Skip to main content

Insight into Various Conventional Physical and Chemical Methods for the Pretreatment of Lignocellulosic Biomass

  • Chapter
  • First Online:
Thermochemical and Catalytic Conversion Technologies for Future Biorefineries

Abstract

The generation of renewable energy resources as an alternative to fossil fuels is essential to sustain the growing human population. Lignocellulosic biomass is considered an important renewable resource for various value-added compounds and biofuels, as the world is currently poised toward a carbohydrate-based economy. Analogous to petroleum refineries, biorefineries deal with the carbohydrate polymers (cellulose, hemicellulose) and aromatic compounds (lignin), which can be processed into different bioproducts. However, the complex architecture of crystalline cellulose, hemicellulose, and lignin creates high recalcitrance, which requires significant pretreatment steps. Thus, developing cost-effective pretreatment is crucial for the effective separation of the biomass components. In this chapter, first, the basic components of the lignocellulosic biomass have been briefly described followed by the various conventional physical and chemical pretreatment methods. In addition, the efficiency of different biomass-specific pretreatment operations and their combinations has been discussed in detail. Moreover, challenges of the pretreatment processes, like chemical recovery, inhibitory byproducts formation, prolonged and costly methods, and feedstock utilization are also highlighted. Overcoming the challenges has demonstrated the potentiality of the available pretreatment methods in the advanced biological refinery process for the production of biofuels and various value-added compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFEX:

Ammonia Fiber Explosion

CrI:

Crystallinity index

DA:

Dilute acid

DP:

Degree of polymerization

GR:

Gamma irradiation

ILs:

Ionic liquids

LCB:

Lignocellulosic biomass

LHW:

Liquid hot water

MWR:

Microwave radiation

OS:

Organosolvent

SE:

Steam explosion

WO:

Wet oxidation

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  CAS  PubMed  Google Scholar 

  • Agrawal K, Verma P (2020) Production optimization of yellow laccase from Stropharia sp. ITCC 8422 and enzyme-mediated depolymerization and hydrolysis of lignocellulosic biomass for biorefinery application. In: Biomass conversion and biorefinery, pp 1–20

    Google Scholar 

  • Akhtar N, Gupta K, Goyal D, Goyal A (2016) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Progress Sustain Energy 35(2):489–511

    Article  CAS  Google Scholar 

  • Andersen SLF, Castoldi R, Garcia JAA, Bracht A, Peralta RA, de Lima EA, Helm CV, de Fátima Peralta Muniz Moreira R, Peralta RM (2019) Improving enzymatic Saccharification of Eucalyptus grandis branches by ozone pretreatment. Wood Sci Technol 53(1):49–69

    Article  CAS  Google Scholar 

  • Auxenfans T, Crônier D, Chabbert B, Paës G (2017) Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. Biotechnol Biofuels 10(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111(30):9138–9145

    Article  PubMed  Google Scholar 

  • Bhardwaj N, Verma P (2021) Microbial xylanases: a helping module for the enzyme biorefinery platform. In: Srivastava N, Srivastava M (eds) Bioenergy research: evaluating strategies for commercialization and sustainability, pp 129–152

    Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2020) Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production. Bioresour Technol Rep 10:100352

    Article  Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2021) Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess 8(1):1–34

    CAS  Google Scholar 

  • Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA, Karim S, Yu G (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–745

    Article  CAS  Google Scholar 

  • Bishop CA (2015) Vacuum deposition onto webs, films and foils. 3rd edn

    Google Scholar 

  • Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6):844–856

    Article  CAS  Google Scholar 

  • Chang KL, Thitikorn-amorn J, Hsieh JF, Bay Ming O, Chen SH, Ratanakhanokchai K, Huang PJ, Chen ST (2011) Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass Bioenergy 35(1):90–95

    Article  CAS  Google Scholar 

  • Chen Z, Wan C (2018) Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresour Technol 250:532–537

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206

    Article  CAS  Google Scholar 

  • Chen X, Zhang Y, Mei J, Zhao G, Lyu Q, Xue L, Lyu H, Han L, Xiao W (2019) Ball milling for cellulose depolymerization and alcoholysis to produce methyl levulinate at mild temperature. Fuel Process Technol 188:129–136

    Article  CAS  Google Scholar 

  • Choi JH, Jang SK, Kim JH, Park SY, Kim JC, Jeong H, Kim HY, Choi IG (2019) Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment. Renew Energy 130:952–960

    Article  CAS  Google Scholar 

  • Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  CAS  PubMed  Google Scholar 

  • da Costa Lopes AM, João KG, Rubik DF, Bogel-Łukasik E, Duarte LC, Andreaus J, Bogel-Łukasik R (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour Technol 142:198–208

