Skip to main content

Genomics of Host–Pathogen Interaction

  • Chapter
  • First Online:
Genomics of Crucifer's Host- Pathosystem

Abstract

Genomics of host–pathogen interactions have greatly advanced in perception and understanding of molecular and genetical mechanisms of host–pathogen recognition system and pathogenesis. Next-generation sequencing and omics technologies have enabled the sequencing of entire host and pathogen genome or transcriptome more efficiently for better comprehension of host-pathosystem. Pathogenomics have revealed how pathogens adopt a specific host, subvert innate immune responses and change host range, and develop new virulent races/strains/pathotypes. In Brassica–Albugo interactions, the host–R genes control pathogen infection and development in compatible (susceptible) and incompatible (resistant/tolerant) cultivars. Differentially expressed proteins regulate defense reactions in the resistant varieties. The boost in cysteine and GSH levels is crucial for incompatible interaction between Albugo candida and Brassica juncea. In the A. candida–B. juncea pathosystem, the timing of the induction of PR-5 in R and S varieties is crucial for mounting of an effective defense to the pathogen. During infection and pathogenesis of Albugo in Brassica genotypes differing in level of resistance (R, PR, MS, S), R genes regulate functions and molecular mechanisms. In Brassica–Alternaria interactions species-specific genes of Alternaria with putative roles in virulence have been identified. Transcriptomic analysis has revealed six genes strongly associated with A. brassicicola pathogenesis. AbPf2 gene activates pathogenicity in A. brassicicola. AbNPS2 gene plays an important role in disease development and virulence. Among several genes identified as pathogenicity factors, Amr1 gene is important for success of A. brassicicola as competitive saprophyte and plant parasite. Microarray analysis of Brassica infected with Alternaria at 48 hpi revealed differential expression of 87 genes mainly involved in cell response signaling, cell wall degradation, protein degradation, auxins-induced metabolism, being downregulated. The change in host cell ultrastructure and transcriptome reprogramming has been observed in Alternaria-infected Brassica. Defense-related genes are activated also in Brassica–Alternaria susceptible interactions. Mitogen-activated protein (MAP) kinase and CAMP/PKA signaling pathways are involved in fungal growth, conidial formation, stress tolerance, and pathogenesis in Arabidopsis by Colletotrichum higginsianum. During pathogenesis, host peroxisomes, microtubules, and Golgi are novel targets for fungal effector genes. Fus3/Ksi1-related MAPK chMK1 plays a significant role in cell wall integrity. In Brassica–Erysiphe interactions, three closely related genes, MLO2, MLO6, and MLO12, play a role in powdery mildew pathogenesis through suppression of basal defense responses. Powdery mildew effector genes promote pathogenesis through host transcriptional regulation. The WRKY 18/40 regulate induced expression of genes whose products are required for pathogen growth and reproduction. In response to powdery mildew infection, the expression of genes is regulated for different biological functions by transcriptional genes. The powdery mildew pathogenesis and disease development is governed by the genes AtLFG1 and AtLFG2 in A. thaliana. Several genes viz., RSP1, RSP2, DMR1, LRR-RLK, DMR6, and DLO1 govern pathogenesis of Brassica by Hyaloperonospora enabling susceptibility process like attraction and attachment of pathogen to host cells, accommodation of specialized infection and feeding structures inside host cells, and nutrient production and transport from host to pathogen. Haustorium formation is initiated when pathogen secrete hydrolyses to locally degrade the host cell wall and establish an entry point. Haustorial penetration is accompanied by reorganization of GFP-tagged cytoskeleton and organelles in Arabidopsis mesophyll cells.

In Brassica–Leptosphaeria pathosystem, BnMPK9–AvrLm1 interaction enhances cell death caused by BnMPk9. The virulence mechanisms are the transition period from biotrophy to necrotrophy to facilitate the acquisition of host nutrients by the pathogen. The AvrLM1 and AvrLM4-7 contribute to the aggressiveness of L. maculans analysis during leaf infection. Genome and transcriptome analysis during Brassica pathogenesis by Leptosphaeria has revealed several genes for 20 major functional categories. The GFP is expressed by the Cht promoter in stem lesions of Brassica during infection of Leptosphaeria. The gene Pro1 is involved in clubroot pathogenesis by stimulating resting spore germination through its proteolytic activity. The genes PbPP2A and PbHMG are expressed in the early phases of infection in B. rapa roots. The BjN1t1 expression in B. juncea during infection promotes over production of auxins to form galls in infected roots. The role of different genes has been revealed through analysis of P. brassicae genome and life stage specific transcriptomics. Several effectors (genes) involved in the infection process (life cycle) of P. brassicae and subsequent clubroot development in its host have been identified. Plasmodiophora pathogenesis is influenced by lipids in resting spores, glucosinolates content of the host and host resistance level. Gene expression levels of primary and secondary zoospores govern different mechanisms utilized by the pathogen in causing primary and secondary infections of Plasmodiophora. Differential expressions of up- and downregulated genes and functional groups have been determined after 4, 7, and 10 DAI during life cycle stages of Plasmodiophora. In Brassica during Plasmodiophora infections, there is differential expression of several genes in host shoots, and roots regulating different biological, biochemical, and hormonal responses. In Arabidopsis roots infected with Plasmodiophora, hypoxia and SWEET genes are expressed to form galls. Host species-specific genes are expressed during Brassica–Plasmodiophora interactions. The genes Pb-YPT, Pb-Brep9, and Pb-PSA regulate P. brassicae infection. During clubroot development, there is expression of MiRNA and immunophilins. Plasmodiophora manipulates host defense through methyl transferase by inactivating SA to Me SA. The GPCR signal transduction pathways play important roles in the growth, development, and pathogenicity of P. brassicae to crucifers. During Sclerotinia pathogenesis of Brassica, four endo-polygalacturonase genes (sspg1d, sspg3, sspg5, and sspg 6) and two exo-PG genes (ssxpg1 and ssxpg2) are expressed. Molecular analysis of Sclerotinia sclerotiorum has revealed its biology, mycelial growth, virulence, pathogenesis, and signal events for sclerotia formation. Genes like Mats, FoxE2, CAMP, and Nsd1 control apothecial and ascospore development. Sclerotinia infection and pathogenesis is regulated by toxins, CWDEs, ROS, OA, Ssvp1, V263, Svf1, PKs13, and Nacα. During the course of Brassica infections by Sclerotinia transcriptomic analysis revealed genes for functional groups like hydrolytic enzymes, CAZymes, secondary metabolites, detoxification, signaling, development, secreted effectors, oxalic acid, and reactive oxygen species production. The genes SsSvf1 is involved in coping with ROS for pathogenesis of Sclerotinia. There is differential expression of genes during Sclerotinia interaction with R and S genotypes of Brassica. Integrated mRNA, sRNA, and degradome sequencing revealed complex responses to Sclerotinia infection in Brassica. The gene SSITL is an effector which suppresses resistance in the host at early stage of Sclerotinia infection. Oxaloacetate acetyl-hydrolase gene is involved in Sclerotinia pathogenesis. Three Sclerotinia genes (SsCTR1, SsCCS, and SsATX1) are upregulated during infection of B. oleracea. Several spliceosome genes are differentially altered during Sclerotinia infections. P3 proteins are important in the infection cycle of TuMV and involved in virus replication, accumulation, symptomatology, resistance breeding, and cell to cell movement. The BnSGS3 gene in Brassica has differentiated effects on the pathogenesis of viruses. Nitric oxide signaling and calcium protein kinases can modulate NADPH oxidase activity in modulating A. thalianaTuMV pathosystem. Differential expression of proteins has been identified which are activated in response to Verticillium longisporum in the leaf apoplast and xylem sap of Brassica in relation to disease development, photosynthetic electron transport, gas exchange and nutrient status. The secretion system of Xanthomonas genome regulates pathogenesis of black rot in crucifers. The features and functions of Type III effector genes of Xanthomonas in pathogenesis of crucifers have been characterized. The effectors/genes of Xanthomonas governing virulence and pathogenicity have been identified. Key pathogenicity determinants and virulence genes of Xanthomonas have been characterized and exported by Type ii and Type iii secretion system (T3S). The hormonal signaling in the pathways of Xanthomonas infection and pathogenesis of Brassica has been revealed.

The use of evolutionary genomics on the host–pathogen interaction and its impact can clear road map to combat the continuous threat of pathogens in a changing world. New tools will facilitate to resolve challenges of genomics of host with multiple pathogens interactions. The whole genome analysis approaches offer the potential to reveal new unbiased insight into the genetic basis of host-pathosystem of crucifers’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H (1991) Links complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656

    Article  CAS  PubMed  Google Scholar 

  • Adie B, Chico JM, Rubio-Somoza I, Solano R (2007) Modulation of plant defenses by ethylene. J Plant Growth Regul 26:160–177

    Article  CAS  Google Scholar 

  • Adrian J, Bonsignore P, Hammer S, Frickey T, Hauck CR (2019) Adaptation to host specific bacterial pathogens drives rapid evolution of a human innate immune receptor. Curr Biol 29:616–630. https://doi.org/10.1016/j.cub.2019.01.058

    Article  CAS  PubMed  Google Scholar 

  • Affolter M, Pyrowolakis G, Weiss A, Basler K (2008) Signal-induced repression: the exception or the rule in developmental signaling? Dev Cell 15(1):11–22. https://doi.org/10.1016/j.devcel.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  • Agarwal A, Kaul V, Faggian R, Cahill DM (2009) Development and use of a model system to monitor clubroot disease progression with an Australian field population of Plasmodiophora brassicae. Australas Plant Pathol 38:120–127

    Article  Google Scholar 

  • Agarwal A, Kaul V, Faggian R, Rookes JE, Ludwig-Müller JE, Cahill DM (2011) Analysis of global host gene expression during the primary phase of the Arabidopsis thaliana–Plasmodiophora brassicae interaction. Func Plant Biol 38:462–478

    Article  CAS  Google Scholar 

  • Aist JR, Bushnell WR (1991) Invasion of plants by powdery mildew fungi, and cellular mechanisms of resistance. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals, vol 6, 1st edn. Plenum Press, New York, pp 321–345

    Chapter  Google Scholar 

  • Aist JR, Williams PH (1971) The cytology and kinetics of cabbage root hair penetration by Plasmodiophora brassicae. Can J Bot 49(11):2023–2034. https://doi.org/10.1139/b71-284

    Article  Google Scholar 

  • Alexander SP, Christopoulos A, Davenport AP, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA, CGTP Collaborators (2017) The concise guide to PHARMACOLOGY 2017/18: G protein-coupled receptors. Br J Pharmacol 174(Suppl 1):S17–S129. https://doi.org/10.1111/bph.13878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkhateeb RS, Rückert C, Rupp O, Pucker B, Hublik G, Wibberg D, Niehaus K, Pühler A, Vorhölter FJ (2017) Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data. J Biotechnol 253:55–61. https://doi.org/10.1016/j.jbiotec.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  • Alkooranee JT, Yin Y, Aledan TR, Jiang Y, Lu G, Wu J, Li M (2015) Systemic resistance to powdery mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by Trichoderma harzianum TH12. PLoS One 10(11):e0142177. https://doi.org/10.1371/journal.pone.0142177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allan J, Regmi R, Denton-Giles M, Kamphuis LG, Derbyshire MC (2019) The host generalist phytopathogenic fungus Sclerotinia sclerotiorum differentially expresses multiple metabolic enzymes on two different plant hosts. Sci Reptr 9:19966. https://doi.org/10.1038/s41598-019-56396-w

    Article  CAS  Google Scholar 

  • Allen FHE, Friend J (1983) Resistance of potato tubers to infection by Phytophthora infestans a structural study of haustorial encasement. Physiol Plant Pathol 1983:285–IN284

    Article  Google Scholar 

  • Alvarez ME, Pennel RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  CAS  PubMed  Google Scholar 

  • Amaral AMD, Antoniw J, Rudd JJ, Hammond-Kosack KE (2012) Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola. PLoS One 7:e49904

    Article  Google Scholar 

  • An SQ, Lu GT, Su HZ, Li RF, He YQ, Jiang BL, Tang DJ, Tang JL (2011) Systematic mutagenesis of all predicted GntR genes in Xanthomonas campestris pv. campestris reveals a gntR family transcriptional regulator controlling hyper-sensitive response and virulence. Mol Plant-Microbe Interact 24:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Anderson JP, Thatcher LF, Singh KB (2005) Plant defense responses: conservation between models and crops. Func Plant Biol 32:21–34. https://doi.org/10.1071/FP04136

    Article  CAS  Google Scholar 

  • Ando S, Yamada T, Asano T, Kamachi S, Tsushima S, Hagio T, Tabei Y (2006) Molecular cloning of PbSTKLl gene from Plasmodiophora brassicae expressed during club root development. J Phytopathol 154:185–189

    Article  CAS  Google Scholar 

  • Andrew M, Barua R, Short SM, Kohn LM (2012) Evidence for a common toolbox based on necrotrophy in a fungal lineage spanning necrotrophs, biotrophs, endophytes, host generalists and specialists. PLoS One 7:e29943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:3864–3876. https://doi.org/10.1105/tpc.110.078964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  PubMed  Google Scholar 

  • Artero RD, Terol-Alcayde J, Paricio N, Ring J, Bargues M, Torres A et al (1998) Saliva, a new drosophila gene expressed in the embryonic salivary glands with homologues in plants and vertebrates. Mech Dev 75:159–162. https://doi.org/10.1016/S0925-4773(98)00087-2

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 4156(1):977–983

    Article  Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved. Nat Immunol 66(1):973–979

    Article  Google Scholar 

  • Babaeizad V, Imani J, Kogel KH, Eichmann R, Hückelhoven R (2009) Over-expression of the cell death regulator BAX inhibitor-1 in barley confers reduced or enhanced susceptibility to distinct fungal pathogens. Theor Appl Genet 118:455–463

    Article  CAS  PubMed  Google Scholar 

  • Backer R, Naidoo S, van den Berg N (2019) The NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related family: mechanistic insights in plant disease resistance. Front Plant Sci 10:102

    Article  PubMed  PubMed Central  Google Scholar 

  • Badet T, Voisin D, Mbengue M, Barascud M, Sucher J, Sadon P, Balagué C, Roby D, Raffaele S (2017) Parallel evolution of the POQR prolyl oligo peptidase gene conferring plant quantitative disease resistance. PLoS Genet 13:e1007143

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai YL, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol Plant-Microbe Interact 216(1):30–39

    Article  Google Scholar 

  • Balakrishnan CN, Ekblom R, Völker M, Westerdahl H, Godinez R, Kotkiewicz H, Burt DW, Graves T, Griffin DK, Warren WC, Edwards SV (2010) Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biol 8:29. https://doi.org/10.1186/1741-7007-8-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal VK, Tewari JP, Stringam GR, Thiagarajah MR (2005) Histological and inheritance studies of partial resistance in the Brassica napus–Albugo candida host–pathogen interaction. Plant Breed 124:27–32

    Article  Google Scholar 

  • Baranowski P, Jedryczka M, Mazurek W, Babula Skowronska D, Siedliska A, Kaczmarek J (2015) Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria. PLoS One 10:e0122913

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbacci A, Navaud O, Mbengue M, Barascud M, Godiard L, Khafif M, Lacaze A, Raffaele S (2020) Rapid identification of an Arabidopsis NLR gene as a candidate conferring susceptibility to Sclerotinia sclerotiorum using time-resolved automated phenotyping. Plant J 103(2):903–917. https://doi.org/10.1111/tpj.14747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJG, Slater H, Dow JM, Williams P, Daniels MJ (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signalmolecule. Mol Microbiol 24:555–566

    Article  CAS  PubMed  Google Scholar 

  • Barkai-Golan R (1974) Production of cellulose and poly-galacturonase by Sclerotinia minor. Mycopathol Mycol Appl 54:297–302

    Article  CAS  PubMed  Google Scholar 

  • Bartha I, Carlson JM, Brumme CJ, McLaren PJ, Brumme ZL, John M, Haas DW, Martinez-Picado J, Dalmau J, López-Galíndez C, Casado C, Rauch A, Günthard HF, Bernasconi E, Vernazza P, Klimkait T, Yerly S, O’Brien SJ, Listgarten J, Pfeifer N, Lippert C, Fusi N, Kutalik Z, Allen TM, Müller V, Harrigan PR, Heckerman D, Telenti A, Fellay J (2013) A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. eLife 2:e1001123. https://doi.org/10.7554/eLife.01123

    Article  CAS  Google Scholar 

  • Bartling D, Radzio R, Steiner U, Weiler EW (1993) A glutathione S-transferase with glutathione peroxidase activity from Arabidopsis thaliana: molecular cloning and functional characterization. Eur J Biochem 216:579–586

    Article  CAS  PubMed  Google Scholar 

  • Bashi ZD, Gyawali S, Bekkaoui D, Coutu C, Lee L, Poon J, Rimmer SR, Khachatourians GG, Hegedus DD (2016) The Sclerotinia sclerotiorum Slt2 mitogen-activated protein kinase ortholog, SMK3, is required for infection initiation but not lesion expansion. Can J Microbiol 850:836–850. https://doi.org/10.1139/cjm-2016-0091

    Article  CAS  Google Scholar 

  • Becker A, Katzen F, Puhler A, Ielpi L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 50:145–152

