Skip to main content

Exploring the Potential of Microbial Engineering: The Prospect, Promise, and Essence

  • Chapter
  • First Online:
Microbial Engineering for Therapeutics

Abstract

Microbes have become an increasingly powerful platform for developing diagnostic and therapeutic technologies. With the increasing knowledge of the microbiome, utilization of probiotic bacteria in modulating gut microbiota has put the microbes into spotlight. In recent years, aided by the continuous development of tools and techniques, engineering probiotic microbes with desired characteristics and functionalities to benefit human health has made a promising progress. Genetic sensors can be transformed to detect biomarkers associated with disease occurrence and progression. Moreover, microbes can be reprogrammed to produce various therapeutic molecules from the host and bacterial proteins, such as cytokines, enzymes, and signalling molecules, in response to a disturbed physiological state of the host. In this chapter, we summarize the recent advances in design and construction of probiotics as living diagnostics and therapeutics for probing and treating a series of diseases including metabolic disorders, inflammation, and pathogenic bacteria infections. We also discuss the current challenges, future perspectives, and the essence in expanding the application of microbes in diagnostics and therapeutics. We intend to provide insights and ideas for engineering of microbes to provide promising therapeutic strategies to better serve disease therapy and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Actogenix O (2009) ActoGeniX completes phase 2a clinical trial of AG011

    Google Scholar 

  • Adelman K et al (2004) Molecular mechanism of transcription inhibition by peptide antibiotic microcin J25. Mol Cell 14(6):753–762

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P et al (2014) Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res 31(12):3404–3414

    Article  CAS  PubMed  Google Scholar 

  • Ali M et al (2015) Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis 9(6):e0003832

    Article  PubMed  PubMed Central  Google Scholar 

  • Archer EJ, Robinson AB, Süel GRM (2012) Engineered E. coli that detect and respond to gut inflammation through nitric oxide sensing. ACS Synth Biol 1(10):451–457

    Article  CAS  PubMed  Google Scholar 

  • Atanaskovic I et al (2014) In situ characterization of mycobacterial growth inhibition by lytic enzymes expressed in vectorized E. coli. ACS Synth Biol 3(12):932–934

    Article  CAS  PubMed  Google Scholar 

  • Auron A, Brophy PD (2012) Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatr Nephrol 27(2):207–222

    Article  PubMed  Google Scholar 

  • Awasthi A et al (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8(12):1380–1389

    Article  CAS  PubMed  Google Scholar 

  • Bachmann C (2002) Mechanisms of hyperammonemia. Clin Chem Lab Med 40:653–662

    Article  CAS  PubMed  Google Scholar 

  • Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6):2131–2157

    Article  CAS  PubMed  Google Scholar 

  • Barbé S, Van Mellaert L, Anné J (2006) The use of clostridial spores for cancer treatment. J Appl Microbiol 101(3):571–578

    Article  PubMed  Google Scholar 

  • Barnett SJ et al (2005) Attenuated Salmonella typhimurium invades and decreases tumor burden in neuroblastoma. J Pediatr Surg 40(6):993–998

    Article  PubMed  Google Scholar 

  • Bassler BL, Losick R (2006) Bacterially speaking. Cell 125(2):237–246

    Article  CAS  PubMed  Google Scholar 

  • Benbouziane B et al (2013) Development of a stress-inducible controlled expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. J Biotechnol 168(2):120–129

    Article  CAS  PubMed  Google Scholar 

  • Bennish ML (1994) Cholera: pathophysiology, clinical features, and treatment. In: Vibrio cholerae and cholera: molecular to global perspectives. ASM Press, Washington, DC, pp 227–255

    Google Scholar 

  • Bermúdez-Humarán LG et al (2015) Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microb Cell Factories 14(1):1–11

    Article  Google Scholar 

  • Bikard D et al (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32(11):1146–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bina XR et al (2018) The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins. PLoS Pathog 14(1):e1006804

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolhassani A, Naderi N, Soleymani S (2017) Prospects and progress of Listeria-based cancer vaccines. Expert Opin Biol Ther 17(11):1389–1400