    Article  PubMed  Google Scholar 

  • Diaz AB, de Souza Moretti MM, Bezerra-Bussoli C, da Costa Carreira Nunes C, Blandino A, da Silva R, Gomes E (2015) Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour Technol 185:316–323

    Article  CAS  PubMed  Google Scholar 

  • Dijkerman R, Bhansing DCP, Op Den Camp HJM, Van Der Drift C, Vogels GD (1997) Degradation of structural polysaccharides by the plant cell-wall degrading enzyme system from anaerobic fungi: an application study. Enzym Microb Technol 21(2):130–136

    Article  CAS  Google Scholar 

  • Duarte CL, Ribeiro MA, Oikawa H, Mori MN, Napolitano CM, Galvão CA (2012) Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse. Radiat Phys Chem 81(8):1008–1011

    Article  CAS  Google Scholar 

  • Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4(2):199–211

    Article  CAS  PubMed  Google Scholar 

  • Falls M, Holtzapple MT (2011) Oxidative lime pretreatment of Alamo switchgrass. Appl Biochem Biotechnol 165(2):506–522

    Article  CAS  PubMed  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Philip C, Trevor Forsyth V, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci U S A 108(47):E1195–E1203

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis 62(2):331–349

    Article  CAS  Google Scholar 

  • Fu D, Mazza G (2011) Aqueous ionic liquid pretreatment of straw. Bioresour Technol 102(13):7008–7011

    Article  CAS  PubMed  Google Scholar 

  • García-Cubero MT, González-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100(4):1608–1613

    Article  PubMed  Google Scholar 

  • Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IV I and IV II. Can J Chem 63(1):173–180

    Article  CAS  Google Scholar 

  • Gatt E, Khatri V, Bley J, Barnabé S, Vandenbossche V, Beauregard M (2019) Enzymatic hydrolysis of corn crop residues with high solid loadings: new insights into the impact of bioextrusion on biomass deconstruction using carbohydrate-binding modules. Bioresour Technol 282:398–406

    Article  CAS  PubMed  Google Scholar 

  • Guerrero AB, Ballesteros I, Ballesteros M (2017) Optimal conditions of acid-catalysed steam explosion pretreatment of banana lignocellulosic biomass for fermentable sugar production. J Chem Technol Biotechnol 92(9):2351–2359

    Article  CAS  Google Scholar 

  • Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Endo T, Sawayama S (2009) Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of Rice straw. Bioresour Technol 100(10):2706–2711

    Article  CAS  PubMed  Google Scholar 

  • Howard RL, Abotsi E, Janse van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):702–733

    Article  Google Scholar 

  • Husson E, Auxenfans T, Herbaut M, Baralle M, Lambertyn V, Rakotoarivonina H, Rémond C, Sarazin C (2018) Sequential and simultaneous strategies for biorefining of wheat straw using room temperature ionic liquids, xylanases and cellulases. Bioresour Technol 251:280–287

    Article  CAS  PubMed  Google Scholar 

  • Imman S, Laosiripojana N, Champreda V (2018) Effects of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of corncobs. Appl Biochem Biotechnol 184(2):432–443

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134

    Article  Google Scholar 

  • Kasthuraiah K, Sai Kishore N (2017) Lignocellulosic biofuels—challenges and potentials. Int J Pharma Biosci 8(1):376–381

    CAS  Google Scholar 

  • Khan F, Ahmad SR, Kronfli E (2006) Γ-radiation induced changes in the physical and chemical properties of lignocellulose. Biomacromolecules 7(8):2303–2309

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96(18 SPEC ISS):1994–2006

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77(2):139–144

    Article  CAS  PubMed  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, Fundamentals and analytical methods, vol I. Wiley-VCH, Hoboken

    Book  Google Scholar 

  • Kuhad RC, Singh A, Eriksson KE (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125

    CAS  PubMed  Google Scholar 

  • Kumar B, Verma P (2020a) Enzyme mediated multi-product process: a concept of bio-based refinery. Ind Crop Prod 154:112607

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2020b) Application of hydrolytic enzymes in biorefinery and its future prospects. In: Srivastava N, Srivastava M, Mishra PK, Gupta VK (eds) Microbial strategies for techno-economic biofuel production. Clean energy production technologies. Springer, Singapore, pp 59–83

    Chapter  Google Scholar 

  • Kumar B, Bhardwaj N, Verma P (2020) Microwave assisted transition metal salt and orthophosphoric acid pretreatment systems: generation of bioethanol and xylo-oligosaccharides. Renew Energy 158:574–584

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2(2):410–416

    Article  CAS  PubMed  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Lenz RW (1994) Cellulose, structure, accessibility and reactivity, by H. A. Krässig, Gordon and Breach Publishers, 5301 Tacony Street, Philadelphia, PA, 1993; Xvi + 376 Pp. Price: $260.00. J Polym Sci A Polym Chem 32(12):2401–2401

