Skip to main content

Small Millets: The Next-Generation Smart Crops in the Modern Era of Climate Change

  • Chapter
  • First Online:
Omics of Climate Resilient Small Millets

Abstract

Millets are coarse cereals belonging to the family Poaceae, which is cultivated since the ancient period of civilization. Among different millets, small or minor millets are treated as neglected crops due to their low-yield potential compared to major millets (sorghum and pearl millet) and fine cereals (rice, wheat and maize). In spite of their versatile qualities, small millets remained underutilized due to institutional promotion in favour of fine cereals. Recently, these coarse cereals are re-evaluated as ‘nutri-cereals’ considering their composition and nutritional value. In the present consequences of adverse impacts of climate change, the small millets also attracted the attention of growers and policy-makers as they are less demanding to external inputs, drought-tolerant and register a comparatively lower carbon footprint than other cereals. These beneficial impacts ensured the comeback of small millets after the institutional neglect for a few decades in the developing countries. Considering the food and nutritional security of the common people, small millets can be considered as suitable staples. The emerging health consciousness and food demand for the future pushed small millets to the forefront because of their ecological soundness and mitigating ability to climate change. However, the successful harvest of small millets warrants an integration of proven and climate-smart technologies for the fulfilment of the future needs of the ever-growing population. The chapter focused on all these aspects. Moreover, the research scope mentioned in the chapter implies future directions for enhancing small millet-based agriculture viable in diversifying food baskets and achieving food and nutritional security in a hunger-free society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AICSMIP (2014) Report on compendium of released varieties in small millets [Internet]. Banglore, India; 2014. http://www.dhan.org/smallmillets/docs/report/Compendium_of_Released_Varieties_in_Small_millets.pdf. Accessed 18 Mar 2020

  • Altieri MA, Nicholls CI, Henao A, Lana MA (2015) Agroecology and the design of climate changeresilient farming systems. Agron Sustain Dev 35(3):869–890. https://doi.org/10.1007/s13593-015-0285-2

    Article  Google Scholar 

  • Amelung W, Bossio D, de Vries W, Kögel-Knabner I, Lehmann J, Amundson R, Bol R, Collins C, Lal R, Leifeld J, Minasny B (2020) Towards a global-scale soil climate mitigation strategy. Nat Commun 11(1):1–10

    Article  CAS  Google Scholar 

  • Arenas-Calle LN, Whitfield S, Challinor AJ (2019) A climate smartness index (csi) based on greenhouse gas intensity and water productivity: application to irrigated rice. Front Sustain Food Syst 3:105. https://doi.org/10.3389/fsufs.2019.00105

    Article  Google Scholar 

  • Ashalatha KV, Munisamy G, Bhat AR (2012) Impact of climate change on rainfed agriculture in India: a case study of Dharwad. Int J Environ Sci Dev 3(4):368–371

    Google Scholar 

  • Bacastow RO, Keeling CD (1973) Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II. Changes from AD 1700 to 2070 as deduced from a geochemical model. In: Brookhaven Symposia in Biology 24:86–135

    Google Scholar 

  • Balbinot A, da Rosa FA, Fipke MV, Rockenbach D, Massey JH, Camargo ER, Mesko MF, Scaglioni PT, de Avila LA (2021) Effects of elevated atmospheric CO2 concentration and water regime on rice yield, water use efficiency, and arsenic and cadmium accumulation in grain. Agriculture 11:705. https://doi.org/10.3390/agriculture11080705

    Article  CAS  Google Scholar 

  • Banerjee P, Maitra S (2020) The role of small millets as functional food to combat malnutrition in developing countries. Ind J Nat Sci 10(60):20412–20417

    Google Scholar 

  • Banerjee P, Ray DP (2019) Functional food: a brief overview. Int J Biores Sci 6:57–60. https://doi.org/10.30954/2347-9655.02.2019.2

    Article  Google Scholar 

  • Baptist NG, Perera BPM (1956) Essential amino-acids of some tropical cereal millets. www.cambridge.org/core/terms. https://doi.org/10.1079/BJN19560050, (Accessed 12 Aug 2021)