    CAS  PubMed  Google Scholar 

  • Borrero J et al (2015) Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synth Biol 4(3):299–306

    Article  CAS  PubMed  Google Scholar 

  • Braat H et al (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4(6):754–759

    Article  CAS  PubMed  Google Scholar 

  • Brophy JA, Voigt CA (2014) Principles of genetic circuit design. Nat Methods 11(5):508–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buffie CG et al (2015) Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517(7533):205–208

    Article  CAS  PubMed  Google Scholar 

  • Caliando BJ, Voigt CA (2015) Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nat Commun 6(1):1–10

    Article  Google Scholar 

  • Callura JM et al (2010) Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc Natl Acad Sci 107(36):15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caluwaerts S et al (2010) AG013, a mouth rinse formulation of Lactococcus lactis secreting human Trefoil Factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol 46(7):564–570

    Article  CAS  PubMed  Google Scholar 

  • Cao Z et al (2019) Camouflaging bacteria by wrapping with cell membranes. Nat Commun 10(1):1–10

    Article  Google Scholar 

  • Carroll IM et al (2007) Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 293(4):G729–G738

    Article  CAS  PubMed  Google Scholar 

  • Carvalho RD et al (2017) Secretion of biologically active pancreatitis-associated protein I (PAP) by genetically modified dairy Lactococcus lactis NZ9000 in the prevention of intestinal mucositis. Microb Cell Factories 16(1):1–11

    Article  Google Scholar 

  • Centre for Biologics Evaluation and Research (2016) Recommendations for microbial vectors used for gene therapy, US Food and Drug Administration

    Google Scholar 

  • Ceroni F et al (2015) Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 12(5):415–418

    Article  CAS  PubMed  Google Scholar 

  • Certain LK et al (2017) Using engineered bacteria to characterize infection dynamics and antibiotic effects in vivo. Cell Host Microbe 22(3):263–268.e4

    Article  CAS  PubMed  Google Scholar 

  • Chan CT et al (2016) ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat Chem Biol 12(2):82–86

    Article  CAS  PubMed  Google Scholar 

  • Charbonneau MR et al (2020) Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat Commun 11(1):1–11

    Article  Google Scholar 

  • Chelakkot C, Ghim J, Ryu SH (2018) Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 50(8):1–9

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Cerutti A (2010) Vaccination strategies to promote mucosal antibody responses. Immunity 33(4):479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z et al (2014) Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 124(8):3391–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury S et al (2019) Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med 25(7):1057–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua KJ et al (2017) Designer probiotics for the prevention and treatment of human diseases. Curr Opin Chem Biol 40:8–16

    Article  CAS  PubMed  Google Scholar 

  • Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32(11):1141–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesen J, Fischbach MA (2015) Synthetic microbes as drug delivery systems. ACS Synth Biol 4(4):358–364

    Article  CAS  PubMed  Google Scholar 

  • Coley WB (1910) The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med 3(Surg_Sect):1–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colombel J et al (2001) Interleukin 10 (Tenovil) in the prevention of postoperative recurrence of Crohn’s disease. Gut 49(1):42–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corthier G et al (1998) Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract. Appl Environ Microbiol 64(7):2721–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costello CM et al (2014) 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol Pharm 11(7):2030–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courbet A et al (2015) Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci Transl Med 7(289):289ra83

    Article  PubMed  Google Scholar 

  • Crook N et al (2019) Adaptive strategies of the candidate probiotic E. coli Nissle in the mammalian gut. Cell Host Microbe 25(4):499–512.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culligan EP, Sleator RD (2016) Advances in the microbiome: applications to Clostridium difficile infection. J Clin Med 5(9):83

    Article  PubMed Central  Google Scholar 

  • Culligan EP, Hill C, Sleator RD (2009) Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathog 1(1):1–12

    Article  Google Scholar 

  • Daeffler KNM et al (2017) Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol Syst Biol 13(4):923

    Article  PubMed  PubMed Central  Google Scholar 

  • Danino T et al (2015) Programmable probiotics for detection of cancer in urine. Sci Transl Med 7(289):289ra84

