Skip to main content

Phenology of Photosynthesis in a Deciduous Broadleaf Forest: Implications for the Carbon Cycle in a Changing Environment

  • Chapter
  • First Online:
River Basin Environment: Evaluation, Management and Conservation

Abstract

Photosynthetic carbon assimilation in plant leaves supports biomass accumulation and developmental growth and contributes to the regulation of atmospheric CO2 concentration via the carbon cycle. Photosynthesis and its environmental responses have been the central theme of plant physiological ecology and ecosystem ecology, as photosynthesis is involved in a broad range of natural systems from cells to the biosphere. In particular, the environmental responses of tree leaves and forest ecosystems and their seasonal and interannual changes under ongoing climate change are central research interests in ecology and Earth system science. This chapter reviews the studies of leaf and canopy photosynthesis conducted in a cool-temperate deciduous broadleaf forest site in Japan. Long-term observations and open-field warming experiments were conducted to assess leaf phenology in canopy trees, leaf photosynthesis, and the light environment of understory shrubs, and the application of optical remote sensing on forest canopy photosynthetic productivity helped to clarify single-leaf level ecophysiology and forest ecosystem function. The advancement of integrated ecosystem science coupled with climate monitoring should help us to respond to the urgent need for key data regarding biodiversity and ecosystem conservation and management across landscapes from local to regional scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson CB (2018) Biodiversity monitoring, earth observations and the ecology of scale. Ecol Lett 21:1572–1585

    Article  PubMed  Google Scholar 

  • Augspurger CK, Bartlett EA (2003) Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Tree Physiol 23:517–525

    Article  PubMed  Google Scholar 

  • Augspurger CK, Cheeseman JM, Salk CF (2005) Light gains and physiological capacity of understorey woody plants during phenological avoidance of canopy shade. Funct Ecol 19:537–546

    Article  Google Scholar 

  • Baldocchi DD, Black TA, Curtis PS, Falge E, Fuentes JD, Granier A, Gu L, Knohl A, Pilegaard K, Schmid HP, Valentini R, Wilson K, Wofsy S, Xu L, Yamamoto S (2005) Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: a synthesis of FLUXNET data. Int J Biometeorol 49:377–387

    Article  PubMed  Google Scholar 

  • Chabbi A, Loescher HW (eds) (2017) Terrestrial ecosystem research infrastructure: challenges and opportunities. CRC Press, Boca Raton

    Google Scholar 

  • Chapin FS III, Matson PA, Vitousek PM (eds) (2012) Principles of terrestrial ecology, 2nd edn. Springer, Berlin

    Google Scholar 

  • Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res 126:447–460

    Article  PubMed  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    Article  PubMed  Google Scholar 

  • Doi H, Katano I (2008) Phenological timings of leaf budburst with climate change in Japan. Agric For Meteorol 148:512–516

    Article  Google Scholar 

  • Evans JR, von Caemmerer S, Adams III WW (eds) (1988) Ecology of photosynthesis in sun and shade. CSIRO

    Google Scholar 

  • Frankenberg C, Fisher JB, Worden J, Badgley G, Saatchi SS, Lee J-E, Toon GC, Butz A, Jung M, Kuze A, Yokota T (2011) New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys Res Lett. https://doi.org/10.1029/2011GL048738

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Global Climate Observing System (2016) The global observing system for climate: implementation needs. World Meteorological Organization. https://gcos.wmo.int/en/gcos-implementation-plan

  • Gunderson CA, Edwards NT, Walker AV, O'Hara KH, Campion CM, Hanson PJ (2012) Forest phenology and a warmer climate: growing season extension in relation to climatic provenance. Glob Chang Biol 18:2008–2025

    Article  Google Scholar 

  • Haase P, Tonkin JD, Stoll S, Burkhard B, Frenzel M, Geijzendorffer IR, Hauser C, Klotz S, Kuhn I, McDowell WH, Mirtl M, Muller F, Musche M, Penner J, Zacharias S, Schmeller DS (2018) The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci Total Environ 613-614:1376–1384

    Article  CAS  PubMed  Google Scholar 

  • Hänninen H, Kramer K, Tanino K, Zhang R, Wu J, Fu YH (2019) Experiments are necessary in process-based tree phenology modelling. Trends Plant Sci 24:199–209