  • Bhadra P, Maitra S, Shankar T, Hossain A, Praharaj S, Aftab T (2021) Climate change impact on plants: plant responses and adaptations. In: Aftab T, Roychoudhury A (eds) Plant perspectives to global climate changes. Elsevier Inc., Academic Press, pp 1–24. https://doi.org/10.1016/B978-0-323-85665-2.00004-2

    Chapter  Google Scholar 

  • Bhatta LR, Subedi R, Joshi P, Gurung SB (2017) Effect of crop establishment methods and varieties on tillering habit, growth rate and yield of finger-millet. Agric Res Tech J 11(5):555826. https://doi.org/10.19080/ARTOAJ.2017.11.555826

    Article  Google Scholar 

  • Bhave AG, Conway D, Dessai S, Stainforth DA (2018) Water resource planning under future climate and socioeconomic uncertainty in the Cauvery River basin in Karnataka, India. Water Resour Res 54(2):708–728

    Article  PubMed  PubMed Central  Google Scholar 

  • Bidinger FR, Mahalakshmi V, Rao GDP (1987) Assessment of drought resistance in pearl millet (Pennisetum americanum). 2. Estimation of genotype response to stress. Aust J Agric Res 38(1):49–59

    Article  Google Scholar 

  • Boateng GKK, Obeng GY, Mensah E (2017) Rice cultivation and greenhouse gas emissions: a review and conceptual framework with reference to Ghana. Agriculture 7:7. https://doi.org/10.3390/agriculture7010007

    Article  CAS  Google Scholar 

  • Boretti A, Rosa L (2019) Reassessing the projections of the world water development report. NPJ Clean Water 2:15. https://doi.org/10.1038/s41545-019-0039-9

    Article  Google Scholar 

  • Brahmachari K, Sarkar S, Santra DK, Maitra S (2018) Millet for food and nutritional security in drought prone and red laterite region of eastern India. Int J Plant Soil Sci 26(6):1–7

    Google Scholar 

  • Chandrasekara A, Shahidi F (2010) Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. J Agric Food Chem 58(11):6706–6714. https://doi.org/10.1021/jf100868b

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekara A, Naczk M, Shahidi F (2012) Effect of processing on the antioxidant activity of millet grains. Food Chem 133(1):1–9

    Article  CAS  Google Scholar 

  • Clayton WD, Renvoize SA (2006) Genera Graminum: grasses of the world. Kew Bulletin Additional Series XIII, Royal Botanical Gardens Kew, Her Majesty Stationery Office, London

    Google Scholar 

  • Das D, Dwivedi B, Meena M, Singh VK, Tiwari KN (2015) Integrated nutrient management for improving soil health and crop productivity. Ind J Fert 11:64–83

    Google Scholar 

  • El Bilali H, Callenius C, Strassner C, Probst L (2019) Food and nutrition security and sustainability transitions in food systems. Food Energy Secur 8:e00154. https://doi.org/10.1002/fes3.154

    Article  Google Scholar 

  • Eric GO, Lagat JK, Ithinji GK, Mutai BK, Kenneth SW, Joseph MK (2013) Maize farmers perceptions towards organic soil management practices in Bungoma County, Kenya. Res J Environ Earth Sci 5(2):41–48

    Google Scholar 

  • FAO (2013) Climate-Smart Agriculture Sourcebook, Food and Agriculture Organization, Rome, Italy, https://www.fao.org/3/i3325e/i3325e.pdf (accessed 15 November 2021)

  • FAO (2017). The future of food and agriculture—Trends and challenges, Rome, Italy, pp.163

    Google Scholar 

  • FAO (2019) The state of food and agriculture 2019. Moving forward on food loss and waste reduction. Rome. License: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • FAO, IFAD, UNICEF, WFP, WHO (2021) The state of food security and nutrition in the world 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome, FAO. https://doi.org/10.4060/cb4474en

