Skip to main content

Carbon-Based Nanomaterials for Oxygen Evolution Reaction

  • Chapter
  • First Online:
Carbon-Based Nanomaterials for Energy Conversion and Storage

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 325))

  • 402 Accesses

Abstract

The oxygen evolution reaction (OER), one of the semi-reactions of water electrolysis, is expected to play an important role in the conversion and storage of energy in the future. The sluggish four-electron transfer reaction has become the primary bottleneck of electrochemical water splitting, which can be significantly alleviated with the development of low-cost and durable OER catalysts, fortunately. Carbon-based composite nanomaterials can function well in alkaline environments because of their excellent mechanical and electrical properties, low cost, high abundance, and large surface area. This chapter discusses recent breakthroughs in carbon-based OER electrocatalysts, mainly including metal-free catalysts, atomically dispersed metallic carbon, metal-encapsulated carbon nanoparticles, and carbon nanoparticles supported by metal nanoparticles. The knowledge offered in this chapter can be used to rationally design OER carbon-based composite nanomaterial catalysts, which may help shed light on the future of carbon-based OER development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.G. Schultz, T. Diehl, G.P. Brasseur, W. Zittel, Air pollution and climate-forcing impacts of a global hydrogen economy. Science 302, 624–627 (2003). https://doi.org/10.1126/science.1089527

    Article  CAS  Google Scholar 

  2. Z. Wang, Z. Lin, P. Diao, Hybrids of iridium-cobalt phosphates as a highly efficient electrocatalyst for the oxygen evolution reaction in neutral solution. Chem. Commun. 55, 3000–3003 (2019). https://doi.org/10.1039/c8cc10278c

    Article  CAS  Google Scholar 

  3. Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). https://doi.org/10.1021/cr100290v

    Article  CAS  Google Scholar 

  4. N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 15, 1513–1524 (2011). https://doi.org/10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  5. B. Li, M.I. Setyawati, H. Zou, J. Dong, H. Luo, N. Li, D.T. Leong, Emerging 0D transition-metal dichalcogenides for sensors, biomedicine, and clean energy. Small 13, 1700527 (2017). https://doi.org/10.1002/smll.201700527

    Article  CAS  Google Scholar 

  6. C. Le Quéré, M.R. Raupach, J.G. Canadell, G. Marland, L. Bopp, P. Ciais, T.J. Conway, S.C. Doney, R.A. Feely, P. Foster, P. Friedlingstein, K. Gurney, R.A. Houghton, J.I. House, C. Huntingford, P.E. Levy, M.R. Lomas, J. Majkut, N. Metzl, J.P. Ometto, G.P. Peters, I.C. Prentice, J.T. Randerson, S.W. Running, J.L. Sarmiento, U. Schuster, S. Sitch, T. Takahashi, N. Viovy, G.R. van der Werf, F.I. Woodward, Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831–836 (2009). https://doi.org/10.1038/ngeo689

    Article  CAS  Google Scholar 

  7. W. Stedman, H. Kang, S. Lin, J.L. Kissil, M.S. Bartolomei, P.M. Lieberman, The art of splitting water. Nature 27, 654–666 (2008). https://doi.org/10.1038/451778a

    Article  CAS  Google Scholar 

  8. J. Song, Z.-F. Huang, L. Pan, K. Li, X. Zhang, L. Wang, J.-J. Zou, Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B 227, 386–408 (2018). https://doi.org/10.1016/j.apcatb.2018.01.052

    Article  CAS  Google Scholar 

  9. L. Zhang, M. Zhou, A. Wang, T. Zhang, Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020). https://doi.org/10.1021/acs.chemrev.9b00230

    Article  CAS  Google Scholar 

  10. N. Ji, T. Zhang, M. Zheng, A. Wang, H. Wang, X. Wang, J.G. Chen, Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew. Chem. Int. Ed. 47, 8510–8513 (2008). https://doi.org/10.1002/anie.200803233

    Article  CAS  Google Scholar 

  11. J.C. Serrano-Ruiz, R. Luque, A. Sepulveda-Escribano, Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 40, 5266–5281 (2011). https://doi.org/10.1039/c1cs15131b