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Noda HM (2019) Modeling leaf CO2 assimilation and photosystem II photochemistry from chlorophyll fluorescence and the photochemical reflectance index. Plant Cell Environ 42:730–739

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka K, Nabeshima E, Hiura T (2007) Seasonal changes in the temperature response of photosynthesis in canopy leaves of Quercus crispula in a cool-temperate forest. Tree Physiol 27:1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka K, Niinemets Ãœ, Anten PR (eds) (2016) Canopy photosynthesis: from basics to applications. Springer, Berlin

    Google Scholar 

  • Hirata R, Hirano T, Saigusa N, Fujinuma Y, Inukai K, Kitamori Y, Takahashi Y, Yamamoto S (2007) Seasonal and interannual variations in carbon dioxide exchange of a temperate larch forest. Agric For Meteorol 147:110–124

    Article  Google Scholar 

  • Ichii K, Suzuki T, Kato T, Ito A, Hajima T, Ueyama M, Sasai T, Hirata R, Saigusa N, Ohtani Y, Takagi K (2010) Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations. Biogeosciences 7:2061–2080

    Article  CAS  Google Scholar 

  • Inoue T, Nagai S, Saitoh TM, Muraoka H, Nasahara KN, Koizumi H (2014) Detection of the different characteristics of year-to-year variation in foliage phenology among deciduous broad-leaved tree species by using daily continuous canopy surface images. Ecol Informatics 22:58–68

    Article  Google Scholar 

  • Ito A, Muraoka H, Koizumi H, Saigusa N, Murayama S, Yamamoto S (2006) Seasonal variation in leaf properties and ecosystem carbon budget in a cool-temperate deciduous broad-leaved forest: simulation analysis at Takayama site, Japan. Ecol Res 21:137–149

    Article  CAS  Google Scholar 

  • Ito A, Inatomi M, Mo W, Lee M, Koizumi H, Saigusa N, Murayama S, Yamamoto S (2007) Examination of model-estimated ecosystem respiration using flux measurements from a cool-temperate deciduous broad-leaved forest in Central Japan. Tellus B: Chem Phys Meteorol 59:616–624

    Article  Google Scholar 

  • Kikuzawa K, Lechowicz MJ (2011) Ecology of leaf longevity. Springer, Berlin

    Book  Google Scholar 

  • Kim E-S, Trisurat Y, Muraoka H, Shibata H, Amoroso V, Boldgiv B, Hoshizaki K, Kassim AR, Kim Y-S, Nguyen HQ, Ohte N, Ong PS, Wang C-P (2018) The international long-term ecological research–East Asia–Pacific regional network (ILTER-EAP): history, development, and perspectives. Ecol Res 33:19–34

    Article  Google Scholar 

  • Koike T (1990) Autumn coloring, photosynthetic performance and leaf development of deciduous broad-leaved trees in relation to forest succession. Tree Physiol 7:21–32

    Article  PubMed  Google Scholar 

  • Kuribayashi M, Noh NJ, Saitoh TM, Ito A, Wakazuki Y, Muraoka H (2017) Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model. Int J Biometeorol 61:989–1001

    Article  PubMed  Google Scholar 

  • Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob Chang Biol 9:1634–1642

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavská OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Ã…, Defila C, Donnelly A, Filella Y, Jatczak K, Mage F, Mestre A, Nordli Ø, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Mirtl M, Borer ET, Djukic I, Forsius M, Haubold H, Hugo W, Jourdan J, Lindenmayer D, McDowell WH, Muraoka H, Orenstein DE, Pauw JC, Peterseil J, Shibata H, Wohner C, Yu X, Haase P (2018) Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci Total Environ 626:1439–1462

    Article  CAS  PubMed  Google Scholar 

  • Mo W, Lee MS, Uchida M, Inatomi M, Saigusa N, Mariko S, Koizumi H (2005) Seasonal and annual variation in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agric For Meteorol 134:81–94

    Article  Google Scholar 

  • Monsi M, Saeki T (2005) On the factor light in plant communities and its importance for matter production. Ann Bot 95:549–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Montgomery RA, Chazdon RL (2001) Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology 82:2707–2718