  • FAO, WHO (2019). Sustainable healthy diets—Guiding principles. Rome, pp. 37

    Google Scholar 

  • Fawzy S, Osman AI, Doran J, Roony D (2020) Strategies for mitigation of climate change: a review. Environ Chem Lett 18:2069–2094. https://doi.org/10.1007/s10311-020-01059-w

    Article  CAS  Google Scholar 

  • Fuller DQ, Boivin N, Hoogervorst T, Allaby R (2011) Across the Indian Ocean: the prehistoric movement of plants and animals. Antiquity 85:544–558

    Article  Google Scholar 

  • Fuller DQ, Sato Y-I, Castillo C, Qin L, Weisskopf AR, KingwellBanham EJ, Song J, Ahn S-M, van Etten J (2010) Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol Anthropol Sci 2(2):115–131

    Article  Google Scholar 

  • Gangwar S, Naik KR, Jha A, Bajpai A (2016) Soil properties as influenced by organic nutrient management practices under rice based cropping systems. Res Crops 17(1):8–12

    Article  Google Scholar 

  • Garcia SN, Osburn BI, Jay-Russell MT (2020) One health for food safety, food security, and sustainable food production. Front Sustain Food Syst 4:1. https://doi.org/10.3389/fsufs.2020.00001

    Article  Google Scholar 

  • Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X, Gruden K, Varshney RK, Weckwerth W (2021) Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat. Front Plant Sci 11:600278. https://doi.org/10.3389/fpls.2020.600278

    Article  PubMed  PubMed Central  Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157. https://doi.org/10.3389/fpls.2015.00157

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Mahajan V, Kumar M, Gupta HS (2009) Biodiversity in the barnyard millet (Echinochloa frumentacea Link, Poaceae) germplasm in India. Genet Resour Crop 56:883–889

    Article  Google Scholar 

  • Haddaway NR, Hedlund K, Jackson LE, Kätterer T, Lugato E, Thomsen IK, Jørgensen HB, Isberg PE (2017) How does tillage intensity affect soil organic carbon? A systematic review. Environ Evidence 6:1–48. https://doi.org/10.1186/s13750-017-0108-9

    Article  Google Scholar 

  • Hao XY, Li P, Li HY, Zong YZ, Zhang B, Zhao JZ, Han YH (2017) Elevated CO2 increased photosynthesis and yield without decreasing stomatal conductance in broomcorn millet. Photosynthetica 55:176–183

    Article  CAS  Google Scholar 

  • Harika JV, Maitra S, Shankar T, Bera M, Manasa P (2019) Effect of integrated nutrient management on productivity, nutrient uptake and economics of finger millet (Eleusine coracana L. Gaertn). Int J Agric Environ Biotechnol 12(3):273–279

    Google Scholar 

  • Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci 10:103. https://doi.org/10.3389/fpls.2019.00103

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103(2):351–370. https://doi.org/10.2134/agronj2010.0303

    Article  Google Scholar 

  • Hemamalini C, Patro TSSK, Anuradha N, Triveni U, Jogarao P, Sandhya Rani Y (2020) Estimation of nutritive composition of seven small millets. J Pharmagcog Phytochem 9(3):1871–1875

    CAS  Google Scholar 

  • Hossain A, Skalicky M, Brestic M, Maitra S, Ashraful Alam M, Syed MA, Hossain J, Sarkar S, Saha S, Bhadra P, Shankar T (2021) Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 11:241. https://doi.org/10.3390/agronomy11020241

    Article  CAS  Google Scholar 

  • Hunt HV, Vander Linden M, Liu X, Motuzaite-Matuzeviciute G, Colledge S, Jones MK (2008) Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the old world. Veg Hist Archaeobot 17:5–18

    Article  PubMed  PubMed Central  Google Scholar 

  • IIMR (2021) Indian Institute of Millet Research. Nutritional benefits of millets (for 100g of each millet). https://www.millets.res.in/millets_info.php (Accessed 01 August, 2021)

  • IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T. (eds.), https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed 15 November, 2021)