    Article  PubMed  PubMed Central  Google Scholar 

  • de Moreno de LeBlanc A et al (2008) Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice. J Med Microbiol 57(1):100–105

    Article  PubMed  Google Scholar 

  • Deatherage DE et al (2018) Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates. Nucleic Acids Res 46(17):9236–9250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Carmen S et al (2014) Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities. Appl Environ Microbiol 80(3):869–877

    Article  PubMed  PubMed Central  Google Scholar 

  • Din MO et al (2016) Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536(7614):81–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dosoky NS et al (2019) Two-week administration of engineered Escherichia coli establishes persistent resistance to diet-induced obesity even without antibiotic pre-treatment. Appl Microbiol Biotechnol 103(16):6711–6723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drouault S, Anba J, Corthier G (2002) Streptococcus thermophilus is able to produce a β-galactosidase active during its transit in the digestive tract of germ-free mice. Appl Environ Microbiol 68(2):938–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan F, March JC (2010) Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci 107(25):11260–11264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan FF, Liu JH, March JC (2015) Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes 64(5):1794–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duport C, Baysse C, Michel-Briand Y (1995) Molecular characterization of pyocin S3, a novel S-type pyocin from Pseudomonas aeruginosa. J Biol Chem 270(15):8920–8927

    Article  CAS  PubMed  Google Scholar 

  • Durrer KE, Allen MS, Hunt von Herbing I (2017) Genetically engineered probiotic for the treatment of phenylketonuria (PKU); assessment of a novel treatment in vitro and in the PAHenu2 mouse model of PKU. PLoS One 12(5):e0176286

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang K, Jin X, Hong SH (2018) Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci Rep 8(1):1–12

    Article  Google Scholar 

  • Fedorak RN et al (2000) Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. Gastroenterology 119(6):1473–1482

    Article  CAS  PubMed  Google Scholar 

  • Field M (1971) Intestinal secretion: effect of cyclic AMP and its role in cholera. N Engl J Med 284(20):1137–1144

    Article  CAS  Google Scholar 

  • Forkus B et al (2017) Antimicrobial probiotics reduce Salmonella enterica in turkey gastrointestinal tracts. Sci Rep 7(1):1–9

    Article  Google Scholar 

  • Ganai S, Arenas R, Forbes N (2009) Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br J Cancer 101(10):1683–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia V et al (2016) Effect of the probiotic Saccharomyces cerevisiae on ligature-induced periodontitis in rats. J Periodontal Res 51(1):26–37

    Article  CAS  PubMed  Google Scholar 

  • Gareau MG, Sherman PM, Walker WA (2010) Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 7(9):503–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Geldart K, Borrero J, Kaznessis YN (2015) Chloride-inducible expression vector for delivery of antimicrobial peptides targeting antibiotic-resistant Enterococcus faecium. Appl Environ Microbiol 81(11):3889–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman BE, Percy WH (2005) CFTR in cystic fibrosis and cholera: from membrane transport to clinical practice. Adv Physiol Educ 29(2):75–82

    Article  PubMed  Google Scholar 

  • Green AA et al (2017) Complex cellular logic computation using ribocomputing devices. Nature 548(7665):117–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Bram EE, Weiss R (2013) Genetically programmable pathogen sense and destroy. ACS Synth Biol 2(12):715–723

    Article  CAS  PubMed  Google Scholar 

  • Hamady ZZ et al (2010) Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 59(4):461–469

    Article  CAS  PubMed  Google Scholar 

  • Hamady ZZ et al (2011) Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-β1 under the control of dietary xylan. Inflamm Bowel Dis 17(9):1925–1935

    Article  PubMed  Google Scholar 

  • Hanson ML et al (2014) Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice. Gastroenterology 146(1):210–221.e13

    Article  CAS  PubMed  Google Scholar 

  • Heimann DM, Rosenberg SA (2003) Continuous intravenous administration of live genetically modified Salmonella typhimurium in patients with metastatic melanoma. J Immunother 26(2):179–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Hidaka A et al (2007) Exogeneous cytosine deaminase gene expression in Bifidobacterium breve I-53-8w for tumor-targeting enzyme/prodrug therapy. Biosci Biotechnol Biochem 71(12):2921–2926