    Article  Google Scholar 

  • Motohka T, Nasahara KN, Oguma H, Tsuchida S (2010) Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens 2:2369–2387

    Article  Google Scholar 

  • Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: implication to the ecosystem carbon gain. Agric For Meteorol 134:39–59

    Article  Google Scholar 

  • Muraoka H, Koizumi H (2009) Satellite ecology (SATECO)-linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. J Plant Res 122:3–20

    Article  PubMed  Google Scholar 

  • Muraoka H, Tang Y, Koizumi H, Washitani I (1997) combined effects of light and water availability on photosynthesis and growth of Arisaema heterophyllum in the forest understory and an open site. Oecologica 112:26–34

    Article  CAS  Google Scholar 

  • Muraoka H, Tang Y, Terashima I, Koizumi H, Washitani I (2000) Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Plant Cell Environ 23:235–250

    Article  CAS  Google Scholar 

  • Muraoka H, Tang Y, Koizumi H, Washitani I (2002) Effects of light and soil water availability on leaf photosynthesis and growth of Arisaema heterophyllum, a riparian forest understorey plant. J Plant Res 115:419–427

    Article  CAS  PubMed  Google Scholar 

  • Muraoka H, Koizumi H, Pearcy RW (2003) Leaf display and photosynthesis of tree seedlings in a cool-temperate deciduous broadleaf forest understory. Oecologia 135:500–509

    Article  PubMed  Google Scholar 

  • Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, Nagai S, Murayama S, Koizumi H (2010) Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan. J Plant Res 123:563–576

    Article  CAS  PubMed  Google Scholar 

  • Muraoka H, Noda HM, Nagai S, Motohka T, Saitoh TM, Nasahara KN, Saigusa N (2013) Spectral vegetation indices as the indicator of canopy photosynthetic productivity in a deciduous broadleaf forest. J Plant Ecol 6:393–407

    Article  Google Scholar 

  • Muraoka H, Saitoh TM, Nagai S (2015) Long-term and interdisciplinary research on forest ecosystem functions: challenges at Takayama site since 1993. Ecol Res 30:197–200

    Article  Google Scholar 

  • Murayama S, Takamura C, Yamamoto S, Saigusa N, Morimoto S, Kondo H, Nakazawa T, Aoki S, Usami T, Kondo M (2010) Seasonal variations of atmospheric CO2, δ13C, and δ18O at a cool temperate deciduous forest in Japan: influence of Asian monsoon. J Geophys Res 115:D17304

    Article  CAS  Google Scholar 

  • Nagai S, Saigusa N, Muraoka H, Nasahara KN (2010) What makes the satellite-based EVI–GPP relationship unclear in a deciduous broad-leaved forest? Ecol Res 25:359–365

    Article  Google Scholar 

  • Nagai S, Maeda T, Gamo M, Muraoka H, Suzuki R, Nasahara KN (2011) Using digital camera images to detect canopy condition of deciduous broad-leaved trees. Plant Ecol Divers 4:79–89

    Article  Google Scholar 

  • Nagai S, Saitoh TM, Kurumado K, Tamagawa I, Kobayashi H, Inoue T, Suzuki R, Gamo M, Muraoka H, Nishida Nasahara K (2013) Detection of bio-meteorological year-to-year variation by using digital canopy surface images of a deciduous broad-leaved forest. SOLAIAT 9:106–110

    Article  Google Scholar 

  • Nagai S, Nasahara KN, Akitsu TK, Saitoh TM, Muraoka H (2020) Importance of the collection of abundant ground-truth data for accurate detection of spatial and temporal variability of vegetation by satellite remote sensing, in biogeochemical cycles: ecological drivers and environmental impact. Geophysical Monograph 251. Wiley, New York, pp 225–243

    Google Scholar 

  • Nakamura M, Muller O, Tayanagi S, Nakaji T, Hiura T (2010) Experimental branch warming alters tall tree leaf phenology and acorn production. Agric For Meteorol 150:1026–1029