    Article  CAS  PubMed  Google Scholar 

  • Becker MG, Zhang X, Walker PL, Wan JC, Millar JL, Khan D, Granger MJ, Cavers JD, Chan AC, Fernando DWG (2017) Transcriptome analysis of the Brassica napus–Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance. Plant J 90:573–586

    Article  CAS  PubMed  Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323(5910):101–106. https://doi.org/10.1126/science.1163732

    Article  CAS  PubMed  Google Scholar 

  • Beers EP, Jones AM, Dickerman AW (2004) The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 65:43–58

    Article  CAS  PubMed  Google Scholar 

  • Belhaj K, Lin BQ, Mauch F (2009) The chloroplast protein RPH1 plays a role in the immune response of Arabidopsis to Phytophthora brassicae. Plant J 58:287–298

    Article  CAS  PubMed  Google Scholar 

  • Berger PH, Barnett OW, Brunt AA et al (2000) Family potyviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHL et al (eds) Virus taxonomy: seventh report of the international committee on taxonomy of viruses. Academic Press, San Diego, pp 703–724

    Google Scholar 

  • Berhane K, Widersten M, Engstrom A, Kozarich J, Mannervik B (1994) Detoxication of base propenals and other α, β-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione S-transferases. Proc Natl Acad Sci U S A 91:1480–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berto P, Commenil P, Belingheri L, Dehorter B (1999) Occurrence of a lipase in spores of Alternaria brassicicola with a crucial role in the infection of cauliflower leaves. FEMS Microbiol Lett 180:183–189

    Article  CAS  PubMed  Google Scholar 

  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci U S A 102:3135–3140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi K, He Z, Gao Z, Zhao Y, Fu Y, Cheng J, Xie J, Jiang D, Chen T (2016) Integrated omics study of lipid droplets from Plasmodiophora brassicae. Sci Rep 6:36965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi K, Chen T, He Z, Gao Z, Zhao Y, Liu H, Fu Y, Xie J, Cheng J, Jiang D (2019) Comparative genomics reveals the unique evolutionary status of Plasmodiophora brassicae and the essential role of GPCR signaling pathways. Phytopathol Res 1:12. https://doi.org/10.1186/s42483-019-0018-6

    Article  Google Scholar 

  • Bigeard J, Colcombet J, Hirt H (2015) Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant 8:521–539

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Ulate B, Morales-Cruz A, Amrine KC, Labavitch JM, Powell AL, Cantu D (2014) Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. Front Plant Sci 5:435. https://doi.org/10.3389/fpls.2014.00435

    Article  PubMed  PubMed Central  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193:5450–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolnick DI, Stutz WE (2017) Frequency dependence limits divergent evolution by favouring rare immigrants over residents. Nature 546(7657):285

    Article  CAS  PubMed  Google Scholar 

  • Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, McPhee JB, DeWitte SN, Meyer M, Schmedes S, Wood J, Earn DJD, Herring DA, Bauer P, Poinar HN, Krause J (2011) A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:506–510. https://doi.org/10.1038/nature10549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgeois Y, Roulin AC, Müller K, Ebert D (2017) Parasitism drives host genome evolution: insights from the Pasteuria ramosa-Daphnia magna system. Evolution 71:1106–1113. https://doi.org/10.1111/evo.13209

    Article  CAS  PubMed  Google Scholar 

  • Boyle C (1921) Studies in the physiology of parasitism. VI. Infection by Sclerotinia libertiana. Ann Bot 35:337–347

    Article  Google Scholar 

  • Brace JL, Vander Weele DJ, Rudin CM (2005) Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress in Saccharomyces cerevisiae. Yeast 22:641–652

    Article  CAS  PubMed  Google Scholar 

  • Brace JL, Lester RL, Dickson RC, Rudin CM (2007) SVF1 regulates cell survival by affecting sphingolipid metabolism in Saccharomyces cerevisiae. Genetics 175(1):65–76. https://doi.org/10.1534/genetics.106.064527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  CAS  PubMed  Google Scholar 

  • Brodmann D, Schuller A, Ludwig-Muller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant Microbe Interact 15(7):693–700

    Article  CAS  PubMed  Google Scholar 

  • Bulman S, Siemens J, Ridgway HJ, Eady C, Conner AJ (2006) Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. FEMS Microbiol Lett 264:198–204

    Article  CAS  PubMed  Google Scholar 

  • Bulman S, Ridgway HJ, Eady C, Conner AJ (2007) Intron-rich gene structure in the intracellular plant parasite Plasmodiophora brassicae. Protist 158:423–433

    Article  CAS  PubMed  Google Scholar 

  • Bulman S, Richter F, Marschollek S, Benade F, Julke S, Ludwig-Muller J (2018) Arabidopsis thaliana expressing PbBSMT, a gene encoding a SABATH-type methyltransferase from the plant pathogenic protist Plasmodiophora brassicae, show leaf chlorosis and altered host susceptibility. Plant Biol 21(Suppl 1):120–130. https://doi.org/10.1111/plb.12728

    Article  CAS  PubMed  Google Scholar 

  • Burki F, Kudryavtsev A, Matz MV, Aglyamova GV, Bulman S, Fiers M, Keeling PJ, Pawlowski J (2010) Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evol Biol 10:377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  CAS  PubMed  Google Scholar 

  • Butler EJ (1918) White rust (Cystopus candidus) (Pers. Lev.). In: Butler EJ (ed) Fungi and disease in plants. Thacker Spink, Calcutta, pp 291–297

    Google Scholar 

  • Butler EJ, Jones SG (1961) Plant pathology. Macmillan, London

    Google Scholar 

  • Caillaud M-C, Wirthmueller L, Sklenar J, Findlay K, Piquerez SJ, Jones AM, Robatzek S, Jones JD, Faulkner C (2014) The plasmodesmal protein PDLP1 localises to haustoria-associated membranes during downy mildew infection and regulates callose deposition. PLoS Pathog 2014:e1004496

    Article  Google Scholar 

  • Cairns J, Frickel J, Jalasvuori M, Hiltunen T, Becks L (2017) Genomic evolution of bacterial populations under co-selection by antibiotics and phage. Mol Ecol 26:1848–1859. https://doi.org/10.1111/mec.13950

    Article  CAS  PubMed  Google Scholar 

  • Calonge FD, Fielding AH, Byrde RJW, Akinrefon DA (1969) Changes in ultra-structure following fungal invasion and the possible relevance of extra cellular enzymes. J Exp Bot 20:350–357

    Article  CAS  Google Scholar 

  • Canet JV, Dobón A, Roig A, Tornero P (2010) Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant Cell Environ 33:1911–1922

    Article  CAS  PubMed  Google Scholar 

  • Canonne J, Marino D, Jauneau A, Pouzet C, Briere C, Roby D, Rivas S (2011) The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense. Plant Cell 23:3498–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canonne J, Pichereaux C, Marino D, Roby D, Rossignol M, Rivas S (2012) Identification of the protein sequence of the type III effector XopD from the B100 strain of Xanthomonas campestris pv campestris. Plant Signal Behav 7:184–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong XN (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao T, Srivastava S, Rahman MH, Kav NNV, Hotte N, Deyholos MK, Strelkov SE (2008) Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Sci 174:97–115

    Article  CAS  Google Scholar 

  • Carlin AF, Vizcarra EA, Branche E, Viramontes KM, Suarez-Amaran L, Ley K, Heinz S, Benner C, Shresta S, Glass CK (2018) Deconvolution of pro- and antiviral genomic responses in Zika virus-infected and by stander macrophages. Proc Natl Acad Sci U S A 115:E9172–E9181. https://doi.org/10.1073/pnas.1807690115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castaneda A, Reddy JD, El-Yacoubi B, Gabriel DW (2005) Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Mol Plant-Microbe Interact 18:1306–1317

    Article  CAS  PubMed  Google Scholar 

  • Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2192–2199

    Article  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953

    Article  CAS  PubMed  Google Scholar 

  • Chandran D, Tai YC, Hather G, Dewdney J, Denoux C, Burgess DG, Ausubel FM, Speed TP, Wildermuth MC (2009) Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis. Plant Physiol 49:1435–1451

    Article  Google Scholar 

  • Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser micro-dissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc Natl Acad Sci U S A 107:460–465

    Article  CAS  PubMed  Google Scholar 

  • Chandran D, Rickert J, Cherk C, Dotson BR, Wildermuth MC (2013) Host cell ploidy underlying the fungal feeding site is a determinant of powdery mildew growth and reproduction. Mol Plant Microbe Interact 26:537–545

    Article  CAS  PubMed  Google Scholar 

  • Chandran D, Rickert J, Huang Y, Steinwand MA, Marr SK, Wildermuth MC (2014) A typical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid. Cell Host Microbe 15:506–513

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Harel A, Gorovoits R, Yarden O, Dickman MB (2004) MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and CAMP sensing. Mol Plant Microbe Interact 17:404–413. https://doi.org/10.1094/MPMI.2004.17.4.404

    Article  CAS  PubMed  Google Scholar 

  • Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532. https://doi.org/10.1038/nature09606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211. https://doi.org/10.1126/science.1213351

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas C (2014) Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell Online 26:4636–4655

    Article  CAS  Google Scholar 

  • Chen J, Pang W, Chen B, Zhang C, Piao Z (2015a) Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubroot-resistant and -susceptible alleles in response to Plasmodiophora brassicae during early infection. Front Plant Sci 6:1183

    PubMed  Google Scholar 

  • Chen Q, Wang J, Hou M, Liu S, Huang J, Cai L (2015b) BnSGS3 has differential effects on the accumulation of CMV, ORMV and TuMV in oilseed rape. Viruses 7(8):4169–4185. https://doi.org/10.3390/v7082815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Ma R, Chen XL (2019a) Advances of metabolomics in fungal pathogen–plant interactions. Metabolites 9:169. https://doi.org/10.3390/metabo9080169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Ullah C, Reichelt M, Gershenzon J, Hammerbacher A (2019b) Sclerotinia sclerotiorum circumvents flavonoid defenses by catabolizing flavonol glycosides and aglycones. Plant Physiol 180:1975–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chico JM, Chini A, Fonseca S, Solano R (2008) JAZ repressors set the rhythm in jasmonate signaling. Curr Opin Plant Biol 11:486–494

    Article  CAS  PubMed  Google Scholar 

  • Cho Y (2015) How the necrotrophic fungus Alternaria brassicicola kills plant cells remains an enigma. Eukaryot Cell 14:335–344. https://doi.org/10.1128/EC.00226-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho Y, Davis JW, Kim KH, Wang J, Sun QH, Cramer RA, Lawrence CB (2006) A high throughput targeted gene disruption method for Alternaria brassicicola functional genomics using linear minimal element (LME) constructs. Mol Plant-Microbe Interact 19:7–15

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Cramer RA, Kim KH, Davis J, Mitchell TK, Figuli P, Pryor BM, Lemasters E, Lawrence CB (2007) The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet Biol 44:543–553

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Kim K-H, La Rota M, Scott D, Santopietro G, Callihan M, Mitchell TK, Lawrence CB (2009) Identification of virulence factors by high throughput targeted gene deletion of regulatory genes in Alternaria brassicicola. Mol Microbiol 72:1316–1333

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Srivastava A, Ohm RA, Lawrence CB, Wang KH, Grigoriev IV, Marahatta SP (2012) Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola. PLoS Pathog 8(10):e1002974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho Y, Ohm BA, Grigoriev IV, Srivastava A (2013) Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola. Plant J 75:498–514

    Article  CAS  PubMed  Google Scholar 

  • Chomwong S, Charoensapsri W, Amparyup P, Tassanakajon A (2018) Two host gut-derived lactic acid bacteria activate the proPO system and increase resistance to an AHPND-causing strain of Vibrio parahaemolyticus in the shrimp Litopenaeus vannamei. Dev Comp Immun 89:54–65. https://doi.org/10.1016/j.dci.2018.08.002

    Article  CAS  Google Scholar 

  • Chong J, Piron MC, Meyer S, Merdinoglu D, Bertsch C, Mestre P (2014) The SWEET family of sugar transporters in grapevine: Vv SWEET 4 is involved in the interaction with Botrytis cinerea. J Exp Bot 65:6589–6601. https://doi.org/10.1093/jxb/eru375

    Article  CAS  PubMed  Google Scholar 

  • Chu M, Lopez-Moya JJ, Llave-Correas C, Pirone TP (1997) Two separate regions in the genome of the tobacco etch virus contain determinants of the wilting response of Tabasco pepper. Mol Plant Microbe Interact 10:472–480

    Article  CAS  PubMed  Google Scholar 

  • Chu Z, Yuan M, Yao L, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S (2006) Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev 20:1250–1255. https://doi.org/10.1101/gad.1416306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung HS, Niu Y, Browse J, Howe GA (2009) Top hits in contemporary JAZ: an update on jasmonate signaling. Phytochemistry 70:1547–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chupp C (1925) Manual of vegetable garden diseases. Macmillan, New York

    Google Scholar 

  • Coaker G, Falick A, Staskawicz B (2005) Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308:548–550

    Article  CAS  PubMed  Google Scholar 

  • Coca MA, Damsz B, Yun DJ, Hasegawa PM, Bressan RA, Narasimhan M (2000) Heterotrimeric G-proteins of a filamentous fungus regulates cell wall composition and susceptibility to a plant PR-5 protein. Plant J 22:61–69

    Article  CAS  PubMed  Google Scholar 

  • Coffey MD (1975) Ultra-structural features of the haustorial apparatus of the white blister fungus A. candida. Can J Bot 53:1285–1299

    Article  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    Article  CAS  PubMed  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  CAS  PubMed  Google Scholar 

  • Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 386(1):716–720

    Article  Google Scholar 

  • Consonni C, Bednarek P, Humphry M, Francocci F, Ferrari S, Harzen A, Ver Loren van Themaat E, Panstruga R (2010) Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol 152:1544–1561. https://doi.org/10.1104/pp.109.147660

    Article  CAS  PubMed  Google Scholar 

  • Coplin DL, Cook D (1990) Molecular genetics of extracellular polysaccharide biosynthesis in vascular phytopathogenic bacteria. Mol Plant-Microbe Interact 3:271–279

    Article  CAS  PubMed  Google Scholar 

  • Coppens F, Wuyts N, Inzé D, Dhondt S (2017) Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Curr Opin Syst Biol 4:58–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Corbett M, Virtue S, Bell K, Birch P, Burr T, Hyman L, Lilley K, Poock S, Toth I, Salmond G (2005) Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Mol Plant-Microbe Interact 18:334–342

    Article  CAS  PubMed  Google Scholar 

  • Corwin JA, Kliebenstein DJ (2017) Quantitative Resistance: more than just perception of a pathogen. Plant Cell 29:655–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Corwin JA, Copeland D, Feusier J, Subedy A, Eshbaugh R, Palmer C, Maloof J, Kliebenstein DJ (2016) The quantitative basis of the Arabidopsis innate immune system to endemic pathogens depends on pathogen genetics. PLoS Genet 12:1–29

    Article  Google Scholar 

  • Craig L, Pique ME, Tainer JA (2004) Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2:363–378

    Article  CAS  PubMed  Google Scholar 

  • Craven KD, Velez H, Cho Y, Lawrence CB, Mitchell TK (2008) Anastomosis is required for virulence of the fungal necrotroph, Alternaria brassicicola. Eukaryot Cell 7:675–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Wang Y, Xue L, Chu J, Yan C, Fu J, Chen M, Innes RW, Zhou JM (2010) Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4. Cell Host Microbe 7:164–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunnac S, Lindeberg M, Collmer A (2009) Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12:53–60

    Article  CAS  PubMed  Google Scholar 

  • Czedik Eysenberg A, Seitner S, Guldener U, Koemeda S, Jez J, Colombini M, Djamei A (2018) The ‘PhenoBox’, a flexible, automated, open-source plant phenotyping solution. New Phytol 219:808–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Cunha L, McFall AJ, Mackey D (2006) Innate immunity in plants: a continuum of layered defenses. Microbes Infect 8:1372–1381

    Article  PubMed  Google Scholar 

  • da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LMC, do Amaral AM, Bertolini MC, Camargo LEA, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Clapina LP, Cicarelli RMB, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJS, Ferreira RCC, Ferro MIT, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EGM, Lemos MVF, Locali EC, Machado MA, Madeira A, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CFM, Miyaki CY, Moon DH, Moreira LM, Novo MTM, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JAD, Silva C, de Souza RF, Spinola LAF, Takita MA, Tamura RE, Teixeira EC, Tezza RID, dos Santos MT, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463

    Article  PubMed  Google Scholar 

  • Dallal Bashi Z, Hegedus DD, Buchwaldt L, Rimmer SR, Borhan MH (2010) Expression and regulation of Sclerotinia sclerotiorum necrosis and ethylene-inducing peptides (NEPs). Mol Plant Pathol 11:43–53

    Article  PubMed  Google Scholar 

  • Dallot S, Quiot-Douine L, Saenz P, Cervera MT, Garcia J-A, Quiot J-B (2001) Identification of Plum pox virus determinants implicated in specific interactions with different Prunus spp. Phytopathology 91:159–164