    Article  CAS  PubMed  Google Scholar 

  • Higgins DA et al (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450(7171):883–886

    Article  CAS  PubMed  Google Scholar 

  • Ho CL et al (2018) Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat Biomed Eng 2(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Holmgren J et al (1975) Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc Natl Acad Sci 72(7):2520–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holowko MB et al (2016) Biosensing Vibrio cholerae with genetically engineered Escherichia coli. ACS Synth Biol 5(11):1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Horwitz JP et al (1964) Substrates for cytochemical demonstration of enzyme activity. I. Some substituted 3-indolyl-β-D-glycopyranosides1a. J Med Chem 7(4):574–575

    Article  CAS  PubMed  Google Scholar 

  • Hubbard TP et al (2018) A live vaccine rapidly protects against cholera in an infant rabbit model. Sci Transl Med 10(445):eaap8423

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang IY et al (2014) Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol 3(4):228–237

    Article  CAS  PubMed  Google Scholar 

  • Hwang IY et al (2017) Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun 8(1):1–11

    Article  CAS  Google Scholar 

  • Isabella VM et al (2018) Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 36(9):857–864

    Article  CAS  PubMed  Google Scholar 

  • Jahangir A et al (2017) Immunotherapy with Listeria reduces metastatic breast cancer in young and old mice through different mechanisms. Onco Targets Ther 6(9):e1342025

    Google Scholar 

  • Jalili-Firoozinezhad S et al (2019) A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat Biomed Eng 3(7):520–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraman P et al (2017) Repurposing a two-component system-based biosensor for the killing of Vibrio cholerae. ACS Synth Biol 6(7):1403–1415

    Article  CAS  PubMed  Google Scholar 

  • Jing H et al (2011) Oral administration of Lactococcus lactis delivered heat shock protein 65 attenuates atherosclerosis in low-density lipoprotein receptor-deficient mice. Vaccine 29(24):4102–4109

    Article  PubMed  Google Scholar 

  • Kelly RC et al (2009) The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. Nat Chem Biol 5(12):891–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura H et al (1997) Increased nitric oxide production and inducible nitric oxide synthase activity in colonic mucosa of patients with active ulcerative colitis and Crohn’s disease. Dig Dis Sci 42(5):1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Kosuri S et al (2013) Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci 110(34):14024–14029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotula JW et al (2014) Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci 111(13):4838–4843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz CB et al (2019) An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med 11(475):eaau7975

    Article  CAS  PubMed  Google Scholar 

  • Lagenaur LA et al (2011) Prevention of vaginal SHIV transmission in macaques by a live recombinant lactobacillus. Mucosal Immunol 4(6):648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landry BP, Tabor JJ (2017) Engineering diagnostic and therapeutic gut bacteria. Microbiol Spectr 5(5). https://doi.org/10.1128/microbiolspec.BAD-0020-2017

  • Lau YH et al (2017) Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Res 45(11):6971–6980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laviña M, Gaggero C, Moreno F (1990) Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli. J Bacteriol 172(11):6585–6588

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawley TD et al (2012) Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 8(10):e1002995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limaye SA et al (2013) Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119(24):4268–4276

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Zhang J (2017) Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 18(1):1–25

    Article  Google Scholar 

  • Ling H et al (2010) A predicted S-type pyocin shows a bactericidal activity against clinical Pseudomonas aeruginosa isolates through membrane damage. FEBS Lett 584(15):3354–3358

    Article  CAS  PubMed  Google Scholar 

  • Liu S et al (2002) Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther 9(4):291–296

    Article  CAS  PubMed  Google Scholar 

  • Liu S et al (2016a) Recombinant Lactococcus lactis expressing porcine insulin-like growth factor I ameliorates DSS-induced colitis in mice. BMC Biotechnol 16(1):1–8

    Article  Google Scholar 

  • Liu K-F et al (2016b) Oral administration of Lactococcus lactis-expressing heat shock protein 65 and tandemly repeated IA2P2 prevents type 1 diabetes in NOD mice. Immunol Lett 174:28–36