    Article  CAS  Google Scholar 

  12. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013). https://doi.org/10.1002/adma.201204453

    Article  CAS  Google Scholar 

  13. R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012). https://doi.org/10.1038/nmat3313

    Article  CAS  Google Scholar 

  14. B.M. Hunter, H.B. Gray, A.M. Muller, Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 116, 14120–14136 (2016). https://doi.org/10.1021/acs.chemrev.6b00398

    Article  CAS  Google Scholar 

  15. C. Spori, J.T.H. Kwan, A. Bonakdarpour, D.P. Wilkinson, P. Strasser, The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 56, 5994–6021 (2017). https://doi.org/10.1002/anie.201608601

    Article  CAS  Google Scholar 

  16. J. Song, C. Wei, Z. Huang, C. Liu, L. Zeng, X. Wang, Z. Xu, A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49, 2196–2214 (2020). https://doi.org/10.1039/c9cs00607a

    Article  CAS  Google Scholar 

  17. H.-F. Wang, Q. Xu, Materials design for rechargeable metal-air batteries. Matter 1, 565–595 (2019). https://doi.org/10.1016/j.matt.2019.05.008

    Article  CAS  Google Scholar 

  18. L. Zhang, J. Xiao, H. Wang, M. Shao, Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal. 7, 7855–7865 (2017). https://doi.org/10.1021/acscatal.7b02718

    Article  CAS  Google Scholar 

  19. N.C.S. Selvam, L. Du, B. Xia, P.J. Yoo, B. You, Reconstructed water oxidation electrocatalysts: The impact of surface dynamics on intrinsic activities. Adv. Func. Mater. 31, 2008190 (2020). https://doi.org/10.1002/adfm.202008190

    Article  CAS  Google Scholar 

  20. N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017). https://doi.org/10.1039/c6cs00328a

    Article  CAS  Google Scholar 

  21. X. Rong, J. Parolin, A.M. Kolpak, A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6, 1153–1158 (2016). https://doi.org/10.1021/acscatal.5b02432

    Article  CAS  Google Scholar 

  22. D.A. Kuznetsov, M.A. Naeem, P.V. Kumar, P.M. Abdala, A. Fedorov, C.R. Muller, Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity. J. Am. Chem. Soc. 142, 7883–7888 (2020). https://doi.org/10.1021/jacs.0c01135

    Article  CAS  Google Scholar 

  23. J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo, J.K. Norskov, Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016). https://doi.org/10.1038/nmat4778

    Article  CAS  Google Scholar 

  24. A. Damjanovic, B. Jovanovic, Anodic oxide films as barriers to charge transfer in O2 evolution at Pt in acid solutions. J. Electrochem. Soc. 123, 374–381 (1976). https://doi.org/10.1149/1.2132828

    Article  CAS  Google Scholar 

  25. T. Binninger, R. Mohamed, K. Waltar, E. Fabbri, P. Levecque, R. Kotz, T.J. Schmidt, Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 5, 12167 (2015). https://doi.org/10.1038/srep12167

    Article  CAS  Google Scholar 

  26. A. Grimaud, W. Hong, Y. Shao-Horn, J.M. Tarascon, Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016). https://doi.org/10.1038/nmat4551

    Article  CAS  Google Scholar 

  27. B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 19186–19192 (2013). https://doi.org/10.1021/ja4081056

    Article  CAS  Google Scholar 

  28. W. Zhou, J. Zhou, Y. Zhou, J. Lu, K. Zhou, L. Yang, Z. Tang, L. Li, S. Chen, N-doped carbon-wrapped cobalt nanoparticles on N-doped graphene nanosheets for high-efficiency hydrogen production. Chem. Mater. 27, 2026–2032 (2015). https://doi.org/10.1021/acs.chemmater.5b00331

    Article  CAS  Google Scholar 

  29. C. Lv, Q. Yang, Q. Huang, Z. Huang, H. Xia, C. Zhang, Phosphorus doped single wall carbon nanotubes loaded with nanoparticles of iron phosphide and iron carbide for efficient hydrogen evolution. J. Mater. Chem. A 4, 13336–13343 (2016). https://doi.org/10.1039/c6ta04329a