    Article  CAS  PubMed  Google Scholar 

  • Daub JT, Hofer T, Cutivet E, Dupanloup I, Quintana-Murci L, Robinson-Rechavi M, Excoffier L (2013) Evidence for polygenic adaptation to pathogens in the human genome. Mol Biol Evol 30:1544–1558. https://doi.org/10.1093/molbev/mst080

    Article  CAS  PubMed  Google Scholar 

  • Daval S, Belcour A, Gazengel K, Legrand L, Gouzy J, Cottret L, Lebreton L, Aigu Y, Mougel C, Manzanares-Dauleux Maria J (2018) Computational analysis of the Plasmodiophora brassicae genome: mitochondrial sequence description and metabolic pathway database design. BMA Genomics 111(6):1629–1640. https://doi.org/10.1016/j.ygeno.2018.11.013

    Article  CAS  Google Scholar 

  • de Bary A (1887) Comparative morphology and biology of fungi, mycetozoa and bacteria. London, Clerenden, p 525

    Book  Google Scholar 

  • De Gara L, de Pinto MC, Tommasi F (2003) The antioxidant systems vis-a-vis reactive oxygen species during plant–pathogen interaction. Plant Physiol Biochem 41:863–870

    Article  Google Scholar 

  • de Mendoza A, Sebé-Pedrós A, Ruiz-Trillo I (2014) The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multi-cellularity. Genome Biol Evol 6(3):606–619

    Article  PubMed  PubMed Central  Google Scholar 

  • Debieu M, Huard-Chauveau C, Genissel A, Roux F, Roby D, Huard-Chauveau C, Genissel A, Roux F, Roby D (2015) Quantitative disease resistance to the bacterial pathogen Xanthomonas campestris involves an Arabidopsis immune receptor pair and a gene of unknown function. Mol Plant Pathol 17:510–520

    Article  PubMed  PubMed Central  Google Scholar 

  • Dekhuijzen HM (1979) Electron microscopic studies on the root hairs and cortex of a susceptible and a resistant variety of Brassica campestris infected with Plasmodiophora brassicae. Netherlands J Plant Pathol 85:1–17. https://doi.org/10.1007/BF01976714

    Article  Google Scholar 

  • Denoeud F, Roussel M, Noel B, Wawrzyniak I, Da Silva C, Diogon M, Viscogliosi E, Brochier-Armanet C, Couloux A, Poulain J, Segurens B, Anthouard V, Texier C, Blot N, Poirier P, Ng GC, Tan KSW, Artiguenave F, Jaillon O, Aury J-M, Delbac F, Wincker P, Vivarès CP, El Alaoui H (2011) Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol 12:R29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deora A, Gossen BD, McDonald MR (2012) Infection and development of Plasmodiophora brassicae in resistant and susceptible canola cultivars. Can J Plant Pathol 34:239–247

    Article  Google Scholar 

  • Deora A, Gossen BD, Mcdonald MR (2013) Cytology of infection, development and expression of resistance to Plasmodiophora brassicae in canola. Ann Appl Biol 163:56–71. https://doi.org/10.1111/aab.12033

    Article  Google Scholar 

  • Derbyshire M, Denton-Giles M, Hegedus D, Seifbarghy S, Rollins J, van Kan J, Seidl MF, Faino L, Mbengue M, Navaud O, Raffaele S, Hammond-Kosack K, Heard S, Oliver R (2017) The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol Evol 9(3):593–618. https://doi.org/10.1093/gbe/evx030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devos S, Vissenberg K, Verbelen JP, Prinsen E (2005) Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormone balance. New Phytol 166:241–250. https://doi.org/10.1111/j.1469-8137.2004.01304.x

    Article  CAS  PubMed  Google Scholar 

  • Devos S, Laukens K, Deckers P, Straeten DVD, Beeckman T, Inze D, Onckelen HV, Witters P, Prinsen E (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol Plant-Microbe Interact 19:1431–1443. https://doi.org/10.1094/MPMI-19-1431

    Article  CAS  PubMed  Google Scholar 

  • Devoto A, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 566(1):77–88

    Article  Google Scholar 

  • Dhawan S (1980) Production of protease by Sclerotinia sclerotiorum cause of white rot of Brassica juncea. Curr Sci 49:361–362

    CAS  Google Scholar 

  • Dhawan S, Srivastava SK (1987) Trans-eliminative (lytic) pectic enzymes in Sclerotinia infection of Brassica juncea. Indian J Mycol Plant Pathol 17:325–327

    Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickman MB, Mitra A (1992) Arabidopsis thaliana as a model for studying Sclerotinia sclerotiorum pathogenesis. Physiol Mol Plant Pathol 41:255–263

    Article  Google Scholar 

  • Diederichsen E, Frauen M, Linders EG, Hatakeyama K, Hirai M (2009) Status and perspectives of clubroot resistance breeding in crucifer crops. J Plant Growth Regul 28:265–281

    Article  CAS  Google Scholar 

  • Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SMN, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709

    Article  CAS  PubMed  Google Scholar 

  • Dilthey A, Cox C, Iqbal Z, Nelson MR, McVean G (2015) Improved genome inference in the MHC using a population reference graph. Nat Genet 47:682–688. https://doi.org/10.1038/ng.3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, Xue S, Jia H, Ma Z (2011) Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One 6(e19008)

    Google Scholar 

  • Ding Y, Mei J, Chai Y, Yang W, Mao Y, Yan B, Yu Y, Disi JO, Rana K, Li J, Qian W (2020) Sclerotinia sclerotiorum utilizes host-derived copper for ROS detoxification and infection. PLoS Pathol 16(10):e1008919. https://doi.org/10.1371/journal.ppat.1008919

    Article  CAS  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    Article  CAS  PubMed  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Doidy J, Grace E, Kühn C, Simonplas F, Casieri L, Wipf D (2012) Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci 17:413–422. https://doi.org/10.1016/j.tplants.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  • Domingues MN, De Souza TA, Cernadas RA, de Oliveira MLP, Docena C, Farah CS, Benedetti CE (2010) The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair. Mol Plant Pathol 11:663–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domingues MN, de Campos BM, de Oliveira ML, de Mello UQ, Benedetti CE (2012) TAL effectors target the C-terminal domain of RNA polymerase II (CTD) by inhibiting the prolyl-isomerase activity of a CTD-associated cyclophilin. PLoS One 7:e41553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Solis JR, Zengyong H, Amparo L, Julie T, Buchanan BB, Sheng L (2008) A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proc Natl Acad Sci U S A 105:16386–16391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donald EC, Jaudzens G, Porter IJ (2008) Pathology of cortical invasion by Plasmodiophora brassicae in clubroot resistant and susceptible Brassica oleracea hosts. Plant Pathol 33:585–589

    Google Scholar 

  • Donofrio NM, Delaney TP (2001) Abnormal callose response phenotype and hyper susceptibility to Peronospora parasitica in defense-compromised Arabidopsis nim1-1 and salicylate hydroxylase - expressing plants. Mol Plant-Microbe Interact 2001:439–450

    Article  Google Scholar 

  • Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7(2):79–94

    Article  CAS  PubMed  Google Scholar 

  • Douchkov D, Nowara D, Zierold U, Schweizer P (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol Plant Microbe Interact 18:755–761

    Article  CAS  PubMed  Google Scholar 

  • Doughan B, Rollins JA, Avery SV (2016) Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis. Fungal Biol 120:1105–1117. https://doi.org/10.1016/j.funbio.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  • Dow JM, Clarke BR, Milligan DE, Tang JL, Daniels MJ (1990) Extracellular proteases from Xanthomonas campestris pv. campestris, the black rot pathogen. Appl Environ Microbiol 56:2994–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dow JM, Osbourn AE, Wilson TJG, Daniels MJ (1995) A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis. Mol Plant Microbe Interact 8:768–777

    Article  CAS  PubMed  Google Scholar 

  • Dow JM, Feng JX, Barber CE, Tang JL, Daniels MJ (2000) Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris. Microbiology 146:885–891

    Article  CAS  PubMed  Google Scholar 

  • Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100:10995–11000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudler R, Hertig C, Rebman G, Bull J, Mauch F (1991) A pathogen-induced wheat gene encodes a protein homologous to glutathione S-transferases. Mol Plant Microbe Interact 4:4–18

    Article  Google Scholar 

  • Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    Article  CAS  Google Scholar 

  • Echandi E, Walker JC (1957) Pectolytic enzymes produced by Sclerotinia sclerotiorum. Phytopathology 47:303–306

    CAS  Google Scholar 

  • Eichmann R, Hückelhoven R (2008) Accommodation of powdery mildew fungi in intact plant cells. J Plant Physiol 165:5–18

    Article  CAS  PubMed  Google Scholar 

  • Eichmann R, Dechert C, Kogel KH, Hückelhoven R (2006) Transient over-expression of barley BAX inhibitor-1 weakens oxidative defence and MLA12-mediated resistance to Blumeria graminis f.sp. hordei. Mol Plant Pathol 7:543–552

    Article  CAS  PubMed  Google Scholar 

  • Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C, Schweizer P, Duchkov D, Hensel G, Kumlehn J, Hückelhoven R (2010) BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. Mol Plant Microbe Interact 23:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • El-Zahaby HM, Gullner G, Kiraly Z (1995) Effects of powdery mildew infection of barley on the ascorbate-glutathione cycle and other antioxidants in different host-pathogen interactions. Phytopathology 85:1225–1230

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. https://doi.org/10.1006/jmbi.2000.3903

    Article  CAS  PubMed  Google Scholar 

  • Enard D, Le C, Gwennap C, Petrov DA (2016) Viruses are a dominant driver of protein adaptation in mammals. Elife 5:e12469. https://doi.org/10.7554/eLife.12469

    Article  PubMed  PubMed Central  Google Scholar 

  • Engleberg NC, Carter C, Weber DR, Cianciotto NP, Eisenstein BI (1989) DNA sequence of MIP, a Legionella pneumophila gene associated with macrophage infectivity. Infect Immun 57:1263–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erental A, Harel A, Yarden O (2007) Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. Mol Plant Microbe Interact 20:944–954. https://doi.org/10.1094/MPMI-20-8-0944

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Evans JL, Scholes JD (1995) How does clubroot alter the regulation of carbon metabolism in its host? Aspects Appl Biol 42:125–132

    Google Scholar 

  • Eynck C, Koopmann B, Grunewaldt-Stoecker G, Karlovsky P, von Tiedemann A (2007) Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques. Eur J Plant Pathol 118:259–274

    Article  Google Scholar 

  • Fabro G, Di Rienzo JA, Voigt CA, Sevchenko T, Dehesh K, Somerville S, Alvarez ME (2008) Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. Plant Physiol 1466(1):1421–1439

    Article  Google Scholar 

  • Fahlgren N, Feldman M, Gehan MA, Wilson MS, Shyu C, Bryant DW, Hill ST, McEntee CJ, Warnasooriya SN, Kumar I, Ficor T, Turnipseed S, Gilbert KB, Brutnell TP, Carrington JC, Mockler TC, Baxter I (2015) A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Mol Plant 8:1520–1535

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Yu G, Liu Y, Zhang X, Liu J, Zhang Y, Rollins JA, Sun F, Pan H (2017) An atypical fork head-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. Mol Plant Pathol 18:963–975. https://doi.org/10.1111/mpp.12453

    Article  CAS  PubMed  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116. https://doi.org/10.1111/j.1365-313X.2010.04459.x

    Article  CAS  PubMed  Google Scholar 

  • Feng F, Zhou JM (2012) Plant–bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant 15:469–476

    Article  Google Scholar 

  • Feng J, Hwang R, Hwang SF, Strelkov SE, Gossen BD, Zhou QX, Peng G (2010) Molecular characterization of a serine protease Pro1 from Plasmodiophora brassicae that stimulates resting spore germination. Mol Plant Pathol 11(4):503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Xiao Q, Hwang SF, Strelkov SE, Gossen BD (2012) Infection of canola by secondary zoospores of Plasmodiophora brassicae produced on a nonhost. Eur J Plant Pathol 132:309–315

    Article  Google Scholar 

  • Feng J, Hwang SF, Strelkov SE (2013a) Assessment of gene expression profiles in primary and secondary zoospores of Plasmodiophora brassicae by dot blot and real-time PCR. Microbiol Res 168:518–524

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Hwang SF, Strelkov SE (2013b) Studies into primary and secondary infection processes by Plasmodiophora brassicae on canola. Plant Pathol 62:177–183. https://doi.org/10.1111/j.1365-3059.2012.02612.x

    Article  Google Scholar 

  • Feng BZ, Zhu XP, Fu L, Lv RF, Storey D, Tooley P, Zhang XG (2014) Characterization of necrosis-inducing NLP proteins in Phytophthora capsici. BMC Plant Biol 14:126. https://doi.org/10.1186/1471-2229-14-126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez AP, Strand A (2008) Retrograde signaling and plant stress: plastid signals initiate cellular stress responses. Curr Opin Plant Biol 11:509–513

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Galletti R, Denoux C, Lorenzo GD, Ausubel FM, Dewdney J (1994) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires Phytoalexin Deficent3. Plant Physiol 144:367–379. https://doi.org/10.1104/pp.107.095596

    Article  CAS  Google Scholar 

  • Floerl S, Druebert C, Majcherczyk A, Karlovsky P, Kües U, Polle A (2008) Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus var. napus) attenuate Verticillium longisporum growth but not disease symptoms. BMC Plant Biol 8:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Flor HH (1971) Current status of gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fodor J, Gullner G, Adam AL, Barna B, Komives T, Kiraly Z (1997) Local and systemic responses of antioxidants to tobacco mosaic virus infection and to salicylic acid in tobacco. Plant Physiol 114:1443–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atβfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 1326(1):821–829

    Article  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146:359–389. https://doi.org/10.1046/j.1469-8137.2000.00667.x

    Article  CAS  Google Scholar 

  • Fradin EF, Thomma BPHJ (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86

    Article  CAS  PubMed  Google Scholar 

  • Fraissinet-Tachet L, Reymond-Cotton P, Fevre M (1995) Characterization of a multi-gene family encoding an endopolygalacturonase in Sclerotinia sclerotiorum. Curr Microbiol 29:96–100

    CAS  Google Scholar 

  • Franzenburg S, Walter J, Kuenzel S, Wang J, Baines JF, Bosch TCG, Fraune S (2013) Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci U S A 110:E3730–E3738. https://doi.org/10.1073/pnas.1304960110

    Article  PubMed  PubMed Central  Google Scholar 

  • Fridovich I (1986) Superoxide dismutases. Adv Enzy Related Areas Mol Biol 58:61–97

    CAS  Google Scholar 

  • Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 106(1):947–956

    Article  Google Scholar 

  • Frye CA, Tang DZ, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A 986(1):373–378

    Article  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase START gene confers temperature dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fudal I, Ross S, Gout L, Blaise F, Kuhn ML, Eckert MR, Cattolico L, Bernard-Samain S, Balesdent MH, Rouxel T (2007) Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Mol Plant Microbe Interact 20:459–470

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa I (1990) Turnip mosaic virus strains in cruciferous crops in Japan. Jpn Agric Res Q 23:289–293

    Google Scholar 

  • Fukunaga R, Doudna JA (2009) dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 28:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admettla A, Pattini L, Nielsen R (2011) Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet 7(11):1371. https://doi.org/10.1371/journal.pgen.1002355

    Article  CAS  Google Scholar 

  • Gabriel DW (1999) Why do pathogens carry avirulence genes? Physiol Mol Plant Pathol 55:205–214

    Article  CAS  Google Scholar 

  • Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity, targets, functions. Curr Top Med Chem 3:1315–1347

    Article  CAS  PubMed  Google Scholar 

  • Gallois JL, Drouaud J, Lecureuil A, Guyon-Debast A, Bonhomme S, Guerche P (2013) Functional characterization of the plant ubiquitin regulatory X (UBX) domain-containing protein AtPUX7 in Arabidopsis thaliana. Gene 526:299–308

    Article  CAS  PubMed  Google Scholar 

  • Gamas P, Niebel FC, Lescure N, Cullimore J (1996) Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant Microbe Interact 9:233–242. https://doi.org/10.1094/MPMI-9-0233

    Article  CAS  PubMed  Google Scholar 

  • Gan P, Ikeda K, Irieda H, Narusaka M, O'Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197(4):1236–1249. https://doi.org/10.1111/nph.12085

    Article  CAS  PubMed  Google Scholar 

  • Ge YX, Angenent GC, Wittich PE, Peters J, Franken J, Busscher M et al (2000) Nec1, a novel gene, highly expressed in nectary tissue of petunia hybrida. Plant J 24:725–734. https://doi.org/10.1046/j.1365-313x.2000.00926.x

    Article  CAS  PubMed  Google Scholar 

  • Gjetting T, Carver TL, Skøt L, Lyngkjaer MF (2004) Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol Plant Microbe Interact 17(7):729–738

    Article  CAS  PubMed  Google Scholar 

  • Gjetting T, Hagedorn PH, Schweizer P, Thordal-Christensen H, Carver TL, Lyngkjaer MF (2007) Single-cell transcript profiling of barley attacked by the powdery mildew fungus. Mol Plant Microbe Interact 20(3):235–246

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 436(1):205–227

    Article  Google Scholar 

  • Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gludovacz TV (2013) Clubroot in canola and cabbage in relation to soil temperature, plant growth and host resistance. M Sc Thesis, The University of Guelph, Ontario, Canada, p 238