  • Jagathjothi N, Ramamoorthy K, Kuttimani R (2011) Integrated nutrient management on growth and yield of rainfed direct sown finger millet. Res Crop 12:79–81

    Google Scholar 

  • Jarret RL, Ozias-Akins P, Phatak S, Nadimpalli R, Duncan R, Hiliard S (1995) DNA contents in Paspalum spp. determined by flow cytometry. Genet Res Crop 42:237–242

    Article  Google Scholar 

  • Jemila C, Saliha BB, Udayakumar S (2017) Evaluating the effect of phosphatic fertilizers on soil and plant P availability and maximising rice crop yield. Oryza 54:305–313

    Article  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJ, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries—a review. Agron Sustain Dev 32:329–364

    Article  CAS  Google Scholar 

  • Kane-Potaka J, Anitha S, Tsusaka T, Botha R, Budumuru M, Upadhyay S, Kumar P, Mallesh K, Hunasgi R, Jalagam AK (2021) Assessing millets and sorghum consumption behavior in urban India: a large-scale survey. Front Sustain Food Syst 5:260

    Article  Google Scholar 

  • Karmakar R, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review. Sci Int 4:51–73. https://doi.org/10.17311/sciintl.2016.51.73

    Article  CAS  Google Scholar 

  • Kering MK, Broderick C (2018) Potassium and manganese fertilization and the effects on millet seed yield seed quality and forage potential of residual stalks. Agric Sci 09(07):888–900. https://doi.org/10.4236/as.2018.97061

    Article  CAS  Google Scholar 

  • Kingwell-Banham E, Fuller DQ (2014) Brown top millet: origins and development. Encyclopaedia of Global Archaeology. Springer, New York, pp 1021–1024

    Book  Google Scholar 

  • Krauss M, Ruser R, Müller T, Hansen S, Mäder P, Gattinger A (2017) Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley-winter wheat cropping sequence. Agric Ecosyst Environ 239:324–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar HV, Gattupalli N, Babu SC, Bhatia A (2020) Climate-smart small millets (CSSM): a way to ensure sustainable nutritional security. In: Venkatramanan V et al (eds) Global climate change: resilient and smart agriculture. Springer Nature Singapore Pte Ltd., pp 137–154. https://doi.org/10.1007/978-981-32-9856-9_7

    Chapter  Google Scholar 

  • Kumara O, Naik TB, Palaiah P (2007) Effect of weed management practices and fertility levels on growth and yield parameters in finger millet. Karnataka J Agric Sci 20:230–233

    Google Scholar 

  • Kumaran G, Parasuraman P (2019) Effect of enriched FYM and Panchagavya spray on foxtail millet (Setaria italica) under rainfed conditions. Int J Chem Stud 7(2):2121–2123

    CAS  Google Scholar 

  • Kuraloviya M, Vanniarajan C, Vetriventhan M, Babu C, Kanchana S, Sudhagar R (2019) Qualitative characterization and clustering of early maturing barnyard millet (Echinochloa spp.) germplasm. Elec J Plant Breeding 10:535. https://doi.org/10.5958/0975-928x.2019.00067.x

    Article  Google Scholar 

  • Lal R (1999) Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog Environ Sci 1:307–326

    CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Maitra S (2020a) Potential horizon of brown-top millet cultivation in drylands: a review. Crop Res 55(1–2):57–63. https://doi.org/10.31830/2454-1761.2020.012

    Article  Google Scholar 

  • Maitra S (2020b) Intercropping of small millets for agricultural sustainability in drylands : a review. Crop Res 55(3–4):162–171

    Google Scholar 

  • Maitra S, Panda P, Panda SK, Behera D, Shankar T, Nanda SP (2020) Relevance of barnyard millet (Echinochloa frumentacea L) cultivation and agronomic management for production sustainability. Int J Bioinform Biol Sci 8:27–32

    Google Scholar 

  • Maitra S, Pine S, Banerjee P, Shankar T (2022) Millets: robust entrants to functional food sector. In: Pirzadah TB, Malik B, Bhat A, Hakeem KR (eds) Bioresource technology: concept, tools and experiences. Wiley Online Library. https://doi.org/10.1002/9781119789444.ch1