    Article  CAS  PubMed  Google Scholar 

  • Luo G et al (1993) Tumor necrosis factor alpha binding to bacteria: evidence for a high-affinity receptor and alteration of bacterial virulence properties. Infect Immun 61(3):830–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J et al (2014) Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Sci China Life Sci 57(3):327–335

    Article  PubMed  Google Scholar 

  • Maeda H, Akaike T (1998) Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Moscow) 63:854–865

    CAS  Google Scholar 

  • Mandell DJ et al (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518(7537):55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao N et al (2018) Probiotic strains detect and suppress cholera in mice. Sci Transl Med 10(445):eaao2586

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcobal A et al (2016) Expression of human immunodeficiency virus type 1 neutralizing antibody fragments using human vaginal lactobacillus. AIDS Res Hum Retrovir 32(10–11):964–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinsen TC, Bergh K, Waldum HL (2005) Gastric juice: a barrier against infectious diseases. Basic Clin Pharmacol Toxicol 96(2):94–102

    Article  CAS  PubMed  Google Scholar 

  • Mastroeni P, Sheppard M (2004) Salmonella infections in the mouse model: host resistance factors and in vivo dynamics of bacterial spread and distribution in the tissues. Microbes Infect 6(4):398–405

    Article  CAS  PubMed  Google Scholar 

  • May-Zhang LS et al (2019) Administration of N-acyl-phosphatidylethanolamine expressing bacteria to low density lipoprotein receptor−/− mice improves indices of cardiometabolic disease. Sci Rep 9(1):1–13

    Article  CAS  Google Scholar 

  • Mazel D et al (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280(5363):605–608

    Article  CAS  PubMed  Google Scholar 

  • McGregor DP (2008) Discovering and improving novel peptide therapeutics. Curr Opin Pharmacol 8(5):616–619

    Article  CAS  PubMed  Google Scholar 

  • McKay R et al (2017) Controlling localization of Escherichia coli populations using a two-part synthetic motility circuit: an accelerator and brake. Biotechnol Bioeng 114(12):2883–2895

    Article  CAS  PubMed  Google Scholar 

  • Mei S et al (2002) Optimization of tumor-targeted gene delivery by engineered attenuated Salmonella typhimurium. Anticancer Res 22(6A):3261–3266

    CAS  PubMed  Google Scholar 

  • Mimee M et al (2015) Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst 1(1):62–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimee M et al (2018) An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360(6391):915–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell JJ, Trakadis YJ, Scriver CR (2011) Phenylalanine hydroxylase deficiency. Genet Med 13(8):697–707

    Article  CAS  PubMed  Google Scholar 

  • Morales A, Eidinger D, Bruce A (2002) Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 167(2):891–894

    Article  CAS  PubMed  Google Scholar 

  • Motta J-P et al (2012) Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci Transl Med 4(158):158ra144

    Article  PubMed  Google Scholar 

  • Mulholland EK, Adegbola RA (2005) Bacterial infections—a major cause of death among children in Africa. N Engl J Med 352(1):75–77

    Article  CAS  PubMed  Google Scholar 

  • Munivar AM, Whitfill TM (2020) Therapeutic treatment of skin disease with recombinant commensal skin microorganisms. Google Patents

    Google Scholar 

  • Nakamura T et al (2002) Cloned cytosine deaminase gene expression of Bifidobacterium longum and application to enzyme/pro-drug therapy of hypoxic solid tumors. Biosci Biotechnol Biochem 66(11):2362–2366

    Article  CAS  PubMed  Google Scholar 

  • Nemunaitis J et al (2003) Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 10(10):737–744

    Article  CAS  PubMed  Google Scholar 

  • Ng DT, Sarkar CA (2011) Nisin-inducible secretion of a biologically active single-chain insulin analog by Lactococcus lactis NZ9000. Biotechnol Bioeng 108(8):1987–1996

    Article  CAS  PubMed  Google Scholar 

  • Nuyts S et al (2001a) Increasing specificity of anti-tumor therapy: cytotoxic protein delivery by non-pathogenic clostridia under regulation of radio-induced promoters. Anticancer Res 21(2A):857–861