    Google Scholar 

  • Gludovacz TV, Gossen BD, McDonald MR (2013) Evidence for tolerance to Plasmodiophora brassicae in a cabbage cultivar. Can J Plant Pathol 35:111

    Google Scholar 

  • Godoy G, Steadman JR, Dickman MB, Dam R (1990) Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant Pathol 37:179–191

    Article  CAS  Google Scholar 

  • Gollner K, Schweizer P, Bai Y, Panstruga R (2008) Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. New Phytol 177(3):725–742

    Article  PubMed  Google Scholar 

  • Gomez-Campo C (1999) Taxonomy. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier Science, Amsterdam, pp 3–32

    Chapter  Google Scholar 

  • Gout L, Fudal I, Kuhn ML, Blaise F, Eckert M, Cattolico L, Balesdent MH, Rouxel T (2006) Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol Microbiol 60:67–80

    Article  CAS  PubMed  Google Scholar 

  • Graf F, Fahling M, Siemens J (2004) Chromosome polymorphism of the obligate biotrophic parasite Plasmodiophora brassicae. J Phytopathol 152:86–91

    Article  CAS  Google Scholar 

  • Gravot A, Gautier R, Lime T, Lemarié S, Jubault M, Lariagon C, Lemoine J, Vicente J, Robert Seilaniantz A, Holdsworth MJ, Manzanares-Dauleux MJ (2016) Hypoxia response in Arabidopsis roots infected by Plasmodiophora brassicae supports the development of clubroot. BMC Plant Biol 16:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Green SK, Deng TC (1985) Turnip mosaic virus strains in cruciferous hosts in Taiwan. Plant Dis 69:28–31

    Article  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6:201–211

    Article  CAS  PubMed  Google Scholar 

  • Grenier JC, Potvin Asselin A (1993) Barley pathogenesis-related proteins with fungal cell wall lytic activity inhibits the growth of yeasts. Plant Physiol 103:1277–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Q, Chen M, Huang J, Wei Y, Hsiang T, Zheng L (2017) Multifaceted roles of the Ras guanine-nucleotide exchange factor ChRgf in development, pathogenesis, and stress responses of Colletotrichum higginsianum. Phytopathology 107:433–443

    Article  CAS  PubMed  Google Scholar 

  • Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspore in Arabidopsis. Plant Physiol 147:852–863. https://doi.org/10.1104/pp.108.118026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubser C, Bergamaschi D, Hollinshead M, Lu X, van Kuppeveld FJ, Smith GL (2007) A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog 3:e17

    Article  PubMed  PubMed Central  Google Scholar 

  • Gudesblat GE, Torres PS, Vojnov AA (2009) Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol 149:1017–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo XH (2001) Biological characteristics and pathogenesis of Plasmodiophora brassicae. Southwest Agriculture University, Chongqing

    Google Scholar 

  • Guo X, Stotz HU (2007) Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Mol Plant Microbe Interact 20(11):1384–1395. https://doi.org/10.1094/MPMI-20-11-1384

    Article  CAS  PubMed  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down-regulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurlebeck D, Thieme F, Bonas U (2006) Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J Plant Physiol 163:233–255

    Article  PubMed  Google Scholar 

  • Gustafsson M, Fält AS (1986) Genetic studies on resistance to clubroot in Brassica napus. Ann Appl Biol 108:409–415

    Article  Google Scholar 

  • Guyon K, Balague C, Roby D, Raffaele S (2014) Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics 15:336. https://doi.org/10.1186/1471-2164-15-336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddadi P, Ma L, Wang H, Borhan MH (2016) Genome-wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings. Mol Plant Pathol 8:1196–1210

    Article  Google Scholar 

  • Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, Suzuki K, Müller I, Voß U, Jürgens G, Ito M (2007) R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development 134:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Hancock JG (1966) Degradation of pectic substances associated with pathogenesis by Sclerotinia sclerotiorum in sunflower and tomato stems. Phytopathology 56:975–979

    CAS  Google Scholar 

  • Hanes SD (2015) Prolylisomerases in gene transcription. Biochem Biophys Acta 1850:2017–2034

    Article  CAS  PubMed  Google Scholar 

  • Hardham AR, Takemoto D, White RG (2008) Rapid and dynamic sub-cellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol 8:63

    Article  PubMed  PubMed Central  Google Scholar 

  • He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, Tang DJ, Qin J, Jiang W, Zhang X, Liao J, Cao JR, Zhang SS, Wei ML, Liang XX, Lu GT, Feng JX, Chen B, Cheng J, Tang JL (2007) Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris. Genome Biol 8:R218

    Article  PubMed  PubMed Central  Google Scholar 

  • He YW, Wu J, Zhou L, Yang F, He YO, Jiang BL, Bai LQ, Xu YQ, Deng ZX, Tang JL, Zhang LH (2011) Xanthomonas campestris diffusible factor is 3-hydroxybenzoic acid and is associated with Xanthomonas in biosynthesis, cell viability, antioxidant activity, and systemic invasion. Mol Plant Microbe Interact 24:948–957

    Article  CAS  PubMed  Google Scholar 

  • Heald FD (1926) Diseases due to downy mildew and allies. In: Heald FD (ed) Manual of plant diseases. McGraw-Hill, New York, pp 390–436

    Google Scholar 

  • Heard S, Brown NA, Hammond-Kosack K (2015) An interspecies comparative analysis of the predicted secretomes of the necrotrophic plant pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS One 10(6):e0130534. https://doi.org/10.1371/journal.pone.0130534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Analysis of the Arabidopsis O-acetylserine (thiol) lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell 20:168–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Held YM (1955) Physiological differences between a normal and a degenerate strain of Sclerotinia trifoliorum. Phytopathology 45:39–42

    CAS  Google Scholar 

  • Hellgren O, Ekblom R (2010) Evolution of a cluster of innate immune genes (beta-defensins) along the ancestral lines of chicken and zebra finch. Immun Res 6. https://doi.org/10.1186/1745-7580-6-3

  • Henke N, Lisak DA, Schneider L, Habicht J, Pergande M, Methner A (2011) The ancient cell death suppressor BAX inhibitor-1. Cell Calcium 50:251–260

    Article  CAS  PubMed  Google Scholar 

  • Henry E, Toruño TY, Jauneau A, Deslandes L, Coaker GL (2017) Direct and indirect visualization of bacterial effector delivery into diverse plant cell types during infection. Plant Cell 29:1555–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) BLADEON-PETIOLE-dependent signaling controls leaf and foral patterning in Arabidopsis. Plant Cell 17:1434–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herlihy J, Ludwig NR, van den Ackerveken G, McDowell JM (2019) Oomycetes used in Arabidopsis research. Arabidopsis Book 17:1–26

    Google Scholar 

  • Hilger D, Masureel M, Kobilka BK (2018) Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 25(1):4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiscott J, Rongtuan L, Peyman N, Paz S (2006) Master CARD: a priceless link to innate immunity. Trends Mol Med 126(1):53–56

    Article  Google Scholar 

  • Hjulsager CK, Lund OS, Johansen IE (2002) A new pathotype of Pea seed borne mosaic virus explained by properties of the P3-6K1- and viral genome-linked protein (VPg)-coding regions. Mol Plant Microbe Interact 15:169–171

    Article  CAS  PubMed  Google Scholar 

  • Hok S, Danchin EG, Allasia V, Panabieres F, Attard A, Keller H (2011) An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease. Plant Cell Environ 34(11):1944–1957

    Article  CAS  PubMed  Google Scholar 

  • Hok S, Allasia V, Andrio E, Naessens E, Ribes E, Panabieres F, Attard A, Ris N, Clement M, Barlet X, Marco Y, Grill E, Eichmann R, Weis C, Huckelhoven R, Ammon A, Ludwig-Muller J, Voll LM, Keller H (2014) The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis. Plant Physiol 166:1506–1518

    Article  PubMed  PubMed Central  Google Scholar 

  • Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 420747

    Google Scholar 

  • Hsiao YM, Liu YF, Fang MC, Song WL (2011) XCC2731, a GGDEF domain protein in Xanthomonas campestris, is involved in bacterial attachment and is positively regulated by Clp. Microbiol Res 166:548–565

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Smith TF, Goldberger G (2009) LFG: a candidate apoptosis regulatory gene family. Apoptosis 14:1255–1265

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Chang C, Kozub GC (1998) Effect of temperature during sclerotial formation, sclerotial dryness and relative humidity on myceliogenic germination of sclerotia of Sclerotinia sclerotiorum. Can J Bot 76:494–499

    Google Scholar 

  • Huang Y-J, Li Z-Q, Evans N, Rouxel T, Fitt BDL, Balesdent M-H (2006) Fitness cost associated with loss of the AvrLm4 avirulence function in Leptosphaeria maculans (phoma stem canker of oilseed rape). Eur J Plant Pathol 114:77–89

    Article  Google Scholar 

  • Huang X, Li Y, Niu Q, Zhang K (2007) Suppression subtractive hybridization (SSH) and its modifications on microbiological research. Appl Microbiol Biotechnol 76:753–760

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-J, Balesdent M-H, Li Z-Q, Evans N, Rouxel T, Fitt BDL (2009) Fitness cost of virulence differs between the AvrLm1 and AvrLm4 loci in Leptosphaeria maculans (phoma stem canker of oilseed rape). Eur J Plant Pathol 126:279

    Article  Google Scholar 

  • Huard Chauveau C, Perchepied L, Debieu M, Rivas S, Kroj T, Kars I, Bergelson J, Roux F, Roby D (2013) An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLoS Genet 9:e1003766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huckelhoven R (2004) BAX inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 9:299–307

    Article  CAS  PubMed  Google Scholar 

  • Huckelhoven R, Panstruga R (2011) Cell biology of the plant–powdery mildew interaction. Curr Opin Plant Biol 14:738–746

    Article  PubMed  Google Scholar 

  • Huckelhoven R, Dechert C, Kogel KH (2003) Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci U S A 100:5555–5560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphry M, Consonni C, Panstruga R (2006) mlo-based powdery-mildew immunity: silver bullet or simply non-host resistance Mol. Plant Pathol 76(1):605–610

    Google Scholar 

  • Huser A, Takahara H, Schmalenbach W, O’Connell R (2009) Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. Mol Plant Microbe Interact 22:143–156. https://doi.org/10.1094/MPMI-22-2-0143

    Article  CAS  PubMed  Google Scholar 

  • Hwang SF, Ahmed HU, Strelkov SE, Gossen BD, Turnbull GD, Peng G, Howard RJ (2011a) Seedling age and inoculum density affect clubroot severity and seed yield in canola. Can J Plant Sci 91:183–190

    Article  Google Scholar 

  • Hwang SF, Ahmed HU, Zhu Q, Strelkovb SE, Gossenc BD, Peng G, Turnbulla GD (2011b) Influence of cultivar response and inoculum density on root hair infection by Plasmodiophora brassicae. Plant Pathol 60:820–829

    Article  CAS  Google Scholar 

  • Hwang SF, Strelkov SE, Feng J, Gossen BD, Howard RJ (2011c) Plasmodiophora brassicae: an emerging pathogen of the Canadian canola (Brassica napus) crop. Mol Plant Pathol 12:105–113

    Google Scholar 

  • Hwang SF, Howard RJ, Strelkov SE, Gossen BD, Peng G (2014) Management of clubroot (Plasmodiophora brassicae) on canola (Brassica napus) in western Canada. Can J Plant Pathol 36:49–65. https://doi.org/10.1080/07060661.2013.863806

    Article  CAS  Google Scholar 

  • Iakovidis M, Teixeira PJPL, Exposito-Alonso M, Cowper M, Leerink SVB, Law TF, Liu Q, Vu MC, Dang TM, Corwin JA, Weigel D, Dangl JL, Grant SR (2016) Effector triggered immune response in Arabidopsis thaliana is a quantitative trait. Genetics 204(1):337–353. https://doi.org/10.1534/genetics.116.190678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibeas JI, Lee H, Damsz B, Prasad DT, Pardo JM, Hasegawa PM, Bressan RA, Narasimhan ML (2000) Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant J 23:375–383

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HM, Bannai H, Xuan X, Nishikawa Y (2009) Toxoplasma gondii cyclophilin 18-mediated production of nitric oxide induces bradyzoite conversion in a CCR5-dependent manner. Infect Immun 77:3686–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim HMM, Kusch S, Didelon M, Raffaele S (2021) Genome-wide alternative splicing profiling in the fungal plant pathogen Sclerotinia sclerotiorum during the colonization of diverse host families. Mol Plant Pathol 22(2):31–47

    Article  CAS  PubMed  Google Scholar 

  • Ielpi L, Couso RO, Dankert MA (1993) Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J Bacteriol 175:2490–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatov AN, Monakhos GF, Djalilov FS, Pozmogova GV (2002) Avirulence gene from Xanthomonas campestris pv. campestris homologous to the avrBs2 locus is recognized in race-specific reaction by two different resistance genes in Brassicas. Russ J Genet 38:1404–1410

    Article  CAS  Google Scholar 

  • Ii WMJ, Rollins JVA (2007) Deletion of the adenylate cyclase (Sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genet Biol 44:521–530

    Article  Google Scholar 

  • Inderbitzin P, Davis RM, Bostock RM, Subbarao KV (2011) The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLoS One 6(3):e18260. https://doi.org/10.1371/journal.pone.0018260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram DS, Tommerup IC (1972) The life history of Plasmodiophora brassicae Woron. Proc R Soc Lond 180:103–112

    Google Scholar 

  • Irani S, Trost B, Waldner M, Nayidu N, Tu J, Kusalik AJ, Todd CD, Wei Y, Bonham-Smith PC (2018) Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root. BMC Genomics 19:23. https://doi.org/10.1186/s12864-017-4426-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E (2011) Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ 18:1271–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MT, Lee BR, Park SH, La VH, Bae DW, Kim T-H (2017) Cultivar variation in hormonal balance is a significant determinant of disease susceptibility to Xanthomonas campestris pv. campestris in Brassica napus. Front. Plant Sci 8:2121

    Google Scholar 

  • Islam MT, Lee BR, Park SH, La VH, Jung WJ, Bae DW (2019) Hormonal regulations in soluble and cell-wall bound phenolic accumulation in two cultivars of Brassica napus contrasting susceptibility to Xanthomonas campestris pv. campestris. Plant Sci 285:132–140

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Mamun MA, Lee BR, La VH, Jung WJ, Bae DW, Kim TH (2021) Role of salicylic acid signaling in the biotrophy-necrotrophy transition of Xanthomonas campestris pv. campestris infection in Brassica napus. Physiol Mol. Plant Pathol 113:101578. https://doi.org/10.1016/j.pmpp.2020.101578

    Article  CAS  Google Scholar 

  • Ito S, Yano S, Kishi F, Kameya-Iwaki M, Maehara T, Tanaka S (1997) Cloning of a single-copy DNA sequence unique to Plasmodiophora brassicae. Physiol Mol Plant Pathol 50:289–300

    Article  CAS  Google Scholar 

  • Ito S, Ichinose H, Yanagi C, Tanaka S, Kameya-Iwaki M, Kishi F (1999) Identification of an in planta-induced mRNA of Plasmodiophora brassicae. J Phytopathol 147:79–82

    Article  CAS  Google Scholar 

  • Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 156(1):2503–2513

    Article  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A 106:20520–20525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson PE, Kenne L, Lindberg B (1975) Structure of extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res 45:275–282

    Article  CAS  PubMed  Google Scholar 

  • Jarosch B, Kogel KH, Schaffrath U (1999) The ambivalence of the barley Mlo locus: Mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 126(1):508–514

    Article  Google Scholar 

  • Jenner CE, Walsh JA (1996) Pathotypic variation in turnip mosaic virus with special reference to European isolates. Plant Pathol 45:848–856

    Article  Google Scholar 

  • Jenner CE, Tomimura K, Ohshima K, Hughes SL, Walsh JA (2002) Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59

    Article  CAS  PubMed  Google Scholar 

  • Jenner CE, Wang X, Tomimura K, Ohshima K, Ponz F, Walsh JA (2003) The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in Brassicas. Mol Plant Microbe Interact 16:777–784

    Article  CAS  PubMed  Google Scholar 

  • Jian H, Ma J, Wei L, Liu P, Zhang A, Yang B, Li J, Xu X, Liu L (2018) Integrated mRNA, sRNA, and degradome sequencing reveal oilseed rape complex responses to Sclerotinia sclerotiorum (Lib.) infection. Sci Rep 8(1):10987. https://doi.org/10.1038/s41598-018-29365-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian H, Lu K, Yang B, Wang T, Zhang L, Zhang A, Wang J, Liu L, Qu C, Li J (2016) Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L). Front Plant Sci 7:1464. https://doi.org/10.3389/fpls.2016.01464

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang B, Xu RQ, Li XZ, Wei HY, Bai F, Hu X, He YQ, Tang JL (2006) Construction and characterization of a hrpG mutant rendering constitutive expression of hrp genes in Xanthomonas campestris pv. campestris. Prog Nat Sci 16:480–485

    Article  CAS  Google Scholar 

  • Jiang BL, He YQ, Cen WJ, Wei HY, Jiang GF, Jiang W, Hang XH, Feng JX, Lu GT, Tang DH, Tang JL (2008a) The type III secretion effector xopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res Microbiol 159:216–220