    Article  CAS  Google Scholar 

  30. S. Fu, C. Zhu, J. Song, M.H. Engelhard, X. Li, D. Du, Y. Lin, Highly ordered mesoporous bimetallic phosphides as efficient oxygen evolution electrocatalysts. ACS Energy Lett. 1, 792–796 (2016). https://doi.org/10.1021/acsenergylett.6b00408

    Article  CAS  Google Scholar 

  31. H. Wang, Z. Lu, S. Xu, D. Kong, J.J. Cha, G. Zheng, P.C. Hsu, K. Yan, D. Bradshaw, F.B. Prinz, Y. Cui, Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. 110, 19701–19706 (2013). https://doi.org/10.1073/pnas.1316792110

    Article  CAS  Google Scholar 

  32. S. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren, B. Huang, H. Liao, L.P. Wang, Y. Du, Z.J. Xu, Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides. Angew. Chem. Int. Ed. 58, 6042–6047 (2019). https://doi.org/10.1002/anie.201902114

    Article  CAS  Google Scholar 

  33. J. Lai, A. Nsabimana, R. Luque, G. Xu, 3D porous carbonaceous electrodes for electrocatalytic applications. Joule 2, 76–93 (2018). https://doi.org/10.1016/j.joule.2017.10.005

    Article  CAS  Google Scholar 

  34. W. Xiao, J. Zhu, L. Han, S. Liu, J. Wang, Z. Wu, W. Lei, C. Xuan, H.L. Xin, D. Wang, Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR. Nanoscale 8, 14793–14802 (2016). https://doi.org/10.1039/c6nr03944h

    Article  CAS  Google Scholar 

  35. Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, K. Hashimoto, Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 4, 2390 (2013). https://doi.org/10.1038/ncomms3390

    Article  Google Scholar 

  36. L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50, 7132–7135 (2011). https://doi.org/10.1002/anie.201101287

    Article  CAS  Google Scholar 

  37. B. Lu, J. Du, T. Sheng, N. Tian, J. Xiao, L. Liu, B. Xu, Z. Zhou, S. Sun, Hydrogen adsorption-mediated synthesis of concave Pt nanocubes and their enhanced electrocatalytic activity. Nanoscale 8, 11559–11564 (2016). https://doi.org/10.1039/c6nr02349e

    Article  CAS  Google Scholar 

  38. Z. Liu, F. Peng, H. Wang, H. Yu, W. Zheng, J. Yang, Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem. Int. Ed. 50, 3257–3261 (2011). https://doi.org/10.1002/anie.201006768

    Article  CAS  Google Scholar 

  39. J. Zhang, L. Dai, Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. Int. Ed. 55, 13296–13300 (2016). https://doi.org/10.1002/anie.201607405

    Article  CAS  Google Scholar 

  40. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049

    Article  CAS  Google Scholar 

  41. J. Shui, M. Wang, F. Du, L. Dai, N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 1, e1400129 (2015). https://doi.org/10.1126/sciadv.1400129

    Article  CAS  Google Scholar 

  42. J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015). https://doi.org/10.1038/nnano.2015.48

    Article  CAS  Google Scholar 

  43. Y. Zhu, Y. Jing, A. Vasileff, T. Heine, S. Qiao, 3D dynergistically active carbon nanofibers for improved oxygen evolution. Adv. Energy Mater. 7, 1602928 (2017). https://doi.org/10.1002/aenm.201602928

    Article  CAS  Google Scholar 

  44. H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu, L. Wang, W. Li, Z. Chen, X. Ji, J. Li, Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR. OER and HER, Energy and Environmental Sciences 12, 322–333 (2019). https://doi.org/10.1039/c8ee03276a

    Article  CAS  Google Scholar 

  45. C. Gao, J. Low, R. Long, T. Kong, J. Zhu, Y. Xiong, Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120, 12175–12216 (2020). https://doi.org/10.1021/acs.chemrev.9b00840