    Article  Google Scholar 

  • Nakamura M, Makoto K, Tanaka M, Inoue T, Son Y, Hiura T (2016) Leaf flushing and shedding, bud and flower production, and stem elongation in tall birch trees subjected to increases in aboveground temperature. Trees 30:1535–1541

    Article  Google Scholar 

  • Nakashima N, Kato T, Morozumi T, Tsujimoto K, Akitsu TK, Nasahara KN, Murayama S, Muraoka H, Noda HM (2021) Area-ratio Fraunhofer line depth (aFLD) method approach to estimate solar-induced chlorophyll fluorescence in low spectral resolution spectra in a cool-temperate deciduous broadleaf forest. J Plant Res 134:713–728

    Article  CAS  PubMed  Google Scholar 

  • Nasahara KN, Nagai S (2015) Review: development of an in situ observation network for terrestrial ecological remote sensing: the phenological eyes network (PEN). Ecol Res 30:211–223

    Article  Google Scholar 

  • Nasahara KN, Muraoka H, Nagai S, Mikami H (2008) Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agric For Meterol 148:1136–1146

    Article  Google Scholar 

  • Niinemets Ãœ (2004) Within-canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees. Plant Cell Environ 27:293–313

    Article  CAS  Google Scholar 

  • Noda HM, Muraoka H, Nasahara KN, Saigusa N, Murayama S, Koizumi H (2015) Phenology of leaf morphological, photosynthetic, and nitrogen use characteristics of canopy trees in a cool-temperate deciduous broadleaf forest at Takayama, Central Japan. Ecol Res 30:247–266

    Article  CAS  Google Scholar 

  • Noda HM, Muraoka H, Nasahara KN (2021) Plant ecophysiological processes in spectral profiles: perspective from a deciduous broadleaf forest. J Plant Res 134:737–751

    Article  PubMed  PubMed Central  Google Scholar 

  • Noh NJ, Kuribayashi M, Saitoh TM, Nakaji T, Nakamura M, Hiura T, Muraoka H (2016) Responses of soil, heterotrophic, and autotrophic respiration to experimental open-field soil warming in a cool-temperate deciduous forest. Ecosystems 19:504–520

    Article  CAS  Google Scholar 

  • Noh NJ, Kuribayashi M, Saitoh TM, Muraoka H (2017) Different responses of soil, heterotrophic and autotrophic respirations to a 4-year soil warming experiment in a cool-temperate deciduous broadleaved forest in Central Japan. Agric For Meteorol 247:560–570

    Article  Google Scholar 

  • Ohtsuka T, Saigusa N, Koizumi H (2009) On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Glob Chang Biol 15:1015–1024

    Article  Google Scholar 

  • Oikawa S, Hikosaka K, Hirose T (2006) Leaf lifespan and lifetime carbon balance of individual leaves in a stand of an annual herb, Xanthium canadense. New Phytol 172:104–116. https://doi.org/10.1111/j.1469-8137.2006.01813.x

    Article  CAS  PubMed  Google Scholar 

  • Owen KE, Tenhunen J, Reichstein M, Wang Q, Falge EVA, Geyer R, Xiao X, Stoy P, Ammann C, Arain A, Aubinet M, Aurela M, Bernhofer C, Chojnicki BH, Granier A, Gruenwald T, Hadley J, Heinesch B, Hollinger D, Knohl A, Kutsch W, Lohila A, Meyers T, Moors E, Moureaux C, Pilegaard KIM, Saigusa N, Verma S, Vesala T, Vogel C (2007) Linking flux network measurements to continental scale simulations: ecosystem carbon dioxide exchange capacity under non-water-stressed conditions. Glob Chang Biol 13(4):734–760

    Article  Google Scholar 

  • Pearcy RW, Sims D (1994) Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic, San Diego, pp 145–174

    Chapter  Google Scholar 

  • Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and tradeoffs with a 3-D simulation model. New Phytol 166:791–800

    Article  PubMed  Google Scholar 

  • Pereira HM, Ferrior S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Faith DP, Freyhof J, Gregory RD, Heip C, Hoft R, Hurtt G, Jetz W, Karp DS, McGeoch MA, Obura D, Onoda Y, Petteorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Walpole M, Wegmann M (2013) Essential biodiversity variables. Science 339:277–278