    Article  CAS  PubMed  Google Scholar 

  • Jiang BL, Liu J, Chen LF, Ge YY, Hang XH, He YQ, Tang DJ, Lu GT, Tang JL (2008b) DsbB is required for the pathogenesis process of Xanthomonas campestris pv. campestris. Mol Plant Microbe Interact 21:1036–1045

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009) Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Mol Plant Microbe Interact 22:1401–1411

    Article  CAS  PubMed  Google Scholar 

  • Jing M, Guo B, Li H, Yang B, Wang H, Kong G, Zhao Y, Xu H, Wang Y, Ye W (2016) A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant binding immunoglobulin proteins. Nat Commun 7:11685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen IE, Lund OS, Hjulsager CK, Laursen J (2001) Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus. J Virol 75:6609–6614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 2006:323–329

    Article  Google Scholar 

  • Jones DR, Ingram DS, Dixon GR (1982) Characterization of isolates derived from single resting spores of Plasmodiophora brassicae and studies of their interaction. Plant Pathol 31:239–246. https://doi.org/10.1111/j.1365-3059.1982.tb01274.x

    Article  Google Scholar 

  • Jost R, Altschmied L, Bloem E, Bogs J, Gershenzon J, Hähnel U, Hänsch R, Hartmann T, Kopriva S, Kruse C (2005) Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynth Res 86:491–508

    Article  CAS  PubMed  Google Scholar 

  • Joubert A, Simoneau P, Campion C, Bataille-Simoneau N, Iacomi-Vasilescu B, Poupard P, Francois JM, Georgeault S, Sellier E, Guillemette T (2011) Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus Alternaria brassicicola. Mol Microbiol 79:1305–1324

    Article  CAS  PubMed  Google Scholar 

  • Jubault M, Hamon C, Gravot A, Lariagon C, Delourme R, Bouchereau A, Manzanares-Dauleux MJ (2008) Differential regulation of root arginine catabolism and polyamine metabolism in clubroot-susceptible and partially resistant Arabidopsis genotypes. Plant Physiol 146:2008–2019. https://doi.org/10.1104/pp.108.117432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabbage M, Williams B, Dickman MB (2013) Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 9:e1003287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadow KJ, Anderson HW (1940) A study of horse radish diseases and their control. Univ Illinois Agril Expt Sta Bull 469:531–543

    Google Scholar 

  • Kageyama K, Asano T (2009) Life cycle of Plasmodiophora brassicae. J Plant Growth Regul 28(3):203–211

    Article  CAS  Google Scholar 

  • Kamp ME, Liu Y, Kortholt A (2016) Function and regulation of heterotrimeric G proteins during chemotaxis. Intl J Mol Sci 17(1):90. https://doi.org/10.3390/ijms17010090

    Article  CAS  Google Scholar 

  • Karapapa VK, Bainbridge BW, Heale JB (1997) Morphological and molecular characterization of Verticillium longisporum comb. nov., pathogenic to oilseed rape. Mycol Res 101:1281–1294

    Article  Google Scholar 

  • Karisto P, Hund A, Yu K, Anderegg J, Walter A, Mascher F, McDonald BA, Mikaberidze A (2017) Ranking quantitative resistance to Septoria tritici blotch in elite wheat cultivars using automated image analysis. Phytopathology 108:568–581

    Article  Google Scholar 

  • Kaufman J, Milne S, Göbel TW, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925. https://doi.org/10.1038/44856

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Ricarda Jost R, Sivasithamparam K, Barbetti MJ (2011) Proteome analysis of the Albugo candida–Brassica juncea pathosystem reveals that the timing of the expression of defence-related genes is a crucial determinant of pathogenesis. J Exp Bot 62(3):1285–1298. https://doi.org/10.1093/jxb/erq365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay S, Boch J, Bonas U (2005) Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Mol Plant Microbe Interact 18:838–848

    Article  CAS  PubMed  Google Scholar 

  • Keeble JA, Gilmore AP (2007) Apoptosis commitment-translating survival signals into decisions on mitochondria. Cell Res 176(1):976–984

    Article  Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676

    Article  PubMed  Google Scholar 

  • Keen NT (1990) Gene-for-gene complementarity in plant–pathogen interactions. Annu Rev Genet 24:447–463

    Article  CAS  PubMed  Google Scholar 

  • Keen NT, Williams PH (1969) Translocation of sugars into infected cabbage tissues during clubroot development. Plant Physiol 44:748–754. https://doi.org/10.1104/pp.44.5.748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehr J (2003) Single cell technology. Curr Opin Plant Biol 66(1):617–621

    Article  Google Scholar 

  • Khandelwal A, Elvitigala T, Ghosh B, Quatrano RS (2008) Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor. Plant Physiol 148:2050–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khokon MAR, Salam MA, Jammes F, Ye W, Hossain MA, Uraji M, Nakamura Y, Mori IC, Kwak JM, Murata Y (2015) Two guard cell mitogen-activated protein kinases, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana. Plant Biol (Stuttg.) 17:946–952

    Article  CAS  PubMed  Google Scholar 

  • Kim MC, Panstruga R, Elliott C, Müller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 4166(1):447–451

    Article  Google Scholar 

  • Kim TG, Kim HM, Lee HJ, Shin YJ, Kwon TH, Lee NJ, Jang YS, Yang MS (2007) Reduced protease activity in transformed rice cell suspension cultures expressing a proteinase inhibition. Prot Expres Purif 53:270–274

    Article  CAS  Google Scholar 

  • Kim KS, Min JY, Dickman MB (2008) Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant Microbe Interact 21:605–612

    Article  CAS  PubMed  Google Scholar 

  • King SRF, McLellan H, Boevink PC, Armstrong MR, Bukharova T, Sukarta O, Win J, Kamoun S, Birch PRJ, Banfield MJ (2014) Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKKε to suppress plant immune signaling. Plant Cell 26:1345–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL, van der Does HC, Hacquard S, Stüber K, Will I, Schmalenbach W, Schmelzer E, O’Connell RJ (2012) Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 8:e1002643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein PG, Klein RR, Rodrıguez-Cerezo E, Hunt AG, Shaw JG (1994) Mutational analysis of the tobacco vein mottling virus genome. Virology 204:759–769

    Article  CAS  PubMed  Google Scholar 

  • Kobelt P (2000) Die Verbreitung von sekundären Plasmodien von Plasmodiophora brassicae (Wor.) im Wurzelgewebe von Arabidopsis thaliana nach immunhistologischer Markierung des plasmodialen Zytoskeletts. Freie Universitat Berlin, dissertation, Berlin, Germany

    Google Scholar 

  • Kobelt P, Siemens J, Sacristan MD (2000) Histological characterization of the incompatible interaction between Arabidopsis thaliana and the obligate biotrophic pathogen Plasmodiophora brassicae. Mycol Res 104:220–225. https://doi.org/10.1017/S0953756299001781

    Article  Google Scholar 

  • Koebnik R, Kruger A, Thieme F, Urban A, Bonas U (2006) Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J Bacteriol 188(21):7652–7660. https://doi.org/10.1128/JB.00795-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koeck M, Hardham AR, Dodds PN (2011) The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell Microbiol 13(12):1849–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 446(1):516–529

    Article  Google Scholar 

  • Kong G, Zhao Y, Jing M, Huang J, Yang J, Xia Y, Kong L, Ye W, Xiong Q, Qiao Y, Dong S, Ma W, Wang Y (2015) The activation of Phytophthora effector Avr3b by plant cyclophilin is required for the nudix hydrolase activity of Avr3b. PLoS Pathog 11:e1005139

    Article  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Makarova KS, Wolf YI (2017) Evolutionary genomics of defense systems in archaea and bacteria. Annu Rev Microbiol 71:233–261. https://doi.org/10.1146/annurev-micro-090816-093830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalev N, Nagy PD (2013) Cyclophilin A binds to the viral RNA and replication proteins, resulting in inhibition of tombus viral replicase assembly. J Virol 87:13330–13342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kratochwil CF, Meyer A (2015) Closing the genotype–phenotype gap: emerging technologies for evolutionary genetics in ecological model vertebrate systems. Bioessays 37:213–226. https://doi.org/10.1002/bies.201400142

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Krishnan A, Dnyansagar R, Almen MS, Williams MJ, Fredriksson R, Manoj N, Schioth HB (2014) The GPCR repertoire in the demosponge Amphimedon queenslandica: insights into the GPCR system at the early divergence of animals. BMC Evol Biol 14(1):270. https://doi.org/10.1186/s12862-014-0270-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kromina KA, Ignatov AN, Abdeeva IA, Adhikari TB (2008) Role of peptidyl-prolyl cis/trans isomerases in pathological processes. Memory Cell Biol 2:195–202

    Google Scholar 

  • Kruse C, Jost R, Lipschis M, Kopp B, Hartmann M, Hell R (2007) Sulfur-enhanced defence: effects of sulfur metabolism, nitrogen supply, and pathogen lifestyle. Plant Biol 9:608–619

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Schreferl-Kunar G, Wohrer W, Rohr M (1988) Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger. Appl Environ Microbiol 54:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu Hanstruga R (2016) Biotrophy at its best: novel findings and unsolved mysteries of the Arabidopsis-powdery mildew pathosystem. Arabidopsis Book 30(14):e0184

    Article  Google Scholar 

  • Kumar J, Hückelhoven R, Beckhove U, Nagarajan S, Kogel KH (2001) A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91(2):127–133

    Article  CAS  PubMed  Google Scholar 

  • Kumar SS, Tandberg JI, Penesyan A, Elbourne LDH, Suarez-Bosche N, Don E, Skadberg E, Fenaroli F, Cole N, Winther-Larsen HC, Paulsen IT (2018) Dual transcriptomics of host-pathogen interaction of cystic fibrosis isolate Pseudomonas aeruginosa PASS1 with Zebrafish. Front Cell Infect Microbiol 8:406. https://doi.org/10.3389/fcimb.2018.00406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jürgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840

    Article  CAS  PubMed  Google Scholar 

  • Lakra BS, Saharan GS (1988a) Morphological and pathological variations in Albugo candida associated with Brassica species. Indian J Mycol Plant Pathol 18:149–156

    Google Scholar 

  • Lakra BS, Saharan GS (1988b) Influence of host resistance on colonization and incubation period of A. candida in mustard. Cruciferae NewsLett 13:108–109

    Google Scholar 

  • Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K (2007) Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:672–677

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon R (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Lammens T, Boudolf V, Kheibarshekan L, Zalmas LP, Gaamouche T, Maes S, Vanstraelen M, Kondorosi E, La Thangue NB, Govaerts W, Inzé D, De Veylder L (2008) Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc Natl Acad Sci U S A 105:14721–14726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapin D, Van den Ackerveken G (2013) Susceptibility to plant disease: more than a failure of host immunity. Trends Plant Sci 18:546–554

    Article  CAS  PubMed  Google Scholar 

  • Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol 197:595–605. https://doi.org/10.1111/nph.12043

    Article  CAS  PubMed  Google Scholar 

  • Larkan NJ, Ma L, Borhan MH (2015) The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol J 13:983–992

    Article  CAS  PubMed  Google Scholar 

  • Larkan NJ, Yu F, Lydiate DJ, Rimmer SR, Borhan MH (2016) Single R gene introgression lines for accurate dissection of the Brassica - Leptosphaeria pathosystem. Front Plant Sci 7:1771

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee TG, Diers BW, Hudson ME (2016) An efficient method for measuring copy number variation applied to improvement of nematode resistance in soybean. Plant J 88:143–153

    Article  CAS  PubMed  Google Scholar 

  • Lemarie S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Jubault M, Manzanares-Dauleux MJ, Gravot A (2015) Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant Cell Physiol 56(11):2158–2168

    CAS  PubMed  Google Scholar 

  • Lemoine R, Camera SL, Atanassova R, Dedaldechamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272. https://doi.org/10.3389/fpls.2013.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RG, Rimmer R, Buchwaldt L, Sharpe AG, Senguin-Swartz G, Hegedus DD (2004a) Interaction of Sclerotinia sclerotiorum with Brassica napus cloning and characterization of endo and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genet Biol 41:754–765

    Article  CAS  PubMed  Google Scholar 

  • Li RG, Rimmer R, Buchwaldt L, Sharpe A, Seguin-Swart G, Coutu C, Hegedus D (2004b) Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: Expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal Genet Biol 41(8):735–753. https://doi.org/10.1016/j.fgb.2004.03.001

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM (2010) Identification of micro RNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012a) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109(5):1790–1795. https://doi.org/10.1073/pnas.1118282109

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Liang X, Rollins JA (2012b) Sclerotinia sclerotiorum γ-glutamyl transpeptidase (Ss-Ggt1) is required for regulating glutathione accumulation and development of sclerotia and compound appressoria. Mol Plant Microbe Interact 25:412–420

    Article  PubMed  Google Scholar 

  • Li RF, Lu GT, Li L, Su HZ, Feng GF, Chen Y, He YQ, Jiang BL, Tang DJ, Tang JL (2014) Identification of a putative cognate sensor kinase for the two-component response regulator HrpG, a key regulator controlling the expression of the hrp genes in Xanthomonas campestris pv. campestris. Environ Microbiol 16(7):2053–2071

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ye C, Zhao R, Li X, Liu WZ, Wu F, Yan J, Jiang YQ, Yang B (2015a) Mitogen-activated protein kinase kinase kinase (MAPKKK) 4 from rapeseed (Brassica napus L.) is a novel member inducing ROS accumulation and cell death. Biochem Biophys Res Commun 467:792–797

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Guo M, Xu DF, Chen FX, Zhang HJ, Pan Y, Li MM, Gao Z (2015b) The nascent-polypeptide associated complex alpha subunit regulates the polygalacturonases expression negatively and influences the pathogenicity of Sclerotinia sclerotiorum. Mycologia 107:1130–1137

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li X, Xuan Y, Jiang J, Wei Y, Piao Z (2018) Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophora brassicae-induced formation of clubroot in Brassica rapa. Front Plant Sci 9:207. https://doi.org/10.3389/fpls.2018.00207

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang X, Rollins JA (2018) Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology 108:1128–1140. https://doi.org/10.1094/PHYTO-06-18-0197-RVW

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Yajima W, Davis MR, Kav NNV, Strelkov SE (2013) Disruption of a gene encoding a hypothetical secreted protein from Sclerotinia sclerotiorum reduces its virulence on canola (Brassica napus). Can J Plant Pathol 35:46–55

    Article  CAS  Google Scholar 

  • Liang X, Liberti D, Li M, Kim YT, Hutchens A, Wilson R, Rollins JA (2015) Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants. Mol Plant Pathol 16(6):559–571. https://doi.org/10.1111/mpp.12211

    Article  CAS  PubMed  Google Scholar 

  • Liang YUE, Xiong WEI, Steinkellner S, Feng JIE (2017) Deficiency of the melanin biosynthesis genes SCD1 and THR1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum. Mol Plant Pathol 19:1–10. https://doi.org/10.1111/mpp.12627

    Article  CAS  Google Scholar 

  • Liberti D, Rollins JA, Dobinson KF (2013) Peroxysomal carnitine acetyle transferase influences host colonization capacity in Sclerotinia sclerotiorum. Mol Plant Microbe Interact 26:768–780

    Article  CAS  PubMed  Google Scholar 

  • Libertucci J, Young VB (2019) The role of the microbiota in infectious diseases. Nat Microbiol 4:35–45. https://doi.org/10.1038/s41564-018-0278-4

    Article  CAS  PubMed  Google Scholar 

  • Lin JY, Mendu V, Pogany J, Qin J, Nagy PD (2012) The TPR domain in the host Cyp40-like cyclophilin binds to the viral replication protein and inhibits the assembly of the tombus viral replicase. PLoS Pathog 8:e1002491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ, Carter CJ, Baldwin IT, Frommer WB (2014) Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:546–549. https://doi.org/10.1038/nature13082

    Article  CAS  PubMed  Google Scholar 

  • Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA (2008a) Mucins in the mucosal barrier to infection. Mucosal Immun 1:183–197. https://doi.org/10.1038/mi.2008.5

    Article  CAS  Google Scholar 

  • Linden S, Mahdavi J, Semino-Mora C, Olsen C, Carlstedt I, Borén T, Dubois A (2008b) Role of ABO secretor status in mucosal innate immunity and Helicobacter pylori infection. PLoS Pathog 4:e2. https://doi.org/10.1371/journal.ppat.0040002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindgren PB (1997) The role of hrp genes during plant–bacterial interactions. Annu Rev Phytopathol 35:129–152

    Article  CAS  PubMed  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Lefert PS (2005) Pre- and post-invasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183

    Article  CAS  PubMed  Google Scholar 

  • Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Curr Opin Plant Biol 11:404–411

    Article  CAS  PubMed  Google Scholar 

  • Lippok B, Birkenbihl RP, Rivory G, Brümmer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen-/PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe Interact 20:420–429

    Article  CAS  PubMed  Google Scholar 

  • Liu JQ, Rimmer SR (1990) Effect of host genotype, inoculum concentration, and incubation temperature on white rust development in oilseed rape. Can J Plant Pathol 12:389–392

    Article  Google Scholar 

  • Liu JQ, Rimmer SR, Scarth R (1989) Histopathology of compatibility and incompatibility between oilseed rape and Albugo candida. Plant Pathol 38:176–182