    Article  CAS  Google Scholar 

  46. J. Cordon, G. Jimenez-Oses, J.M. Lopez-de-Luzuriaga, M. Monge, The key role of Au-substrate interactions in catalytic gold subnanoclusters. Nat. Commun. 8, 1657 (2017). https://doi.org/10.1038/s41467-017-01675-1

    Article  CAS  Google Scholar 

  47. J. Guo, J. Huo, Y. Liu, W. Wu, Y. Wang, M. Wu, H. Liu, G. Wang, Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: From synthesis to application. Small Methods 3, 1900159 (2019). https://doi.org/10.1002/smtd.201900159

    Article  CAS  Google Scholar 

  48. Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019

    Article  CAS  Google Scholar 

  49. J. Hong, C. Jin, J. Yuan, Z. Zhang, Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 29, 1606434 (2017). https://doi.org/10.1002/adma.201606434

    Article  CAS  Google Scholar 

  50. B. Li, C. Zhao, S. Chen, J. Liu, X. Chen, L. Song, Q. Zhang, Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Adv. Mater. 31, e1900592 (2019). https://doi.org/10.1002/adma.201900592

    Article  CAS  Google Scholar 

  51. L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, S. Wei, Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2018). https://doi.org/10.1038/s41929-018-0203-5

    Article  CAS  Google Scholar 

  52. T. Maschmeyer, F. Rey, G. Sankar, J.M. Thomas, Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378, 159–162 (1995). https://doi.org/10.1038/378159a0

    Article  CAS  Google Scholar 

  53. B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095

    Article  CAS  Google Scholar 

  54. M. Jahan, Z. Liu, K.P. Loh, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER OER, and ORR. Adv. Funct. Mater. 23, 5363–5372 (2013). https://doi.org/10.1002/adfm.201300510

    Article  CAS  Google Scholar 

  55. Y. Ding, A. Klyushin, X. Huang, T. Jones, D. Teschner, F. Girgsdies, T. Rodenas, R. Schlogl, S. Heumann, Cobalt-bridged ionic liquid polymer on a carbon nanotube for enhanced oxygen evolution reaction activity. Angew. Chem. Int. Ed. 57, 3514–3518 (2018). https://doi.org/10.1002/anie.201711688

    Article  CAS  Google Scholar 

  56. H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A.I. Kirkland, X. Duan, Y. Huang, General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y

    Article  CAS  Google Scholar 

  57. Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam, T. Zhang, X. Zhuang, B. Yang, J. Cho, M. Chen, C. Yuan, L. Lei, X. Feng, Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019). https://doi.org/10.1038/s41467-019-09394-5

    Article  CAS  Google Scholar 

  58. H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X.W.D. Lou, Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 31, e1904548 (2019). https://doi.org/10.1002/adma.201904548

    Article  CAS  Google Scholar 

  59. Y. Li, Z. Wu, P. Lu, X. Wang, W. Liu, Z. Liu, J. Ma, W. Ren, Z. Jiang, X. Bao, High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv. Sci. 7, 1903089 (2020). https://doi.org/10.1002/advs.201903089

    Article  CAS  Google Scholar 

  60. L. Bai, C.S. Hsu, D.T.L. Alexander, H.M. Chen, X. Hu, A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141, 14190–14199 (2019). https://doi.org/10.1021/jacs.9b05268

    Article  CAS  Google Scholar 

  61. X. Han, X. Ling, D. Yu, D. Xie, L. Li, S. Peng, C. Zhong, N. Zhao, Y. Deng, W. Hu, Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, e1905622 (2019). https://doi.org/10.1002/adma.201905622

    Article  CAS  Google Scholar 

  62. W. Zhou, T. Xiong, C. Shi, J. Zhou, K. Zhou, N. Zhu, L. Li, Z. Tang, S. Chen, Bioreduction of precious metals by microorganism: efficient gold@N-doped carbon electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 55, 8416–8420 (2016). https://doi.org/10.1002/anie.201602627