    CAS  PubMed  Google Scholar 

  • Nuyts S et al (2001b) Radio-responsive recA promoter significantly increases TNFα production in recombinant clostridia after 2 Gy irradiation. Gene Ther 8(15):1197–1201

    Article  CAS  PubMed  Google Scholar 

  • O’Boyle C et al (1998) Microbiology of bacterial translocation in humans. Gut 42(1):29–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Ou B et al (2016) Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application. Appl Microbiol Biotechnol 100(20):8693–8699

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD et al (2018) Engineered probiotic for the inhibition of Salmonella via tetrathionate-induced production of microcin H47. ACS Infect Dis 4(1):39–45

    Article  CAS  PubMed  Google Scholar 

  • Panteli JT et al (2015) Genetically modified bacteria as a tool to detect microscopic solid tumor masses with triggered release of a recombinant biomarker. Integr Biol 7(4):423–434

    Article  CAS  Google Scholar 

  • Pawelek JM, Low KB, Bermudes D (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 57(20):4537–4544

    CAS  PubMed  Google Scholar 

  • Pedrolli DB et al (2019) Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol 37(1):100–115

    Article  CAS  PubMed  Google Scholar 

  • Pickard JM et al (2014) Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness. Nature 514(7524):638–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piñero-Lambea C, Ruano-Gallego D, Fernández LÁ (2015) Engineered bacteria as therapeutic agents. Curr Opin Biotechnol 35:94–102

    Article  PubMed  Google Scholar 

  • Piraner DI et al (2017) Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat Chem Biol 13(1):75–80

    Article  CAS  PubMed  Google Scholar 

  • Porzio S et al (2004) Mucosal delivery of anti-inflammatory IL-1Ra by sporulating recombinant bacteria. BMC Biotechnol 4(1):1–16

    Article  Google Scholar 

  • Ramírez AM et al (2017) Production of human recombinant phenylalanine hydroxylase in Lactobacillus plantarum for gastrointestinal delivery. Eur J Pharm Sci 109:48–55

    Article  PubMed  Google Scholar 

  • Rasamiravaka T et al (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015:759348

    Article  PubMed  PubMed Central  Google Scholar 

  • Renwick MJ, Brogan DM, Mossialos E (2016) A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. J Antibiot 69(2):73–88

    Article  CAS  Google Scholar 

  • Rezende RM et al (2013) Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+ LAP+ regulatory T cells. J Autoimmun 40:45–57

    Article  CAS  PubMed  Google Scholar 

  • Riedel CU et al (2007) Construction of p16S lux, a novel vector for improved bioluminescent labeling of gram-negative bacteria. Appl Environ Microbiol 73(21):7092–7095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riglar DT et al (2016) Long-term monitoring of inflammation in the mammalian gut using programmable commensal bacteria. BioRxiv 075051. https://doi.org/10.1101/075051

  • Riglar DT et al (2017) Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat Biotechnol 35(7):653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert S et al (2014) Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice. Diabetes 63(8):2876–2887

    Article  CAS  PubMed  Google Scholar 

  • Rovner AJ et al (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature 518(7537):89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royo JL et al (2007) In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit. Nat Methods 4(11):937–942

    Article  CAS  PubMed  Google Scholar 

  • Ryan R et al (2009) Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther 16(3):329–339

    Article  CAS  PubMed  Google Scholar 

  • Saeidi N et al (2011) Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 7(1):521

    Article  PubMed  PubMed Central  Google Scholar 

  • Safari R et al (2016) Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol 52:198–205

    Article  CAS  PubMed  Google Scholar 

  • Saltzman DA et al (1996) Attenuated Salmonella typhimurium containing interleukin-2 decreases MC-38 hepatic metastases: a novel anti-tumor agent. Cancer Biother Radiopharm 11(2):145–153

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T et al (2006) Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci 97(7):649–657

    Article  CAS  PubMed  Google Scholar 

  • Sassone-Corsi M et al (2016) Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540(7632):280–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sberro H et al (2019) Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178(5):1245–1259.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer R et al (1992) Induction of a cellular immune response to a foreign antigen by a recombinant Listeria monocytogenes vaccine. J Immunol 149(1):53–59