    Article  Google Scholar 

  • Li H, Kim NJ, Jiang M, Kang JW, Chang HN (2009) Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresour Technol 100(13):3245–3251

    Article  CAS  PubMed  Google Scholar 

  • Li BZ, Balan V, Yuan YJ, Dale BE (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101(4):1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen W, Xia Q, Guo B, Wang Q, Liu S, Liu Y, Li J, Haipeng Y (2017a) Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. ChemSusChem 10(8):1692–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Guo L, Wang L, Wang Z, Zhou H (2017b) Irradiation pretreatment facilitates the achievement of high total sugars concentration from lignocellulose biomass. Bioresour Technol 232:270–277

    Article  CAS  PubMed  Google Scholar 

  • Manna B, Ghosh A (2019) Dissolution of cellulose in ionic liquid and water mixtures as revealed by molecular dynamics simulations. J Biomol Struct Dyn 37(15):3987–4005

    Article  CAS  PubMed  Google Scholar 

  • Manna B, Datta S, Ghosh A (2021) Understanding the dissolution of softwood lignin in ionic liquid and water mixed solvents. Int J Biol Macromol 182:402–412

    Article  CAS  PubMed  Google Scholar 

  • Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohapatra S, Dandapat SJ, Thatoi H (2017) Physicochemical characterization, modelling and optimization of ultrasono-assisted acid pretreatment of two Pennisetum sp. using Taguchi and artificial neural networking for enhanced delignification. J Environ Manag 187:537–549

    Article  CAS  Google Scholar 

  • Mokomele T, da Costa Sousa L, Bals B, Balan V, Goosen N, Dale BE, Görgens JF (2018) Using steam explosion or AFEX™ to produce animal feeds and biofuel feedstocks in a biorefinery based on sugarcane residues. Biofuels Bioprod Biorefin 12(6):978–996

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Ono T (2012) Ionic liquid assisted enzymatic delignification of wood biomass: a new ‘green’ and efficient approach for isolating of cellulose fibers. Biochem Eng J 60:156–160

    Article  CAS  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  Google Scholar 

  • Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 40(12):1557–1559

    Article  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306

    Article  CAS  PubMed  Google Scholar 

  • Okeke BC, Obi SKC (1994) Lignocellulose and sugar compositions of some agro-waste materials. Bioresour Technol 47(3):283–284

    Article  CAS  Google Scholar 

  • Ortega JV, Renehan AM, Liberatore MW, Herring AM (2011) Physical and chemical characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks. J Anal Appl Pyrolysis 91(1):190–198

    Article  CAS  Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115(3):1308–1448

    Article  CAS  PubMed  Google Scholar 

  • Pérez JA, Ballesteros I, Ballesteros M, Sáez F, Negro MJ, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87(17–18):3640–3647

    Article  Google Scholar 

  • Persson H, Yang W (2019) Catalytic pyrolysis of demineralized lignocellulosic biomass. Fuel 252:200–209

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Patra P, Das M, Ghosh A (2021) Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals. Renew Sust Energ Rev 149:111368

    Article  CAS  Google Scholar 

  • Rambo MKD, Schmidt FL, Ferreira MMC (2015) Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta 144(11):696–703

    Article  CAS  PubMed  Google Scholar 

  • Redding AP, Wang Z, Keshwani DR, Cheng JJ (2011) High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour Technol 102(2):1415–1424

    Article  CAS  PubMed  Google Scholar 

  • Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3- methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271–1273

    Article  Google Scholar 

  • Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302(5646):792–793

    Article  PubMed  Google Scholar 

  • Romaní A, Larramendi A, Yáñez R, Cancela Á, Sánchez Á, Teixeira JA, Domingues L (2019) Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Ind Crop Prod 132:327–335

    Article  Google Scholar 

  • Rosen Y, Mamane H, Gerchman Y (2019) Short ozonation of lignocellulosic waste as energetically favorable pretreatment. Bioenergy Res 12(2):292–301

    Article  CAS  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841–845

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. In: Lignocellulose biodegradation, vol. 889. ACS symposium series. American Chemical Society

    Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353

    Article  PubMed  Google Scholar 

  • Sarko A, Southwick J, Hayashi J (1976) Packing analysis of carbohydrates and polysaccharides. 7. Crystal structure of cellulose IIII and its relationship to other cellulose polymorphs. Macromolecules 9(5):857–863

    Article  CAS  Google Scholar 

  • Shi J, Balamurugan K, Parthasarathi R, Sathitsuksanoh N, Zhang S, Stavila V, Subramanian V, Simmons BA, Singh S (2014) Understanding the role of water during ionic liquid pretreatment of lignocellulose: co-solvent or anti-solvent? Green Chem 16(8):3830–3840