    Chapter  Google Scholar 

  • Maitra S, Shankar T (2019) Agronomic management in little millet (Panicum sumatrense L.) for enhancement of productivity and sustainability. Int J Bioresour Sci 6:91–96

    Google Scholar 

  • Maitra S, Sounda S, Ghosh DC, Jana PK (1997) Effect of seed treatment on finger millet (Eleusine coracana) varieties in rainfed upland. Ind J Agric Sci 67(10):478–480

    Google Scholar 

  • Maitra S, Zaman A, Mandal TK, Palai JB (2018) Green manures in agriculture: a review. J Pharma Phytochem 7(5):1319–1327

    CAS  Google Scholar 

  • Malviya KS, Bakoriya L, Kumar S, Aske S, Mahajan G, Malviya KD (2019) Effect of tillage and cultural practices on growth, yield and economics of kodo millet. Int J Curr Microbiol App Sci 8(06):890–895. https://doi.org/10.20546/ijcmas.2019.806.107

    Article  CAS  Google Scholar 

  • Mbow C, Rosenzweig C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, Liwenga E, Pradhan P, Rivera-Ferre MG, Sapkota T, Tubiello FN (2019) Food security. In: Shukla PR, Skea J, Buendia EC, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Pereira JP, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/site/assets/uploads/sites/4/2021/02/08_Chapter-5_3.pdf, accessed 15 November, 2021

    Google Scholar 

  • Mekonnen MM, Hoekstra AY (2014) Water footprint benchmarks for crop production: a first global assessment. Ecol Indic 46:214–223. https://doi.org/10.1016/j.ecolind.2014.06.013

    Article  Google Scholar 

  • Miller NF, Spengler RN, Frachetti M (2016) Millet cultivation across Eurasia: origins, spread, and the influence of seasonal climate. The Holocene:1–10. https://doi.org/10.1177/0959683616641742

  • Miyan MA (2015) Droughts in Asian least developed countries: Vulnerability and sustainability, weather and climate extremes, 7:8–23. https://doi.org/10.1016/j.wace.2014.06.003

  • Monisha V, Rathinaswamy A, Mahendran PP, Kumutha K (2019) Influence of integrated nutrient management on growth attributes and yield of foxtail millet in red soil. Int J Chem Stud 7(3):3536–3539

    CAS  Google Scholar 

  • Nandini C, Bhat S, Reddy S, Jayramegowda P (2019) Modified crossing (SMUASB) method for artificial hybridization in proso millet (Panicum miliaceum L.) and little millet (Panicum sumatrense). Electron J Plant Breed 10(3):1161–1170

    Article  Google Scholar 

  • Navarro-Pedreño J, Almendro-Candel MB, Zorpas AA (2021) The increase of soil organic matter reduces global warming, myth or reality? Science 3:18. https://doi.org/10.3390/sci3010018

    Article  Google Scholar 

  • Niyogi D (2018) Millets back in our fields and plates, The Millenium Post. http://www.millenniumpost.in/opinion/millets-back-in-our-fields-and-plates-317237, (Accessed 19 December, 2021)

  • OECD (2009) Integrating climate change adaptation into development co-operation, policy guidance. OECD Publishing, ISBN 978–92–64-05476-9, p.193, Paris, France, https://www.oecd.org/env/cc/44887764.pdf (accessed 15 November 2021)

  • Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S (2016) Greenhouse gas emissions from soils—a review. Geochemistry 76(3):327–352

    Article  CAS  Google Scholar 

  • Parihar SK, Dwivedi BS, Khan IM, Tiwari RK (2010) Effect of integrated nutrient management on yield and economics of little millet. J Soils Crops 20(2):211–215

    Google Scholar 

  • Parmentier S (2014) Scaling-up agroecological approaches: what, why and how. Oxfam-Solidarity, Brussels, pp 472–480