    CAS  PubMed  Google Scholar 

  • Schmidl SR et al (2014) Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS Synth Biol 3(11):820–831

    Article  CAS  PubMed  Google Scholar 

  • Shen T-CD et al (2015) Engineering the gut microbiota to treat hyperammonemia. J Clin Invest 125(7):2841–2850

    Article  PubMed  PubMed Central  Google Scholar 

  • Shigemori S et al (2017) Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis. Appl Microbiol Biotechnol 101(1):341–349

    Article  CAS  PubMed  Google Scholar 

  • Shintani Y et al (2007) Intravesical instillation therapy with bacillus Calmette-Guerin for superficial bladder cancer: study of the mechanism of bacillus Calmette-Guerin immunotherapy. Int J Urol 14(2):140–146

    Article  CAS  PubMed  Google Scholar 

  • Simčič S et al (2019) Engineered and wild-type L. lactis promote anti-inflammatory cytokine signalling in inflammatory bowel disease patient’s mucosa. World J Microbiol Biotechnol 35(3):1–9

    Article  Google Scholar 

  • Simmonds N, Rampton D (1993) Inflammatory bowel disease—a radical view. Gut 34(7):865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PK et al (2017) Pseudomonas aeruginosa auto inducer3-oxo-C12-HSL exerts bacteriostatic effect and inhibits Staphylococcus epidermidis biofilm. Microb Pathog 110:612–619

    Article  CAS  PubMed  Google Scholar 

  • Sizemore DR, Branstrom AA, Sadoff JC (1995) Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270(5234):299–303

    Article  CAS  PubMed  Google Scholar 

  • Soelaiman S et al (2001) Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. Mol Cell 8(5):1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Sorenson BS et al (2008) Attenuated Salmonella typhimurium with IL-2 gene reduces pulmonary metastases in murine osteosarcoma. Clin Orthop Relat Res 466(6):1285–1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Steidler L (2003) Genetically engineered probiotics. Best Pract Res Clin Gastroenterol 17(5):861–876

    Article  PubMed  Google Scholar 

  • Steidler L et al (1998) Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun 66(7):3183–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steidler L et al (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289(5483):1352–1355

    Article  CAS  PubMed  Google Scholar 

  • Steidler L et al (2003) Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21(7):785–789

    Article  CAS  PubMed  Google Scholar 

  • Stirling F et al (2017) Rational design of evolutionarily stable microbial kill switches. Mol Cell 68(4):686–697.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stumhofer JS et al (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8(12):1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Nakauchi H, Taniguchi H (2003) Glucagon-like peptide 1 (1–37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci 100(9):5034–5039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabor JJ, Levskaya A, Voigt CA (2011) Multichromatic control of gene expression in Escherichia coli. J Mol Biol 405(2):315–324

    Article  CAS  PubMed  Google Scholar 

  • Takahashi MK et al (2018) A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat Commun 9(1):1–12

    Article  Google Scholar 

  • Takiishi T et al (2012) Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 122(5):1717–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takiishi T et al (2017) Reversal of diabetes in NOD mice by clinical-grade proinsulin and IL-10-secreting Lactococcus lactis in combination with low-dose anti-CD3 depends on the induction of Foxp3-positive T cells. Diabetes 66(2):448–459

    Article  CAS  PubMed  Google Scholar 

  • Theys J et al (2001) Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther 8(4):294–297

    Article  CAS  PubMed  Google Scholar 

  • Thorne SH et al (2009) CNOB/ChrR6, a new prodrug enzyme cancer chemotherapy. Mol Cancer Ther 8(2):333–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilg H et al (2002) Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon γ. Gut 50(2):191–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toso JF et al (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol 20(1):142

    Article  Google Scholar 

  • Tscherner M et al (2019) A synthetic system that senses Candida albicans and inhibits virulence factors. ACS Synth Biol 8(2):434–444

    Article  CAS  PubMed  Google Scholar 

  • Tsolis RM et al (1999) Of mice, calves, and men. In: Mechanisms in the pathogenesis of enteric diseases, vol 2. Kluwer, New York, pp 261–274

