf{x}^\mathbb {I}\) is \(\mathcal {C}_t^\mathbb {I}/ \mathcal {B}_t(W(\mathbb {R}^d)^\mathbb {I}\)-measurable for each t, and \(F_{{\boldsymbol{x}}}^\mathbb {I}\) satisfies \(\textbf{Y}^I =F_{{\boldsymbol{x}}}^\mathbb {I}({\boldsymbol{B}}^\mathbb {I}, \boldsymbol{X}^{\mathbb {I}^c})\), \(P_{\boldsymbol{x}}\)-a.s.

Definition A.6

(A Unique Strong Solution for \((\boldsymbol{X},{\boldsymbol{B}})\) Starting at \({\boldsymbol{x}}_m\)) The SDE \((\textrm{SKE}_{\boldsymbol{X}}(\mathbb {I})) \) is said to have a unique strong solution for (\(\boldsymbol{X}, {\boldsymbol{B}}\)) under \(P_{\boldsymbol{x}}\) if there exists a strong solution \(F_{{\boldsymbol{x}}}^\mathbb {I}\) such that for any solution \((\hat{\textbf{Y}}^\mathbb {I}, {\boldsymbol{B}}^\mathbb {I}, \boldsymbol{X}^{\mathbb {I}^c})\) of \((\textrm{SKE}_{\boldsymbol{X}}(\mathbb {I})) \) under \(P_{\boldsymbol{x}}\), \(\hat{\textbf{Y}}^\mathbb {I}= F_{{\boldsymbol{x}}}^\mathbb {I}({\boldsymbol{B}}^\mathbb {I}, \boldsymbol{X}^{\mathbb {I}^c})\quad \text {for}\,P_{{\boldsymbol{x}}}\text {-a.s.}\).

We can then give the definition of (IFC).

  • (IFC) For each finite subset \( \mathbb {I}\subset \mathbb {N}\), \((\textrm{SKE}_{\boldsymbol{X}}(\mathbb {I}))\) has a unique strong solution under \(P_{{\boldsymbol{x}}}:= P(\cdot | \boldsymbol{X}_0 ={\boldsymbol{x}})\) for \(P \circ \boldsymbol{X}_0^{-1}\)-a.s. \({\boldsymbol{x}}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanemura, H. (2022). Infinite Particle Systems with Hard-Core and Long-Range Interaction. In: Chen, ZQ., Takeda, M., Uemura, T. (eds) Dirichlet Forms and Related Topics. IWDFRT 2022. Springer Proceedings in Mathematics & Statistics, vol 394. Springer, Singapore. https://doi.org/10.1007/978-981-19-4672-1_25

Download citation

Publish with us

Policies and ethics