    Google Scholar 

  • Patil KB, Chimmad BV, Itagi S (2015) Glycemic index and quality evaluation of little millet (Panicum miliare) flakes with enhanced shelf life. J Food Sci Technol 52(9):6078–6082. https://doi.org/10.1007/s13197-014-1663-5

    Article  CAS  PubMed  Google Scholar 

  • Pilbeam CJ, Gregory PJ, Tripathi BP, Munankarmy RC (2002) Fate of nitrogen-15-labelled fertilizer applied to maize-millet cropping systems in the mid-hills of Nepal. Biol Fertil Soils 35:27–34

    Article  CAS  Google Scholar 

  • Prabudoss V, Jawahar S, Shanmugaraja P, Dhanam K (2014) Effect of integrated nutrient management on yield and nutrient uptake of transplanted Kodo millet. Eur J Biotechnol Biosci 1(5):30–32

    Google Scholar 

  • Pradhan A, Panda AK, Bhavani RV (2019) Finger millet in tribal farming systems contributes to increased availability of nutritious food at household level: insights from India. Agric Res 8:540–547. https://doi.org/10.1007/s40003-018-0395-6

    Article  Google Scholar 

  • Pradhan ADJN, Panda AK, Wagh RD, Maske MRRVB (2021) Farming system for nutrition—a pathway to dietary diversity: evidence from India. PLoS One 16(3):e0248698. https://doi.org/10.1371/journal.pone.0248698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad JVNS, Srinivasa RC, Srinivasa K, Naga Jyothia C, Venkateswarlub B, Ramachandrappa BK, Dhanapal GN, Ravichandra K, Mishra PK (2016) Effect of ten years of reduced tillage and recycling of organic matter on crop yields, soil organic carbon and its fractions in Alfisols of semi-arid tropics of southern India. Soil Till Res 156:131–139. https://doi.org/10.1016/j.still.2015.10.013

    Article  Google Scholar 

  • Prasanna Kumar D, Maitra S, Shankar T, Ganesh P (2019) Effect of crop geometry and age of seedlings on productivity and nutrient uptake of finger millet (Eleusine coracana L. Gaertn.). Int J Agric Environ Biotechnol 12(3):267–272

    Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJ, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DW, Archer D (2001) The carbon cycle and atmospheric carbon dioxide, 183–237, https://www.ipcc.ch/site/assets/uploads/2018/02/TAR-03.pdf (Accessed 12 November, 2021)

  • Ramya P, Maitra S, Shankar T, Adhikary R, Palai JB (2020) Growth and productivity of finger millet (Eleusine coracana L. Gaertn) as influenced by integrated nutrient management. Agron Econ 7:19–24

    Google Scholar 

  • Rao BR, Nagasampige MH, Ravikiran M (2011) Evaluation of nutraceutical properties of selected small millets. J Pharm Biol Sci 3(2):277–279

    CAS  Google Scholar 

  • Rao DB, Bhaskarachary K, Arlene Christina GD, Sudha Devi G, Tonapi VA (2017) Nutritional and health benefits of millets. ICAR_Indian Institute of Millets Research (IIMR), Rajendranagar, Hyderabad, p 112

    Google Scholar 

  • Renganathan VG, Vanniarajan C, Karthikeyan A, Ramalingam J (2020) Barnyard millet for food and nutritional security: current status and future research direction. Front Genet 11. https://doi.org/10.3389/fgene.2020.00500

  • Roy AK, Ali N, Lakra RK, Alam P, Mahapatra P, Narayan R (2018) Effect of integrated nutrient management practices on nutrient uptake, yield of finger millet (Eleusine coracana L. Gaertn.) and post-harvest nutrient availability under rainfed condition of Jharkhand. Int J Curr Microbiol App Sci 7(08):339–347. https://doi.org/10.20546/ijcmas.2018.708.038

    Article  CAS  Google Scholar 

  • Saikishore A, Bhanu Rekha K, Hussain SA, Madhavi A (2020) Growth and yield of browntop millet as influenced by dates of sowing and nitrogen levels. Int J Chem Stud 8(5):1812–1815. https://doi.org/10.22271/chemi.2020.v8.i5y.10564