    Chapter  Google Scholar 

  • Van Nood E et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368(5):407–415

    Article  PubMed  Google Scholar 

  • Vandenbroucke K et al (2004) Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127(2):502–513

    Article  CAS  PubMed  Google Scholar 

  • Vandenbroucke K et al (2010) Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 3(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Villageliú DN, Rasmussen S, Lyte M (2018) A microbial endocrinology-based simulated small intestinal medium for the evaluation of neurochemical production by gut microbiota. FEMS Microbiol Ecol 94(7):fiy096

    Article  Google Scholar 

  • Walsh CL et al (2009) A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 9(4):545–554

    Article  CAS  PubMed  Google Scholar 

  • Wang L et al (2005) Structure-based chemical modification strategy for enzyme replacement treatment of phenylketonuria. Mol Genet Metab 86(1–2):134–140

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-H, Gao Q-Y, Fang J-Y (2013) Meta-analysis of the efficacy and safety of Lactobacillus-containing and Bifidobacterium-containing probiotic compound preparation in Helicobacter pylori eradication therapy. J Clin Gastroenterol 47(1):25–32

    Article  PubMed  Google Scholar 

  • Wang X et al (2019) Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 29(10):787–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei MQ et al (2008) Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett 259(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Wei P et al (2015) A engineered Bifidobacterium longum secreting a bioative penetratin-glucagon-like peptide 1 fusion protein enhances glucagon-like peptide 1 absorption in the intestine. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1412.12030

  • Wei P et al (2016) Oral Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to fight experimental colitis. Drug Deliv 23(6):2058–2064

    Article  CAS  PubMed  Google Scholar 

  • Whitaker WR, Shepherd ES, Sonnenburg JL (2017) Tunable expression tools enable single-cell strain distinction in the gut microbiome. Cell 169(3):538–546.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter SE et al (2010) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467(7314):426–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L et al (2005) Recognition of host immune activation by Pseudomonas aeruginosa. Science 309(5735):774–777

    Article  CAS  PubMed  Google Scholar 

  • Yang YJ, Sheu BS (2012) Probiotics-containing yogurts suppress Helicobacter pylori load and modify immune response and intestinal microbiota in the Helicobacter pylori-infected children. Helicobacter 17(4):297–304

    Article  CAS  PubMed  Google Scholar 

  • Yi C et al (2005) Antitumor effect of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma 1. Acta Pharmacol Sin 26(5):629–634

    Article  CAS  PubMed  Google Scholar 

  • Yoon S-W et al (2008) Lactobacillus casei secreting α-MSH induces the therapeutic effect on DSS-induced acute colitis in Balb/c mice. J Microbiol Biotechnol 18(12):1975–1983

    CAS  PubMed  Google Scholar 

  • Yoon W et al (2017) Application of genetically engineered Salmonella typhimurium for interferon-gamma–induced therapy against melanoma. Eur J Cancer 70:48–61

    Article  CAS  PubMed  Google Scholar 

  • Yosef I et al (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci 112(23):7267–7272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zav’yalov VP et al (1995) Specific high affinity binding of human interleukin 1β by Caf1A usher protein of Yersinia pestis. FEBS Lett 371(1):65–68

    Article  PubMed  Google Scholar 

  • Zeng S et al (2012) Suppression of murine melanoma growth by a vaccine of attenuated Salmonella carrying heat shock protein 70 and Herpes simplex virus-thymidine kinase genes. Oncol Rep 27(3):798–806

    CAS  PubMed  Google Scholar 

  • Zhang M-M et al (2015) Probiotics in Helicobacter pylori eradication therapy: a systematic review and meta-analysis. World J Gastroenterol 21(14):4345

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng JH et al (2017) Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med 9(376):eaak9537

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrutyunjay Suar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patra, S.D., Arunima, A., Suar, M. (2022). Exploring the Potential of Microbial Engineering: The Prospect, Promise, and Essence. In: Suar, M., Misra, N., Dash, C. (eds) Microbial Engineering for Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-19-3979-2_1

Download citation

Publish with us

Policies and ethics