    Article  CAS  PubMed  Google Scholar 

  • Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q, Janssens IA, Vicca S, Zeng Z, Jeong SJ, Li Y, Myneni RB, Peng S, Shen M, Penuelas J (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun 6:6911

    Article  CAS  PubMed  Google Scholar 

  • Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X (2019) Plant phenology and global climate change: current progresses and challenges. Glob Chang Biol 25:1922–1940

    Article  PubMed  Google Scholar 

  • Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191:926–941

    Article  PubMed  Google Scholar 

  • Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013) Climate extremes and the carbon cycle. Nature 500:287–295

    Article  CAS  PubMed  Google Scholar 

  • Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Chang Biol 12:1174–1188

    Article  Google Scholar 

  • Richardson AD, Jenkins JP, Braswell BH, Hollinger DY, Ollinger SV, Simith ML (2007) Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152:323–334

    Article  PubMed  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Article  Google Scholar 

  • Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, Seyednasrollah B, Krassovski MB, Latimer JM, Nettles WR, Heiderman RR, Warren JM, Hanson PJ (2018) Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560:368–371

    Article  CAS  PubMed  Google Scholar 

  • Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, Kattge J, Leakey ADB, Mercado LM, Niinemets Ãœ, Prentice IC, Serbin SP, Sitch S, Way DA, Zaehle S (2017) A roadmap for improving the representation of photosynthesis in earth system models. New Phytol 213:22–42

    Article  PubMed  Google Scholar 

  • Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54:547–560

    Article  Google Scholar 

  • Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J, GCTE-News (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Google Scholar 

  • Saigusa N, Yamamoto S, Murayama S, Kondo H (2005) Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agric For Meteorol 134:4–16

    Article  Google Scholar 

  • Saigusa N, Yamamoto S, Hirata R, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S-G, Nakai Y, Takagi K, Tani M, Wang H (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agric For Meteorol 148:700–713

    Article  Google Scholar 

  • Seiwa K (1998) Advantages of early germination for growth and survival of seedlings of Acer mono under different overstorey phenologies in deciduous broad-leaves forests. J Ecol 86:219–228

    Article  Google Scholar 

  • Seiwa K (1999) Changes in leaf phenology are dependent on tree height in Acer mono, a deciduous broad-leaved tree. Ann Bot 83:355–361

    Article  Google Scholar 

  • Shen Y, Fukatsu E, Muraoka H, Saitoh TM, Hirano Y, Yasue K (2020) Climate responses of ring widths and radial growth phenology of Betula ermanii, Fagus crenata and Quercus crispula in a cool temperate forest in Central Japan. Trees 34:679–692

    Article  CAS  Google Scholar 

  • Shin N, Saitoh TM, Nasahara KN (2021) How did the characteristics of the growing season change during the past 100 years at a steep river basin in Japan? PLoS ONE 16(7):e0255078. https://doi.org/10.1371/journal.pone.0255078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi Y, Muraoka H, Yamakita T, Kano Y, Nagai S, Bunthang T, Costello MJ, Darnaedi D, Diway B, Ganyai T, Grudpan C, Hughes A, Ishii R, Lim PT, Ma K, Muslim AM, Si N, Nakaoka M, Nakashizuka T, Onuma M, Park CH, Pungga RS, Saito Y, Shakya MM, Sulaiman MK, Sumi M, Thach P, Trisurat Y, Xu X, Yamano H, Yao TL, Kim ES, Vergara S, Yahara T (2021) The Asia-Pacific biodiversity observation network: 10-year achievements and new strategies to 2030. Ecol Res 36:232–257

    Article  Google Scholar 

  • Tang J, Körner C, Muraoka H, Piao S, Shen M, Thackeray S, Yang X (2016) Emerging opportunities and challenges in phenology: a review. Ecosphere 7:e01436. https://doi.org/10.1002/ecs2.1436

    Article  Google Scholar 

  • Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao M, Costa MH, Kirschbaum AA, Ham JM, Saleska SR, Ahl DE (2006) Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens Environ 102:282–292

    Article  Google Scholar 

  • Ustin SL, Gitelson AA, Jacquemoud S, Schaepman M, Asner GP, Gamon JA, Zarco-Tejada P (2009) Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens Environ 113:S67–S77