    Article  Google Scholar 

  • Liu G, Holub EB, Alonso JM, Ecker JR, Fobert PR (2005) An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J Cell Mol Biol 41:304–318

    Article  CAS  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S (2011) A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ 34:1958–1969. https://doi.org/10.1111/j.1365-3040.2011.02391.x

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang Q, Zhang X, Liu J, Zhang Y, Pan H (2018a) Ssams2, a gene encoding GATA transcription factor, is required for appressoria formation and chromosome segregation in Sclerotinia sclerotiorum. Front Microbiol 9:3031. https://doi.org/10.3389/fmicb.2018.03031

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Xu A, Liang F, Yao X, Wang Y, Liu X, Zhang Y, Dalelhan J, Zhang B, Qin M, Huang Z, Shaolin L (2018b) Screening of clubroot-resistant varieties and transfer of clubroot resistance genes to Brassica napus using distant hybridization. Breed Sci 68:258–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defense: the players and protagonists. Curr Opin Plant Biol 10:466–472

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Maury L, Marguerat S, Bahler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583–593

    Article  CAS  PubMed  Google Scholar 

  • Lowe RGT, Cassin A, Grandaubert J, Clark BL, Van de Wouw AP, Rouxel T, Howlett BJ (2014) Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species. PLoS One 9(7):e103098. https://doi.org/10.1371/journal.pone.0103098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Patil P, Van Sluys MA, White FF, Ryan RP, Dow JM, Rabinowicz P, Salzberg SL, Leach JE, Sonti R, Brendel V, Bogdanove AJ (2008) Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in Xanthomonas. PLoS One 3:e3828

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu YJ, Schornack S, Spallek T, Geldner N, Chory J, Schellmann S, Schumacher K, Kamoun S, Robatzek S (2012) Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell Microbiol 14:682–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas WJ, Gilbertson RL (1994) Plasmodesmata in relation to viral movement within leaf tissues. Annu Rev Phytopathol 32:387–411

    Article  CAS  Google Scholar 

  • Ludwig-Müller J, Schuller A (2008) What can we learn from clubroots: alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. Eur J Plant Pathol 121:291–302. https://doi.org/10.1007/s10658-007-9237-2

    Article  CAS  Google Scholar 

  • Ludwig-Müller J, Bennett R, Kiddle G, Ihmig S, Ruppel M, Hilgenberg W (1999) The host range of Plasmodiophora brassicae and its relationship to endogenous glucosinolate content. New Phytol 141:443–458. https://doi.org/10.1046/j.1469-8137.1999.00368.x

    Article  Google Scholar 

  • Ludwig-Muller J, Julke S, Bierfreund NM, Decker EL, Reski R (2009) Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytol 181:323–338

    Article  PubMed  Google Scholar 

  • Ludwig-Muller J, Julken S, Geib K, Richter F, Mithofer A, Sola I, Rusak G, Keenan S, Bulman S (2015) A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid. Mol Plant Pathol 16(4):349–364

    Article  PubMed  Google Scholar 

  • Lumsden RD (1976) Pectolytic enzymes of Sclerotinia sclerotiorum and their localization in infected bean. Can J Bot 54:2630–2641

    Article  CAS  Google Scholar 

  • Lumsden RD (1979) Histology and physiology of pathogenesis in plant disease caused by Sclerotinia species. Phytopathology 69:890–896

    Article  Google Scholar 

  • Luo Y, Wang Y, Zu F, Fu M, Zhao K, Zhang Y, Wang J, Tian Z, Chen W, Li J, Yuan X, Li G (2019) Transcriptome analysis of Brassica napus-Plasmodiophora brassicae interaction during early infection. Chin J Oil Crop Sci 41(3):421–434. https://doi.org/10.7505/j.issn.1007-9084.2019.03.015

    Article  Google Scholar 

  • Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J (2015) Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Sci Rep 5:15565. https://doi.org/10.1038/srep15565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J (2016) A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants. PLoS Pathog 12(2):e1005435. https://doi.org/10.1371/journal.ppat.1005435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Borhan H (2015) The receptor-like kinase SOBIR1 interacts with Brassica napus LepR3 and is required for Leptosphaeria maculans AvrLm1-triggered immunity. Front Plant Sci 6:933

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma L, Djavaheri M, Wang H, Larkan NJ, Haddadi P, Beynon E, Gropp G, Borhan MH (2018) Leptosphaeria maculans effector protein avrlm1 modulates plant immunity by enhancing MAP kinase 9 phosphorylation. iScience 3:177–191. https://doi.org/10.1016/j.isci.2018.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mach JM, Castillo AR, Hoogstraten R, Greenberg JT (2001) The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci U S A 98:771–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macioszek VK, Gapińska M, Zmienko A, Sobczak M, Skoczowski A, Oliwa J, Kononowicz AK (2020) Complexity of Brassica oleracea–Alternaria brassicicola susceptible interaction reveals down regulation of photosynthesis at ultra structural, transcriptional, and physiological levels. Cells 9(10):2329. https://doi.org/10.3390/cells9102329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen L, Seeger M, Semple CA, Hartmann-Petersen R (2009) New ATPase regulators—p97 goes to the PUB. Int J Biochem Cell Biol 41:2380–2388

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari DK, Chaturvedi SN, Yadav BS (1985a) Histochemical studies on hypertrophied inflorescence axis of Brassica juncea due to Albugo candida. Indian Phytopathol 38:263–266

    Google Scholar 

  • Maheshwari DK, Chaturvedi SN, Yadav BS (1985b) Structure and development of galls induced by Albugo in inflorescence axis of Brassica juncea. Indian Phytopathol 38:546–548

    Google Scholar 

  • Malinowski R, Smith JA, Fleming AJ, Scholes JD, Rolfe SA (2012) Gall formation in clubroot-infected Arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle. Plant J 71(2):226–238. https://doi.org/10.1111/j.1365-313X.2012.04983.x

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamun MA, Islam MT, Lee BR, La VH, Bae DW, Kim TH (2020) Genotypic variation in resistance gene-mediated calcium signaling and hormonal signaling involved in effector-triggered immunity or disease susceptibility in the Xanthomonas campestris pv. campestris–Brassica napus pathosystem. Plants (Basel) 9(3):303. https://doi.org/10.3390/plants9030303

    Article  CAS  PubMed  Google Scholar 

  • Manck-Götzenberger J, Requena N (2016) Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci 7:487. https://doi.org/10.3389/fpls.2016.00487

    Article  PubMed  PubMed Central  Google Scholar 

  • Marciano P, Di Lenna P, Magro P (1983) Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol Mol Plant Pathol 22:339–345

    Article  CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Biol 47:127–158

    Article  CAS  Google Scholar 

  • Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306:1930–1933

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DP (1973) Oxalate formation in Whetzelinia sclerotiorum by oxaloacetate acetyl hydrolase. Physiol Plant Pathol 3:279–288

    Article  CAS  Google Scholar 

  • Maxwell DP, Lumsden RD (1970) Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology 60:1395–1398

    Article  CAS  Google Scholar 

  • McCartney A, Heran A, Li Q (2001a) Infection of oilseed rape (Brassica napus) by petals containing ascospores of Sclerotinia sclerotiorum. In: Young CS, Hughes KJD (eds) Proc Sclerotinia 2001, the XI International Sclerotinia workshop, York, 8–12 July 2001, Central Science Laboratory, York, England, pp 1987–1090

    Google Scholar 

  • McCartney A, Heran A, Li Q, Freeman J (2001b) Petal fall, petal retention and petal duration in oilseed rape crops. In: Young CS, Hughes KJD (eds) Proc Sclerotinia 2001, the XI International Sclerotinia workshop, York, 8–12 July 2001, Central Science Laboratory, York, England, pp 185–186

    Google Scholar 

  • Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 76(1):352–357

    Article  Google Scholar 

  • Merits A, Guo DY, Jarvekulg L, Saarma M (1999) Biochemical and genetic evidence for interactions between potato A potyvirus-encoded proteins P1 and P3 and proteins of the putative replication complex. Virology 263:15–22

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243. https://doi.org/10.1111/j.1365-294X.2005.02557.x

    Article  CAS  PubMed  Google Scholar 

  • Micali C, Göllner K, Humphry M, Consonni C, Panstruga R (2008) The powdery mildew disease of Arabidopsis: a paradigm for the interaction between plants and biotrophic fungi. Arabidopsis Book 6:e0115. https://doi.org/10.1199/tab.0115

    Article  PubMed  PubMed Central  Google Scholar 

  • Micali CO, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144:1777–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mims CW, Richardson EA, Holt Iii BF, Dangl JL (2004) Ultrastructure of the host–pathogen interface in Arabidopsis thaliana leaves infected by the downy mildew Hyaloperonospora parasitica. Can J Bot 82(7):1001–1008

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 1046(1):19613–19618

    Article  Google Scholar 

  • Moro A, Ruiz-Cabello F, Fernandez-Cano A, Stock RP, Gonzalez A (1995) Secretion by Trypanosoma cruzi of a peptidyl-prolyl cis-transisomerase involved in cell infection. EMBO J 14:2483–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrall RAA, Duczek IJ, Sheard JW (1972) Variation and correlation within and between morphology, pathogenicity and pectolytic enzyme activity in Sclerotinia from Saskatchewan. Can J Bot 50:767–786

    Article  CAS  Google Scholar 

  • Moscou MJ, Lauter N, Steffenson B, Wise RP (2011) Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 7:e1002208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motohashi K, Koyama F, Nakanishi Y, Ueoka-Nakanishi H, Hisabori T (2003) Chloroplast cyclophilin is a target protein of thioredoxin. J Biol Chem 278:31848–31852

    Article  CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulates NPR1 function through redox changes. Cell 113:1–10

    Article  Google Scholar 

  • Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Rémoué K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for post transcriptional gene silencing and natural virus resistance. Cell 26:533–542. https://doi.org/10.1016/S0092-8674(00)80863-6

    Article  Google Scholar 

  • Mutka AM, Fentress SJ, Sher JW, Berry JC, Pretz C, Nusinow DA, Bart R (2016) Quantitative, image-based phenotyping methods provide insight into spatial and temporal dimensions of plant disease. Plant Physiol 172:00984

    Google Scholar 

  • Näpflin K, O’Connor EA, Becks L, Bensch S, Ellis VA, Hafer-Hahmann N, Harding KC, Lindén SK, Olsen MT, Roved J, Sackton TB, Shultz AJ, Venkatakrishnan V, Videvall E, Westerdahl H, Winternitz JC, Edwards SV (2019) Genomics of host-pathogen interactions: challenges and opportunities across ecological and spatiotemporal scales. Peer J 7:e8013. https://doi.org/10.7717/peerj.8013

    Article  PubMed  PubMed Central  Google Scholar 

  • Napper ME (1933) Observations on spore germination and specialization of parasitism in Cystopus candidus. J Pomol Horti Sci 11:81–100

    Google Scholar 

  • Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M et al (2009) RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J 60:218–226. https://doi.org/10.1111/j.1365-313X.2009.03949.x

    Article  CAS  PubMed  Google Scholar 

  • Nelson JM, Hauser DA, Hinson R, Shaw AJ (2018) A novel experimental system using the liverwort Marchantia polymorpha and its fungal endophytes reveals diverse and context-dependent effects. New Phytol 218:1217–1232

    Article  CAS  PubMed  Google Scholar 

  • Nemri A, Saunders DGO, Anderson C, Upadhyaya NM, Win J, Lawrence GJ, Jones DA, Kamoun S, Ellis JG, Dodds PN (2014) The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Front Plant, Sci 5:98

    Article  PubMed  Google Scholar 

  • Newton HK (1972) Sclerotinia sclerotiorum an incitant of lettuce drop: sources of inoculum, host resistance and mechanism of pathogenesis. PhD thesis, Murofolm 72-V.292, Univ Murofilm Inc., Ann Arbor, MI, 135 p

    Google Scholar 

  • Newton HK, Sequeira L (1972) Ascospores as the primary infective propagules of Sclerotinia sclerotiorum in Wisconsin. Plant Dis Rep 56:798–802

    Google Scholar 

  • Niks RE, Marcel TC (2009) Nonhost and basal resistance: how to explain specificity? New Phytol 182:817–828

    Article  PubMed  Google Scholar 

  • Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301(5635):969–972

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noji M, Saito M, Nakamura M, Aono M, Saji H, Saito K (2001) Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environment pollutants. Plant Physiol 126:973–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nováková M, Šašek V, Trdá L, Krutinová H, Mongin T, Valentová O, Balesdent M-H, Rouxel T, Burketová L (2016) Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2O2) accumulation in Brassica napus. Mol Plant Pathol 17:818–831

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connell RJ, Herbert C, Sreenivasaprasad S, Khatib M, Esquerré-Tugayé M-T, Dumas B (2004) A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Mol Plant Microbe Interact 17:272–282

    Article  PubMed  Google Scholar 

  • O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henrissat B, Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun MH, Lee YH, Miyara I, Moore N, Neumann U, Nordström K, Panaccione DG, Panstruga R, Place M, Proctor RH, Prusky D, Rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz DC, Shenoy N, Shirasu K, Sikhakolli UR, Stüber K, Sukno SA, Sweigard JA, Takano Y, Takahara H, Trail F, van der Does HC, Voll LM, Will I, Young S, Zeng Q, Zhang J, Zhou S, Dickman MB, Schulze-Lefert P, Loren V, van Themaat E, Ma LJ, Vaillancourt LJ (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44(9):1060–1065. https://doi.org/10.1038/ng.2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor EA, Westerdahl H, Burri R, Edwards SV (2019) Avian MHC evolution in the era of genomics: phase 1.0. Cells 8:1152. https://doi.org/10.3390/cells8101152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, Hesse CN, Kosti I, LaButti K, Lindquist EA, Lucas S, Salamov AA, Bradshaw RE, Ciuffetti L, Hamelin RC, Kema GHJ, Lawrence C, Scott JA, Spatafora JW, Turgeon BG, de Wit PJGM, Zhong S, Goodwin SB, Grigoriev IV (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog 8(12):e1003037. https://doi.org/10.1371/journal.ppat.1003037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohshima K, Yamaguchi Y, Hirota R, Hamamoto T, Tomimura K, Tan Z, Sano T, Azuhata F, Walsh JA, Fletcher J, Chen J, Gera A, Gibbs A (2002) Molecular evolution of Turnip mosaic virus; evidence of host adaptation, genetic recombination and geographical spread. J Gen Virol 83:1511–1521

    Article  CAS  PubMed  Google Scholar 

  • Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a non-ribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver RP, Ipcho SV (2004) Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Mol Plant Pathol 5:347–352

    Article  CAS  PubMed  Google Scholar 

  • Oliver RP, Solomon PS (2010) New developments in pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol 13:415–419

    Article  CAS  PubMed  Google Scholar 

  • Otulak-Kozieł K, Kozieł E, Bujarski JJ, Frankowska-Łukawska J, Torres MA (2020) Respiratory burst oxidase homologs RBOHD and RBOHF as key modulating components of response in turnip mosaic virus—Arabidopsis thaliana (L) Heyhn system. Int J Mol Sci 21(22):8510. https://doi.org/10.3390/ijms21228510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  CAS  PubMed  Google Scholar 

  • Palma K, Thorgrimsen S, Malinovsky FG, Fiil BK, Nielsen HB, Brodersen P, Hofius D, Petersen M, Mundy J (2010) Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor. PLoS Pathog 6:e1001137

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan H, Rollins JA (2017) The GATA-Type IVb zinc-finger transcription factor SsNsd1 regulates asexual-Sexual development and appressoria formation in Sclerotinia sclerotiorum. Mol Plant Pathol 9:1679–1689

    Google Scholar 

  • Pandey SP, Roccaro M, Schön M, Logemann E, Somssich IE (2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64:912–923

    Article  CAS  PubMed  Google Scholar 

  • Pandey D, Rajendran SRCK, Gaur M, Sajeesh PK, Kumar A (2016) Plant defense signaling and responses against necrotrophic fungal pathogens. J Plant Growth Regul 35:1159–1174. https://doi.org/10.1007/s00344-016-9600-7

    Article  CAS  Google Scholar 

  • Panstruga R (2003) Establishing compatibility between plants and obligate biotrophic pathogens. Curr Opin Plant Biol 66(1):320–326

    Article  Google Scholar 

  • Panstruga R (2005) Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochem Soc Trans 336(1):389–392

    Article  Google Scholar 

  • Park E, Lee H-Y, Woo J, Choi D, Dinesh-Kumar SP (2017) Spatiotemporal monitoring of Pseudomonas syringae effectors via type III secretion using split fluorescent protein fragments. Plant Cell 29:1571–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker JE, Barber CE, Fan MJ, Daniels MJ (1993) Interaction of Xanthomonas campestris with Arabidopsis thaliana: characterization of a gene from X. c. pv. raphani that confers avirulence to most A. thaliana accessions. Mol Plant Microbe Interact 6:216–224

    Article  CAS  PubMed  Google Scholar 

  • Patil PB, Bogdanove AJ, Sonti RV (2007) The role of horizontal transfer in the evolution of a highly variable lipopolysaccharide biosynthesis locus in xanthomonads that infect rice, citrus and crucifers. BMC Evol Biol 7:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrick JW (1989) Solute Efflux from the host at plant-microorganism interfaces. Funct Plant Biol 16:53–67. https://doi.org/10.1071/PP9890053