    Article  CAS  Google Scholar 

  63. Y. Xu, W. Tu, B. Zhang, S. Yin, Y. Huang, M. Kraft, R. Xu, Nickel nanoparticles encapsulated in Ffew-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. 29. https://doi.org/10.1002/adma.201605957

  64. Z. Liang, N. Kong, C. Yang, W. Zhang, H. Zheng, H. Lin, R. Cao, Highly curved nanostructure-coated Co, N-doped carbon materials for oxygen electrocatalysis. Angew. Chem. Int. Ed. 60, 12759–12764 (2021). https://doi.org/10.1002/anie.202101562

    Article  CAS  Google Scholar 

  65. T. Wang, J. Liang, Z. Zhao, S. Li, G. Lu, Z. Xia, C. Wang, J. Luo, J. Han, C. Ma, Y. Huang, Q. Li, Sub-6 nm fully ordered L10-Pt-Ni-Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain. Adv. Energy Mater. 9, 1803771 (2019). https://doi.org/10.1002/aenm.201803771

    Article  CAS  Google Scholar 

  66. X. Hao, Z. Jiang, B. Zhang, X. Tian, C. Song, L. Wang, T. Maiyalagan, X. Hao, Z.J. Jiang, N-doped carbon nanotubes derived from graphene oxide with embedment of FeCo nanoparticles as bifunctional air electrode for rechargeable liquid and flexible all-solid-state zinc-air batteries. Adv. Sci. 8, 2004572 (2021). https://doi.org/10.1002/advs.202004572

    Article  CAS  Google Scholar 

  67. X. Han, C. Yu, Y. Niu, Z. Wang, Y. Kang, Y. Ren, H. Wang, H.S. Park, J. Qiu, Full bulk-structure reconstruction into amorphorized cobalt-iron oxyhydroxide nanosheet electrocatalysts for greatly improved electrocatalytic activity. Small Methods 4, 2000546 (2020). https://doi.org/10.1002/smtd.202000546

    Article  CAS  Google Scholar 

  68. J. Cao, K. Wang, J. Chen, C. Lei, B. Yang, Z. Li, L. Lei, Y. Hou, K. Ostrikov, Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11, 67 (2019). https://doi.org/10.1007/s40820-019-0299-4

    Article  CAS  Google Scholar 

  69. K. Xu, H. Ding, H. Lv, P. Chen, X. Lu, H. Cheng, T. Zhou, S. Liu, X. Wu, C. Wu, Y. Xie, Dual electrical-behavior regulation on electrocatalysts realizing enhanced electrochemical water oxidation. Adv. Mater. 28, 3326–3332 (2016). https://doi.org/10.1002/adma.201505732

    Article  CAS  Google Scholar 

  70. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011). https://doi.org/10.1038/nmat3087

    Article  CAS  Google Scholar 

  71. T. Li, Y. Lv, J. Su, Y. Wang, Q. Yang, Y. Zhang, J. Zhou, L. Xu, D. Sun, Y. Tang, Anchoring CoFe2O4 nanoparticles on N-doped carbon nanofibers for high-performance oxygen evolution reaction. Adv. Sci. 4, 1700226 (2017). https://doi.org/10.1002/advs.201700226

    Article  CAS  Google Scholar 

  72. D.M. Morales, M.A. Kazakova, S. Dieckhöfer, A.G. Selyutin, G.V. Golubtsov, W. Schuhmann, J. Masa, Trimetallic Mn-Fe-Ni oxide nanoparticles supported on multi-walled carbon nanotubes as high-performance bifunctional ORR/OER electrocatalyst in alkaline media. Adv. Func. Mater. 30, 1905992 (2019). https://doi.org/10.1002/adfm.201905992

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-An Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, M., Xu, S., Lu, BA. (2022). Carbon-Based Nanomaterials for Oxygen Evolution Reaction. In: Zhang, JN. (eds) Carbon-Based Nanomaterials for Energy Conversion and Storage. Springer Series in Materials Science, vol 325. Springer, Singapore. https://doi.org/10.1007/978-981-19-4625-7_7

Download citation

Publish with us

Policies and ethics