    Article  CAS  Google Scholar 

  • Saiz-Rubio V, Rovira-Más F (2020) From smart farming towards agriculture 5.0: a review on crop data management. Agronomy 10:207. https://doi.org/10.3390/agronomy10020207

    Article  Google Scholar 

  • Sakamoto S (1985) A preliminary repost of the studies on millet cultivation and its agro-pastoral culture complex in the Indian subcontinent. Studies on millet cultivation and its agro-pastoral culture complex in the Indian subcontinent, Kyoto University Research Team, Japan. pp.139

    Google Scholar 

  • Saleh AS, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12(3):281–295

    Article  CAS  Google Scholar 

  • Sandhya Rani Y, Triveni U, Patro TSSK, Divya M, Anuradha N (2017) Revisiting of fertilizer doses in finger millet (Eleusine coracana (L.) Garten.) through targeted yield and soil test crop response (STCR) approach. Int J Curr Microbiol App Sci 6(7):2211–2221

    Article  CAS  Google Scholar 

  • Sanjeevaiah SH, Rudrappa KS, Lakshminarasappa MT, Huggi L, Hanumanthaiah MM, Venkatappa SD, Lingegowda N, Sreeman SM (2021) Understanding the temporal variability of rainfall for estimating agro-climatic onset of cropping season over south interior Karnataka. India Agron 11:1135. https://doi.org/10.3390/agronomy11061135

    Article  Google Scholar 

  • Sankar GRM, Sharma KL, Dhanapal GN, Shankar MA, Mishra PK, Venkateswarlu B, Grace JK (2011) Influence of soil and fertilizer nutrients on sustainability of rainfed finger millet yieldand soil fertility in semi-arid Alfisols. Commun Soil Sci Plant Ann 42:1462–1483

    Article  CAS  Google Scholar 

  • Saxena R, Vanga SK, Wang J, Orsat V, Raghavan V (2018) Millets for food security in the context of climate change: a review. Sustainability 10:2228. https://doi.org/10.3390/su10072228

    Article  Google Scholar 

  • Selectstar Marwein B, Singh R, Chhetri P (2019) Effect of integrated nitrogen management on yield and economics of foxtail millet genotypes. Int J Curr Microbiol App Sci 8(08):2543–2546

    Article  Google Scholar 

  • Shobana S, Krishnaswamy K, Sudha V, Malleshi NG, Anjana RM, Palaniappan L, Mohan V (2013) Finger millet (Ragi, Eleusine coracana L.): a review of its nutritional properties, processing, and plausible health benefits. Adv Food Nutr Res 69:1–39

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Mishra AK, Chowdhary H, Khedun CP (2014) Climate change and its impact on water resources. In: Wang L, Yang C (eds) Modern water resources engineering. Handbook of Environmental Engineering, vol 15. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-595-8_11

    Chapter  Google Scholar 

  • Sood S, Khulbe RK, Gupta AK, Agrawal PK, Upadhyaya HD, Bhatt JC (2015) Barnyard millet—a potential food and feed crop of future. Plant Breed 134:135–147

    Article  Google Scholar 

  • Struik PC, Kuyper TW (2017) Sustainable intensification in agriculture: the richer shade of green. A review. Agron Sustain Dev 37:39. https://doi.org/10.1007/s13593-017-0445-7

    Article  Google Scholar 

  • Sukanya TS, Chaithra C, Pratima NM (2021) Guni cultivation of finger millet: an indigenous practice for sustained productivity and scientific evaluation. Front Crop Improv 9:1000–1004

    Google Scholar 

  • Swaminathan MS, Bhavani RV (2013) Food production & availability—essential prerequisites for sustainable food security. Ind J Med Res 138(3):383–391

    CAS  Google Scholar 

  • Tadele Z (2016) Drought adaptation in millets. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants—recent advances and future perspectives. IntechOpen, London, pp 639–662