    Article  Google Scholar 

  • Vihervaara P, Auvinen A-P, Mononen L, Törmä M, Ahlroth P, Anttila S, Böttcher K, Forsius M, Heino J, Heliölä J, Koskelainen M, Kuussaari M, Meissner K, Ojala O, Tuominen S, Viitasalo M, Virkkala R (2017) How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Global Ecol Conserv 10:43–59

    Article  Google Scholar 

  • Vitasse Y (2013) Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytol 198:149–155

    Article  PubMed  Google Scholar 

  • Vitasse Y, Delzon S, Dufrêne E, Pontailler J-Y, Louvet J-M, Kremer A, Michalet R (2009) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agric For Meteorol 149:735–744

    Article  Google Scholar 

  • Way DA, Montgomery RA (2015) Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ 38:1725–1736

    Article  PubMed  Google Scholar 

  • Wilson KB, Baldocchi DD, Hanson PJ (2000) Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species. Tree Physiol 20:787–797

    Article  PubMed  Google Scholar 

  • Wilson KB, Baldocchi DD, Hanson PJ (2001) Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant Cell Environ 24:571–583

    Article  Google Scholar 

  • Xiao X (2004) Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ 91:256–270

    Article  Google Scholar 

  • Yamaguchi DP, Nakaji T, Hiura T, Hikosaka K (2016) Effects of seasonal change and experimental warming on the temperature dependence of photosynthesis in the canopy leaves of Quercus serrata. Tree Physiol 36:1283–1295

    Article  PubMed  Google Scholar 

  • Yamamoto S, Koizumi H (2005) Long-term carbon exchange at Takayama site, a cool-temperature deciduous forest in Japan. Agric For Meteorol 134:1–3

    Article  Google Scholar 

  • Yamamoto S, Murayama S, Saigusa N, Kondo H (1999) Seasonal and inter-annual variation of CO2 flux between a temperate forest and the atmosphere in Japan. Tellus 51B:402–413

    Article  CAS  Google Scholar 

  • Yang X, Tang J, Mustard JF, Lee J-E, Rossini M, Joiner J, Munger JW, Kornfeld A, Richardson AD (2015) Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys Res Lett 42:2977–2987

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks K. Kurumado, S. Yoshitake, K. Suzuki, and all technical staff of the Takayama Field Station, Gifu University, for logistical support. Studies introduced in this chapter were conducted with multiple collaborators, including H. Koizumi, S. Yamamoto, N. Saigusa, S. Murayama, A. Ito, T. Ohtsuka, K.N. Nasahara, S. Nagai, H.M. Noda, T. Akitsu, M. Kuribayashi, N. Noh, T. Nakaji, T. Hiura, T.M. Saitoh, Y. Son, Q. Wang, and J.D. Tenhunen. Open-field warming experiment was conducted as part of the bachelor’s or master’s thesis by C. Shoji and A. Nagao, and a study on forest understory trees was part of the master’s thesis by C. Ohashi, who were in author’s laboratory. Other lab members Y. Tamaki, A. Yamada, P. Liang, and I. Melnikova supported fieldwork. Concepts of the master site and networking have been discussed with A. Bombelli, H. Shibata, K. Ichii, O. Ochiai, and Y. Takeuchi. Our valued colleague, the late Dr. R. Suzuki provided foresighting insights in linking in situ and satellite research. The studies were supported in part by the Ministry of the Environment, Japan (S-1, D-0909), JSPS twenty-first Century COE Program, JSPS-KOSEF-NSFC A3 Foresight Program, a Global Change Observation Mission (PI#102) of the Japan Aerospace Exploration Agency, JSPS NEXT Program (GR048) and JSPS KAKENHI (18710006, 26241005, 19H03301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Muraoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muraoka, H. (2022). Phenology of Photosynthesis in a Deciduous Broadleaf Forest: Implications for the Carbon Cycle in a Changing Environment. In: Li, F., Awaya, Y., Kageyama, K., Wei, Y. (eds) River Basin Environment: Evaluation, Management and Conservation. Springer, Singapore. https://doi.org/10.1007/978-981-19-4070-5_1

Download citation

Publish with us

Policies and ethics