    Article  CAS  Google Scholar 

  • Peng Y, Chen L, Lu Y, Wu Y, Dumenil J, Zhu Z, Bevan MW, Li Y (2015) The ubiquitin receptors DA1, DAR1, and DAR2 redundantly regulate endo-reduplication by modulating the stability of TCP14/15 in Arabidopsis. Plant Cell 27:649–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penczykowski RM, Laine A-L, Koskella B (2015) Understanding the ecology and evolution of host-parasite interactions across scales. Evol Appl 9:37–52. https://doi.org/10.1111/eva.12294

    Article  PubMed  PubMed Central  Google Scholar 

  • Peona V, Weissensteiner MH, Suh A (2018) How complete are “complete” genome assemblies?—an avian perspective. Mol Ecol Resour 18:1188–1195. https://doi.org/10.1111/1755-0998.12933

    Article  CAS  PubMed  Google Scholar 

  • Perchepied L, Balague C, Riou C, Claudel-Renard C, Rivière N, Grezes-Besset B, Roby D (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant Microbe Interact 23:846–860

    Article  CAS  PubMed  Google Scholar 

  • Perez-Lopez E, Waldner M, Hossain M, Kusalik AJ, Wei Y, Bonham-Smith PC, Todd CD (2018) Identification of Plasmodiophora brassicae effectors-a challenging goal. Virulence 9(1):1344–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) Signal P 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Pickett CB, Lu AYH (1989) Glutathione S-transferases: gene structure, regulation, and biological function. Annu Rev Biochem 58:743–764

    Article  CAS  PubMed  Google Scholar 

  • Pidskalny RS, Rimmer SR (1985) Virulence of Albugo candida from turnip rape (Brassica campestris) and mustard (Brassica juncea) on various crucifers. Can J Plant Pathol 7:283–286

    Article  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12:421–426

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A 108:6893–6898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popescu S, Popescu G, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23:80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poplawsky AR, Chun W (1998) Xanthomonas campestris pv. campestris requires a functional pigB for epiphytic survival and host infection. Mol Plant Microbe Interact 11:466–475

    Article  CAS  PubMed  Google Scholar 

  • Prabhu Y, Müller R, Anjard C, Noegel AA (2007) GrlJ, a dictyostelium GABAB-like receptor with roles in post-aggregation development. BMC Dev Biol 7:44. https://doi.org/10.1186/1471-213X-7-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prior GD, Owen JH (1964) Pathological anatomy of Sclerotinia trifoliorum on clover and alfalfa. Phytopathology 54:784–787

    Google Scholar 

  • Provvidenti R (1980) Evaluation of Chinese cabbage cultivars from Japan and the People’s Republic of China for resistance to Turnip mosaic virus and Cauliflower mosaic virus. J Am Soc Hort Sci 105:571–573

    Article  Google Scholar 

  • Prugnolle F, Manica A, Charpentier M, Guégan JF, Guernier V, Balloux F (2005) Pathogen-driven selection and worldwide HLA Class I diversity. Curr Biol 15:1022–1027. https://doi.org/10.1016/j.cub.2005.04.050

    Article  CAS  PubMed  Google Scholar 

  • Pruzinska A, Anders I, Aubry S, Schenk N, Tapernoux-Luthi E, Muller T, Krautler B, Hortensteiner S (2007) In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19:369–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purdy LH (1958) Some factors affecting penetration and infection by Sclerotinia sclerotiorum. Phytopathology 48:605–609

    Google Scholar 

  • Qian W, Jia YT, Ren SX, He YQ, Feng JX, Lu LF, Sun QH, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang LF, Jiang BL, Zeng SY, Gu WY, Lu G, Rong L, Tian YC, Yao ZJ, Fu G, Chen BS, Fang RX, Qiang BQ, Chen Z, Zhao GP, Tang JL, He CZ (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15:757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J, Brodersen P, Grasser KD, Mattsson O, Glazebrook J, Mundy J, Petersen M (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu JD, Huang JH, Liang RP, Lu XQ (2009) Prediction of G-protein-coupled receptor classes based on the concept of Chou’s pseudo amino acid composition: an approach from discrete wavelet transform. Anal Biochem 390(1):68–73

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Yu B, Liu J, Zhang X, Li G, Zhang D, Li L, Wang X, Wang L, Chen J, Mu W, Pan H, Zhang Y (2014) MADS-box transcription factor SsMADS is involved in regulating growth and virulence in Sclerotinia sclerotiorum. Int J Mol Sci 15:8049–8062. https://doi.org/10.3390/ijms15058049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quach H, Rotival M, Pothlichet J, Loh Y-HE, Dannemann M, Zidane N, Laval G, Patin E, Harmant C, Lopez M, Deschamps M, Naffakh N, Duffy D, Coen A, Leroux-Roels G, Clément F, Boland A, Deleuze J-F, Kelso J, Albert ML, Quintana-Murci L (2016) Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell 167:643–656. https://doi.org/10.1016/j.cell.2016.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quirino BF, Normanly J, Amasino RM (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol Biol 40:267–278. https://doi.org/10.1023/A:1006199932265

    Article  CAS  PubMed  Google Scholar 

  • Qutob N, Balloux F, Raj T, Liu H, Marionde Procé S, Trowsdale J, Manica A (2011) Signatures of historical demography and pathogen richness on MHC class I genes. Immunogenetics 64:165–175. https://doi.org/10.1007/s00251-011-0576-y

    Article  PubMed  Google Scholar 

  • Raabe RD, Pound GS (1952) Morphology and pathogenicity of A. occidentalis, the incitant of white rust of spinach. Phytopathology 42:473 (Abstr.)

    Google Scholar 

  • Rai JN, Dhawan S (1976) Production of polymethyl galacturonase and cellulose and its relationship with virulence in isolates of Sclerotinia sclerotiorum (Lib.) de Bary. Indian J Exp Biol 14:197

    CAS  Google Scholar 

  • Rajarammohan S, Pradhan AK, Pental D, Kaur J (2018) Genome-wide association mapping in Arabidopsis identifies novel genes underlying quantitative disease resistance to Alternaria brassicae. Mol Plant Pathol 19:1719–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajarammohan S, Paritosh K, Pental D, Kaur J (2019) Comparative genomics of Alternaria species provides insights into the pathogenic lifestyle of Alternaria brassicae—a pathogen of the Brassicaceae family. BMC Genomics 20:1036. https://doi.org/10.1186/s12864-019-6414-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Raman H, Raman R, Larkan N (2013) Genetic dissection of blackleg resistance loci in rapeseed (Brassica napus L.). In: Andersen SB (ed) Plant breeding from laboratories to fields. Tech Ch. 04

    Google Scholar 

  • Ramonell KM, Zhang B, Ewing RM, Chen Y, Xu D, Stacey G, Somerville S (2002) Microarray analysis of chitin elicitation in Arabidopsis thaliana. Mol Plant Pathol 36(1):301–311

    Article  Google Scholar 

  • Rancour DM, Park S, Knight SD, Bednarek SY (2004) Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of Arabidopsis CDC48. J Biol Chem 279:54264–54274

    Article  CAS  PubMed  Google Scholar 

  • Rao ALN (1999) Molecular basis of symptomatology. In: Mundahar CL (ed) Molecular biology of plant viruses. Kluwer Academic, Boston, MA, pp 201–210

    Chapter  Google Scholar 

  • Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290:205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331:623–641. https://doi.org/10.1016/s0022-2836(03)00750-2

    Article  CAS  PubMed  Google Scholar 

  • Reimers K, Choi CY, Mau-Thek E, Vogt PM (2006) Sequence analysis shows that lifeguard belongs to a new evolutionarily conserved cytoprotective family. Int J Mol Med 18:729–734

    CAS  PubMed  Google Scholar 

  • Reimers K, Choi CY, Bucan V, Vogt PM (2008) The Bax Inhibitor-1 (BI-1) family in apoptosis and tumorigenesis. Curr Mol Med 8:148–156

    Article  CAS  PubMed  Google Scholar 

  • Reinders A, Sivitz AB, Starker CG, Gantt J, Stephen W, John M (2008) Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. Plant Mol Biol 68:289–299. https://doi.org/10.1007/s11103-008-9370-0

    Article  CAS  PubMed  Google Scholar 

  • Reinders A, Sivitz AB, Ward JM (2011) Evolution of plant sucrose uptake transporters. Front Plant Sci 3:22. https://doi.org/10.3389/fpls.2012.00022

    Article  CAS  Google Scholar 

  • Ren D, Yang KY, Li GJ, Liu Y, Zhang S (2006) Activation of Ntf4, a tobacco mitogen-activated protein kinase, during plant defense response and its involvement in hypersensitive response-like cell death. Plant Physiol 141:1482–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reusche M, Thole K, Janz D, Truskina J, Rindfleisch S, Drübert C, Polle A, Lipka V, Teichmann T (2012) Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. Plant Cell 24:3823–3837. https://doi.org/10.1105/tpc.112.103374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revers F, Le Gall O, Candresse T, Maule AJ (1999) New advances in understanding the molecular biology of plant/potyvirus interactions. Mol Plant Microbe Interact 12:367–376

    Article  CAS  Google Scholar 

  • Richardson M, Valdes-Rodriquez S, Blanco-Labra A (1987) A possible function for thaumatin and a TMV-induced protein suggested by homology to a maize inhibitor. Nature 327:432–434

    Article  Google Scholar 

  • Riechmann JL, Laín S, Garcia JA (1992) Highlights and prospects of potyvirus molecular biology. J Gen Virol 73:1–16

    Article  CAS  PubMed  Google Scholar 

  • Rigano LA, Payette C, Brouillard G, Marano MR, Abramowicz L, Torres PS, Yun M, Castagnaro AP, El Oirdi M, Dufour V, Malamud F, Dow JM, Bouarab K, Vojnov A (2007) Bacterial cyclic beta-(1,2)-glucanacts in systemic suppression of plant immune responses. Plant Cell 19:2077–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riou C, Freyssinet G, Fevre M (1991) Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl Environ Microbiol 57:1478–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts W, Selitrennikoff CP (1990) Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J Gen Microbiol 136:1771–1778

    Article  CAS  Google Scholar 

  • Robin GP, Kleemann J, Neumann U, Cabre L, Dallery JF, Lapalu N, O’Connell RJ (2018) Subcellular localization screening of Colletotrichum higginsianum effector candidates identifies fungal proteins targeted to plant peroxisomes, golgi bodies, and microtubules. Front Plant Sci 9:562. https://doi.org/10.3389/fpls.2018.00562

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson KS, Clements A, Williams AC, Berger CN, Frankel G (2011) Bax inhibitor 1 in apoptosis and disease. Oncogene 30:2391–2400

    Article  CAS  PubMed  Google Scholar 

  • Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SGE (2015) The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res 43:D423–D431. https://doi.org/10.1093/nar/gku1161

    Article  CAS  PubMed  Google Scholar 

  • Rodoni S, Vicentini F, Schellenberg M, Matile P, Hortensteiner S (1997) Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chIorophyll breakdown. Plant Physiol 115:677–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez E, El Ghoul H, Mundy J, Petersen M (2016) Making sense of plant auto-immunity and ‘negative regulators’. FEBS J 283:1385–1391

    Article  CAS  PubMed  Google Scholar 

  • Roetschi A, Si-Ammour A, Belbahri L, Mauch F, Mauch-Mani B (2001) Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J Cell Mol Biol 28:293–305

    Article  CAS  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17. https://doi.org/10.3389/fpls.2014.00017

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolfe SA, Strelkov SE, Links MG, Clarke WE, Robinson SJ, Djavaheri M, Malinowski R, Haddadi P, Kagale S, Parkin IAP, Taheri A, Borhan MH (2016) The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp. BMC Genomics 17:272. https://doi.org/10.1186/s12864-016-2597-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollins JA (2003) The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol Plant Microbe Interact 16:785–795

    Article  CAS  PubMed  Google Scholar 

  • Rollins JA, Dickman MB (2001) pH signaling in Sclerotinia sclerotiorum identification of a pac C/RIM 1 homolog. Appl Environ Microbiol 67:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollins JA, Pathology P, Hall F (2003) The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol Plant Microbe Interact 16:785–795

    Article  CAS  PubMed  Google Scholar 

  • Roman RV, Rathjen JP (2017) Apoplastic sugar extraction and quantification from wheat leaves infected with biotrophic fungi. Methods Mol Biol 1659:125–134. https://doi.org/10.1007/978-1-4939-7249-4-11

    Article  Google Scholar 

  • Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459(7245):356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux F, Voisin D, Badet T, Balagué C, Barlet X, Huard-Chauveau C, Roby D, Raffaele S (2014) Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol 15:427–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud MF, Fischer-Le Saux M, Portier P, Jacques MA, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël LD (2015) Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics 16:975. https://doi.org/10.1186/s12864-015-2190-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruijter GJG, Van De Vondervoort PJI, Visser J (1999) Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 145:2569–2576

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Fouhy Y, Lucey JF, Jiang BL, He YQ, Feng JX, Tang JL, Dow JM (2007) Cyclic di-GMP signaling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63:429–442

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, McCarthy Y, Andrade M, Farah CS, Armitage JP, Dow JM (2010) Cell–cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci U S A 107:5989–5994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RP, Vorholter FJ, Potnis N, Jones JB, Van Sluys MA, Bogdanove AJ, Dow JM (2011) Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat Rev Microbiol 9:344–355

    Article  CAS  PubMed  Google Scholar 

  • Saenz P, Cervera MT, Dallot S, Quiot L, Quiot J-B, Riechmann JL, Garcıa JA (2000) Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1. J Gen Virol 81:557–566

    Article  CAS  PubMed  Google Scholar 

  • Saharan GS, Mehta M (2008) Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer, Dordrecht, p 485

    Book  Google Scholar 

  • Saharan G S, Verma P R (1992) White rusts: a review of economically important species. International Development Research Centre (IDRC), Ottawa, IDRC-MR315e: IV+65p

    Google Scholar 

  • Saharan GS, Verma PR, Meena PD, Kumar A (2014) White rust of crucifers: biology, ecology and management. Springer, Dordrecht, p 244

    Book  Google Scholar 

  • Saharan GS, Naresh M, Meena PD (2016) Alternaria diseases of crucifers: biology, ecology and disease management. Springer, Singapore, p 297

    Book  Google Scholar 

  • Saharan GS, Mehta Naresh K, Meena PD (2019) Powdery mildew disease of crucifers: biology, ecology and disease management. Springer Verlag, Singapore, p 362

    Book  Google Scholar 

  • Saharan GS, Naresh M, Meena PD (2021) Clubroot disease of crucifers: biology, ecology and disease management. Springer, Singapore, p 757. ISBN 978-981-16-2132-1

    Book  Google Scholar 

  • Sanchez F, Wang X, Jenner CE, Walsh JA, Ponz F (2003) Strains of Turnip mosaic potyvirus as defined by the molecular analysis of the coat protein gene of the virus. Virus Res 94:33–43

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vallet A, Ramos B, Bednarek P, Lopez G, Pislewska-Bednarek M, Schulze-Lefert P, Molina A (2010) Tryptophan-derived secondary metabolites in Arabidopsis thaliana confers non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant J 63:115–127

    CAS  PubMed  Google Scholar 

  • Santos C, Maximiano MR, Ribeiro DG, Oliveira-Neto OB, Murad AM, Franco OL, Mehta A (2017) Differential accumulation of Xanthomonas campestris pv. campestris proteins during the interaction with the host plant: contributions of an in vivo system. Proteomics 17(12):1700086

    Article  Google Scholar 

  • Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Millar AH, Singh KB (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J 58:53–68

    Article  CAS  PubMed  Google Scholar 

  • Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci U S A 108:16705–16710. https://doi.org/10.1073/pnas.1106893108

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Nguyen AV, Manners JM, Kazan K, Spangenberg G (2008) Identification of plant defence genes in canola using Arabidopsis cDNA microarrays. Plant Biol 10:539–547. https://doi.org/10.1111/j.1438-8677.2008.00056.x

    Article  CAS  PubMed  Google Scholar 

  • Schmidpeter J, Dahl M, Hofmann J, Kock C (2017) ChMob2 binds to ChCbk1 and promotes virulence and conidiation of the fungal pathogen Colletotrichum higginsianum. BMC Microbiol 17:22. https://doi.org/10.1186/s12866-017-0932-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuller A, Kehr J, Ludwig-Muller J (2014) Laser microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for brassinosteroids in clubroot formation. Plant Cell Physiol 55:392–411

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Lefert P (2004) Knocking on heaven's wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Curr Opin Plant Biol 76(1):377–383

    Article  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–467

    Article  CAS  PubMed  Google Scholar 

  • Schwelm A, Fogelqvist J, Knaust A, Jülke S, Lilja T, Bonilla-Rosso G, Karlsson M, Shevchenko A, Dhandapani V, Choi SR, Kim HG, Park JY, Lim YP, Ludwig-Müller J, Dixelius C (2015) The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci Rep 5(11153). https://doi.org/10.1038/srep11153