    Article  CAS  Google Scholar 

  • Shibuva N, Misaki A (1978) Structure of hemicellulose isolated from rice endosperm cell wall: mode of linkages and sequences in xyloglucan, β-glucan and Arabinoxylan. Agric Biol Chem 42(12):2267–2274

    Google Scholar 

  • Sun F, Chen H (2007) Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. J Chem Technol Biotechnol 82(11):1039–1044

    Article  CAS  Google Scholar 

  • Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646–665

    Article  CAS  Google Scholar 

  • Szabo OE, Csiszar E (2017) Some factors affecting efficiency of the ultrasound-aided enzymatic hydrolysis of cotton cellulose. Carbohydr Polym 156:357–363

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Zhang Q, Wang W, Zhuang X, Deng Y, Yuan Z (2019) Comparison study of organosolv pretreatment on hybrid Pennisetum for enzymatic saccharification and lignin isolation. Fuel 249:334–340

    Article  CAS  Google Scholar 

  • Thring RW, Chornet E, Overend RP (1990) Recovery of a solvolytic lignin: effects of spent liquor/acid volume ratio, acid concentration and temperature. Biomass 23(4):289–305

    Article  CAS  Google Scholar 

  • Uju YS, Nakamoto A, Goto M, Tokuhara W, Noritake Y, Katahira S, Ishida N, Nakashima K, Ogino C, Kamiya N (2012) Short time ionic liquids pretreatment on lignocellulosic biomass to enhance enzymatic saccharification. Bioresour Technol 103(1):446–452

    Article  CAS  PubMed  Google Scholar 

  • Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crop Prod 19(3):245–254

    Article  CAS  Google Scholar 

  • Wahlström RM, Suurnäkki A (2015) Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chem 17(2):694–714

    Article  Google Scholar 

  • Wan C, Zhou Y, Li Y (2011) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol 102(10):6254–6259

    Article  CAS  PubMed  Google Scholar 

  • Wasserscheid P, Keim W (2000) Ionic liquids—new ‘solutions’ for transition metal catalysis. Angew Chem Int Ed Engl 39(21):3772–3789

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Dai X, Zhou SL, Gan YY, Xiong ZY, Qin YH, Ma J, Yang L, Wu ZK, Wang TL, Wang WG, Wang CW (2017) Ultrasound-assisted alkaline pretreatment for enhancing the enzymatic hydrolysis of rice straw by using the heat energy dissipated from ultrasonication. Bioresour Technol 241:70–74

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Xiang Y, Wang L (2017) Electron beam irradiation to enhance enzymatic saccharification of alkali soaked Artemisia ordosica used for production of biofuels. J Environ Chem Eng 5(4):4093–4100

    Article  CAS  Google Scholar 

  • Yang L, Cao J, Jin Y, Chang HM, Jameel H, Phillips R, Li Z (2012) Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw. Bioresour Technol 124:283–291

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Wang X, Chen Q, Tan H (2019a) Improvement of the properties of 1-ethyl-3-methylimidazolium acetate using organic solvents for biofuel process. J Mol Liq 284:82–91

    Article  CAS  Google Scholar 

  • Yang H, Shi Z, Xu G, Qin Y, Deng J, Yang J (2019b) Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresour Technol 274:261–266

    Article  CAS  PubMed  Google Scholar 

  • Yoo J, Alavi S, Vadlani P, Amanor-Boadu V (2011) Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresour Technol 102(16):7583–7590

    Article  CAS  PubMed  Google Scholar 

  • Zhang YHP, Lynd LR (2003) Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal Biochem 322(2):225–232

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10(6):696–670

    Article  CAS  Google Scholar 

  • Zhao MJ, Xu QQ, Li GM, Zhang QZ, Zhou D, Yin JZ, Zhan HS (2019) Pretreatment of agricultural residues by supercritical CO2 at 50–80 °C to enhance enzymatic hydrolysis. J Energy Chem 31:39–45

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Department of Science and Technology (Grant No. CRG/2020/002080), Department of Biotechnology (Grant No. BT/RLF/Re-entry/06/2013) and Scheme for Promotion of Academic and Research Collaboration (SPARC), MHRD, Govt. of India (Grant No. SPARC/2018-2019/P265/SL). Pradipta Patra appreciates the support from the Department of Science and Technology(DST) (INSPIRE, India for the award of fellowships, DST). Manali Das thanks thesupport from the Council of Scientific and Industrial Research (CSIR).

Competing Interests

All the authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manna, B., Das, M., Patra, P., Ghosh, A. (2022). Insight into Various Conventional Physical and Chemical Methods for the Pretreatment of Lignocellulosic Biomass. In: Verma, P. (eds) Thermochemical and Catalytic Conversion Technologies for Future Biorefineries. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-4316-4_2

Download citation

Publish with us

Policies and ethics