    Google Scholar 

  • Thakur AK, Kumar P, Netam PS (2019) Effect of different nitrogen levels and plant geometry, in relation to growth characters and yield of browntop millet [Brachiaria ramosa (L.)] at Bastar Plateau Zone of Chhattisgarh. Int J Curr Microbiol App Sci 8(02):2789–2794. https://doi.org/10.20546/ijcmas.2019.802.327

    Article  CAS  Google Scholar 

  • Thesiya NM, Dobariya JB, Patel JG (2019) Effect of integrated nutrient management on growth and yield parameters of kharif little millet under little millet-green gram cropping sequence. Int J Pure App Biosci 7(3):294–298. https://doi.org/10.18782/2320-7051.7392

    Article  Google Scholar 

  • Tui SHK, Descheemaeker K, Valdivia RO, Masikati P, Sisito G, Moyo EN, Crespo O, Ruane AC, Rosenzweig C (2021) Climate change impacts and adaptation for dryland farming systems in Zimbabwe: a stakeholder-driven integrated multi-model assessment. Clim Chang 168:10. https://doi.org/10.1007/s10584-021-03151-8

    Article  Google Scholar 

  • Turral H (2008) Climate change, water and food security. Food and Agriculture Organization, Water Reports 36, Rome, Italy, p. 175

    Google Scholar 

  • Venkatesh Bhat B, Dayakar Rao B, Tonapi VA (2018) The story of millets. (Ed). Karnataka State Department of Agriculture, Bengaluru and ICAR-Indian Institute of Millets Research, Hyderabad, India, pp. 110

    Google Scholar 

  • Vetriventhan M, Azevedo VCR, Upadhyaya HD et al (2020) Genetic and genomic resources, and breeding for accelerating improvement of small millets: current status and future interventions. Nucleus 63:217–239. https://doi.org/10.1007/s13237-020-00322-3

    Article  Google Scholar 

  • Vetter SH, Sapkota TB, Hillier J, Stirling CM, Macdiarmid JI, Aleksandrowicz L, Green R, Joy EJ, Dangour AD, Smith P (2017) Greenhouse gas emissions from agricultural food production to supply Indian diets: implications for climate change mitigation. Agric Ecosyst Environ 16:234–241. https://doi.org/10.1016/j.agee.2016.12.024. PMID: 28148994; PMCID: PMC5268357

    Article  CAS  Google Scholar 

  • Wang A, Ma X, Xu J, Lu W (2019) Methane and nitrous oxide emissions in rice-crab culture systems of Northeast China. Aquacult Fish 4(4):134–141. https://doi.org/10.1016/j.aaf.2018.12.006

    Article  Google Scholar 

  • Wang J, Vanga SK, Saxena R, Orsat V, Raghavan V (2018) Effect of climate change on the yield of cereal crops: a review. Climate 6:41. https://doi.org/10.3390/cli6020041

    Article  Google Scholar 

  • Zaman K, Abdullah I, Ali M (2017) Decomposing the linkages between energy consumption air pollution climate change and natural resource depletion in Pakistan. Environ Prog Sustain Energy 36(2):638–648. https://doi.org/10.1002/ep.12519

    Article  CAS  Google Scholar 

  • Zambon I, Cecchini M, Egidi G, Saporito MG, Colantoni A (2019) Revolution 4.0: industry vs. agriculture in a future development for SMEs. PRO 7:36. https://doi.org/10.3390/pr7010036

    Article  Google Scholar 

  • Zeng Y, Liu D, Guo S, Xiong L, Liu P, Yin J, Tian J, Deng L, Zhang J (2021) Impacts of water resources allocation on water environmental capacity under climate change. Water 13:1187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Maitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maitra, S. et al. (2022). Small Millets: The Next-Generation Smart Crops in the Modern Era of Climate Change. In: Pudake, R.N., Solanke, A.U., Sevanthi, A.M., Rajendrakumar, P. (eds) Omics of Climate Resilient Small Millets. Springer, Singapore. https://doi.org/10.1007/978-981-19-3907-5_1

Download citation

Publish with us

Policies and ethics