  • Schwelm A, Berney C, Dixelius C, Bass D, Neuhauser S (2016) The large subunit rDNA sequence of Plasmodiophora brassicae does not contain intra-species polymorphism. Protist 167:544–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwelm A, Badstober J, Bulman S, Desoignies N, Etemadi M, Falloon RE, Gachon CMM, Legreve A, Lukes J, Merz U, Nenarokova A, Strittmatter M, Sullivan BK, Neuhauser S (2018) Not in your usual Top 10: protists that infect plants and algae. Mol Plant Pathol 19(4):1029–1044. https://doi.org/10.1111/mpp.12580

    Article  PubMed  Google Scholar 

  • Seifbarghi S, Borhan MH, Wei Y, Coutu C, Robinson SJ, Hegedus DD (2017) Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genomics 18:266

    Article  PubMed  PubMed Central  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Park JM, Kang SK, Kim SG, Park CM (2011) An Arabidopsis senescence-associated SAG29 regulates cell viability under high salinity. Planta 233:189–200. https://doi.org/10.1007/s00425-010-1293-8

    Article  CAS  PubMed  Google Scholar 

  • Sexton AC, Howlett BJ (2001) Green fluorescent protein as a reporter in the Brassica–Leptosphaeria maculans interaction. Physiol Mol Plant Pathol 58(1):13–21

    Article  CAS  Google Scholar 

  • Shan S, Liu D, Liu R, Zhu Y, Li T, Zhang F, An L, Yang G, Li H (2018) Non-mammalian Toll-like receptor 18 (Tlr18) recognizes bacterial pathogens in common carp (Cyprinus carpio L.): indications for a role of participation in the NF-κB signaling pathway. Fish Shellfish Immun 72:187–198. https://doi.org/10.1016/j.fsi.2017.09.081

    Article  CAS  Google Scholar 

  • Sharma RC, Sharma SL (1984) Studies on pectolytic enzymes associated with stalk rot of cauliflower caused by Sclerotinia sclerotiorum (Lib.) de Bary. Indian J Plant Pathol 2:69–72

    Google Scholar 

  • Shigenaga AM, Argueso CT (2016) No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 56:174–189. https://doi.org/10.1016/j.semcdb.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  • Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, Takano Y (2006) Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant Microbe Interact 19:270–279

    Article  CAS  PubMed  Google Scholar 

  • Shultz AJ, Sackton TB (2019) Immune genes are hot spots of shared positive selection across birds and mammals. Elife 8:e41815. https://doi.org/10.7554/eLife.41815

    Article  PubMed  PubMed Central  Google Scholar 

  • Siemens J, Nagel M, Ludwig-Muller J, Sacristan MD (2002) The interaction of Plasmodiophora brassicae and Arabidopsis thaliana: parameters for disease quantification and screening of mutant lines. J Phytopathol 150:592–605. https://doi.org/10.1046/j.1439-0434.2002.00818.x

    Article  Google Scholar 

  • Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmulling T, Parniske M, Ludwig-Muller J (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19:480–494. https://doi.org/10.1094/MPMI-19-0480

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Bulman S, Rehn F, Sundelin T (2009a) Molecular biology of Plasmodiophora brassicae. J Plant Growth Regul 28(3):245–251. https://doi.org/10.1007/s00344-009-9091-x

    Article  CAS  Google Scholar 

  • Siemens J, Graf H, Bulman S, In O, Ludwig-Müller J (2009b) Monitoring expression of selected Plasmodiophora brassicae genes during clubroot development in Arabidopsis thaliana. Plant Pathol 58:130–136

    Article  CAS  Google Scholar 

  • Siemens J, González MC, Wolf S, Hofmann C, Greiner S, Du Y, Rausch T, Roitsch T, Ludwig-Müller J (2011) Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana. Mol Plant Pathol 12(3):247–262. https://doi.org/10.1111/j.1364-3703.2010.00667.x

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Ganapathy Subramanian B, Sarkar S, Singh A (2018) Deep learning for plant stress phenotyping: trends and future perspectives. Trends Plant Sci 23:883–898

    Article  CAS  PubMed  Google Scholar 

  • Son H, Seo YS, Min K, Park AR, Lee J, Jin JM, Lin Y, Cao P, Hong SY, Kim EK, Lee SH, Cho A, Lee S, Kim MG, Kim Y, Kim JE, Kim JC, Choi GJ, Yun SH, Lim JY, Kim M, Lee YH, Choi YD, Lee YW (2011) A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog 7:e1002310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza DP, Andrade MO, Alvarez-Martinez CE, Arantes GM, Farah CS, Salinas RK (2011) A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathol 7:e1002031

    Article  CAS  Google Scholar 

  • Soylu S (2004) Ultra-structural characterization of the host–pathogen interface in white blister-infected Arabidopsis leaves. Mycopathol 158:457–464

    Article  Google Scholar 

  • Soylu S, Keshavarzi M, Brown I, Mansfield JW (2003) Ultra-structural characterization of interactions between Arabidopsis thaliana and Albugo candida. Physiol Mol Plant Pathol 63:201–211

    Article  CAS  Google Scholar 

  • Soylu EM, Soylu S, Mansfield JW (2004) Ultrastructural characterisation of pathogen development and host responses during compatible and incompatible interactions between Arabidopsis thaliana and Peronospora parasitica. Physiol Mol Plant Pathol 65(2):67–78

    Article  Google Scholar 

  • Spanu PD, Abbot JC, Amselem J, Burgis TA, Soanes DM, Stüber K, van Themaat EVL, Brown JKM, Butcher SA, Gurr SJ, Lebrun MH, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey D, Harriman J, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, López-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG, Montana G, Noir S, O’Connel RJ, Oberhaensli S, Parlange F, Pendersen C, Quesneville H, Reinhardt R, Rott M, Sacristán S, Schmidt SM, Schön M, Skaminoti P, Sommer H, Stephens A, Takahra H, Thordal-Christensen H, Vigouroux M, Weßling R, Wicker T, Panstruga R (2010) Genome expansion and gene loss in powdery mildew fungi reveal trade offs in extreme parasitism. Science 330:1543–1546. https://doi.org/10.1126/science.1194573

    Article  CAS  PubMed  Google Scholar 

  • Spencer-Phillips P (1997) Function of fungal haustoria in epiphytic and endophytic infections. Adv Bot Res 24:309–333

    Article  Google Scholar 

  • Sperschneider J, Dodds PN, Gardiner DM, Manners JM, Singh KB, Taylor JM (2015) Advances and challenges in computational prediction of effectors from plant pathogenic fungi. PLoS Pathog 11(5):e1004806. https://doi.org/10.1371/journal.ppat.1004806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L, Singh KB, Manners JM, Taylor JM (2016) EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol 210(2):743–761. https://doi.org/10.1111/nph.13794

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated turnover of the transcription co activator NPR1 plays dual roles in regulating plant immunity. Cell 137:860–872. https://doi.org/10.1016/j.cell.2009.03.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc Lond B Biol Sci 277:979–988. https://doi.org/10.1098/rspb.2009.2084

    Article  CAS  Google Scholar 

  • Spyrou MA, Bos KI, Herbig A, Krause J (2019) Ancient pathogen genomics as an emerging tool for infectious disease research. Nat Rev Genet 13:323–340. https://doi.org/10.1038/s41576-019-0119-1

    Article  CAS  Google Scholar 

  • Srivastava A, Ohm RA, Oxiles L, Brooks F, Lawrence CB, Grigoriev IV, Cho Y (2012) A zinc-finger-family transcription factor, AbVf19, is required for the induction of a gene subset important for virulence in Alternaria brassicicola. Mol Plant Microbe Interact 25:443–452

    Article  CAS  PubMed  Google Scholar 

  • Stavolone L, Alioto D, Ragozzino A, Laliberte J-F (1998) Variability among turnip mosaic potyvirus isolates. Phytopathology 88:1200–1204

    Article  CAS  PubMed  Google Scholar 

  • Stein M, Dittgen J, Sánchez-Rodríguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to non-host resistance to in appropriate pathogens that enter by direct penetration. Plant Cell 186(1):731–746

    Article  Google Scholar 

  • Stobbs LW, Shattuck VI (1989) Turnip mosaic virus strains in southern Ontario, Canada. Plant Dis 73:208–212

    Article  Google Scholar 

  • Strohm M, Jouanin L, Kunert KJ, Pruvost C, Polle A, Foyer CH, Rennenberg H (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula × P. alba) over expressing glutathione synthetase. Plant J 7:141–145

    Article  CAS  Google Scholar 

  • Stuttmann J, Hubberten H-M, Rietz S, Kaur J, Muskett P, Guerois R, Bednarek P, Hoefgen R, Parker JE (2011) Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. Plant Cell 23(7):2788–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suehiro N, Natsuaki T, Watanabe T, Okuda S (2004) An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J Gen Virol 85:2087–2098

    Article  CAS  PubMed  Google Scholar 

  • Sundelin T (2008) Identification of expressed Plasmodiophora brassicae genes during plant infection and molecular diagnosis of plant pathogens. Ph D thesis, University of Copenhagen, Copenhagen

    Google Scholar 

  • Sundelin T, Jensen DF, Lubeck M (2011) Identification of expressed genes during infection of Chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae. J Eukaryot Microbiol 58:310–314

    Article  CAS  PubMed  Google Scholar 

  • Swarbrick PJ, Schulze-Lefert P, Scholes JD (2006) Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ 296(1):1061–1076

    Article  Google Scholar 

  • Szabo LJ, Bushnell WR (2001) Hidden robbers: the role of fungal haustoria in parasitism of plants. Proc Natl Acad Sci U S A 98(14):7654–7655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahara H, Hacquard S, Kombrink A, Hughes HB, Halder V, Robin GP, Hiruma K, Neumann U, Shinya T, Kombrink E, Shibuya N, Thomma BPHJ, O’Connell RJ (2016) Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity. New Phytol 211:1323–1337. https://doi.org/10.1111/nph.13994

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Ishikawa T, Kaido M, Takita K, Hayakawa T, Okazaki K, Itoh K, Mitsui T, Hori H (2006) Plasmodiophora brassicae-induced cell death and medium alkalization in clubroot-resistant cultured roots of Brassica rapa. J Phytopathol 154:156–162. https://doi.org/10.1111/j.1439-0434.2006.01076.x

    Article  Google Scholar 

  • Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of sub-cellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33(4):775–792

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Mido H, Ito S (2006) Colonization by two isolates of Plasmodiophora brassicae with differing pathogenicity on a clubroot-resistant cultivar of Chinese cabbage (Brassica rapa L. subsp. pekinensis). J Gen Plant Pathol 72:205–209

    Article  Google Scholar 

  • Tang D, Innes RW (2002) Over expression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J 32(6):975–983

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Ade J, Frye CA, Innes RW (2005) Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant J 446(1):245–257

    Article  Google Scholar 

  • Tang D, Ade J, Frye CA, Innes RW (2006) A mutation in the GTP hydrolysis site of Arabidopsis dynamin-related protein 1E confers enhanced cell death in response to powdery mildew infection. Plant J 476(1):75–84

    Article  Google Scholar 

  • Tomimura K, Gibbs AJ, Jenner CE, Walsh JA, Ohshima K (2003) The phylogeny of Turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Mol Ecol 12:2099–2111

    Article  CAS  PubMed  Google Scholar 

  • Torres PS, Malamud F, Rigano LA, Russo DM, Marano MR, Castagnaro AP, Zorreguieta A, Bouarab K, Dow JM, Vojnov AA (2007) Controlled synthesis of the DSF cell–cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ Microbiol 9:2101–2109

    Article  PubMed  PubMed Central  Google Scholar 

  • Toyofuku K, Kasahara M, Yamaguchi J (2000) Characterization and expression of monosaccharide transporters (OsMSTs) in rice. Plant Cell Physiol 41:940–947. https://doi.org/10.1093/pcp/pcd016

    Article  CAS  PubMed  Google Scholar 

  • Tran V, Braus-Stromeyer S, Timpner C, Braus G (2013) Molecular diagnosis to discriminate pathogen and apathogen species of the hybrid Verticillium longisporum on the oilseed crop Brassica napus. Appl Microbiol Biotechnol 97:4467–4483

    Article  CAS  PubMed  Google Scholar 

  • Trudel J, Grenier J, Potvin C, Asselin A (1998) Several thaumatin like proteins bind to β-1,3-glucans. Plant Physiol 118:1431–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tso GHW, Reales-Calderon JA, Tan ASM, Sem X, Le GTT, Tan TG, Lai GC, Srinivasan KG, Yurieva M, Liao W, Poidinger M, Zolezzi F, Rancati G, Pavelka N (2018) Experimental evolution of a fungal pathogen into a gut symbiont. Science 362:589–595. https://doi.org/10.1126/science.aat0537

    Article  CAS  PubMed  Google Scholar 

  • Turck F, Zhou A, Somssich IE (2004) Stimulus-dependent, promoter specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-1 in parsley. Plant Cell 16:2573–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urcuqui-Inchima S, Haenni AL, Bernardi F (2001) Potyvirus proteins: a wealth of functions. Virus Res 74(1-2):157–175. https://doi.org/10.1016/s0168-1702(01)00220-9

    Article  CAS  PubMed  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  Google Scholar 

  • van Damme M, Zeilmaker T, Elberse J, Andel A, de Sain-van der Velden M, van den Ackerveken G (2009) Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE. Plant Cell 21(7):2179–2189

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Berg L, Yang SM (1969) Effect of relative humidity on production of extra-cellular pectolytic enzymes by Botrytis cinerea and Sclerotinia sclerotiorum. Can J Bot 47:1007–1010

    Article  Google Scholar 

  • van den Burg HA, Westerink N, Francoijs KJ, Roth R, Woestenenk E, Boeren S, de Wit PJGM, Joosten MHAJ, Vervoort J (2003) Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability. J Biol Chem 278:27340–27346

    Article  PubMed  Google Scholar 

  • van den Hoogen DJ, Meijer HJG, Seidl MF, Govers F (2018) The ancient link between G-protein-coupled receptors and C-terminal phospholipid kinase domains. MBio 9(1):e02119–7. https://doi.org/10.1128/mBio.02119-17

    Article  Google Scholar 

  • Vanacker H, Foyer CH, Carver TLW (1998) Changes in apoplastic antioxidants induced by powdery mildew attack in oat genotypes with race non-specific resistance. Planta 208:444–452

    Article  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (1999) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:103–1114

    Google Scholar 

  • Vander Heiden MG, Choy JS, Vander Weele DJ, Brace JL, Harris MH, Bauer DE, Prange B, Kron SJ, Thompson CB, Rudin CM (2002) Bcl-x(L) complements Saccharomyces cerevisiae genes that facilitate the switch from glycolytic to oxidative metabolism. J Biol Chem 277:44870–44876

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487

    Article  CAS  PubMed  Google Scholar 

  • Veluchamy S, Rollins JA (2008) A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet Biol 45:1265–1276. https://doi.org/10.1016/j.fgb.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  • Verma PR (2012) White rust of crucifers: an overview of research progress. J Oilseed Brassica 3(2):78–87

    Google Scholar 

  • Verma PR, Petrie GA (1975) Germination of oospores of Albugo candida. Can J Bot 53:836–842

    Article  Google Scholar 

  • Verma PR, Petrie GA (1980) Effect of seed infestation and flower bud inoculation on systemic infection of turnip rape by Albugo candida. Can J Plant Sci 60:267–271

    Article  Google Scholar 

  • Verma PR, Harding H, Petrie GA, Williams PH (1975) Infection and temporal development of mycelium of Albugo candida in cotyledons of four Brassica spp. Can J Bot 53:1016–1020

    Article  Google Scholar 

  • Verma SS, Rahman MH, Deyholos MK, Basu U, Kav NNV (2014) Differential expression of miRNAs in Brassica napus root following infection with Plasmodiophora brassicae. PLoS One 9(1):e86648. https://doi.org/10.1371/journal.pone.0086648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to Brassica crops. Mol Plant Pathol 14(1):2–18

    Article  CAS  PubMed  Google Scholar 

  • Villarino NF, LeCleir GR, Denny JE, Dearth SP, Harding CL, Sloan SS, Gribble JL, Campagna SR, Wilhelm SW, Schmidt NW (2016) Composition of the gut microbiota modulates the severity of malaria. Proc Natl Acad Sci U S A 113(8):2235–2240. https://doi.org/10.1073/pnas.1504887113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlieghe K, Boudolf V, Beemster GTS, Maes S, Magyar Z, Atanassova A, de Almeida Engler J, De Groodt R, Inzé D, De Veylder L (2005) The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Curr Biol 15:59–63

    Article  CAS  PubMed  Google Scholar 

  • Voegele RT, Struck C, Hahn M, Mendgen K (2001) The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci U S A 986(1):8133–8138

    Article  Google Scholar 

  • Vogel J, Somerville S (2000) Isolation and characterization of powdery mildew resistant Arabidopsis mutants. Proc Natl Acad Sci U S A 97:1897–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel JP, Raab TK, Schiff C, Somerville SC (2002) PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 146(1):2095–2106

    Article  Google Scholar 

  • Vogel JP, Raab TK, Somerville CR, Somerville SC (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J 406(1):968–978

    Article  Google Scholar 

  • Vojnov AA, Slater H, Daniels MJ, Dow JM (2001) Expression of the gumoperon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol Plant Microbe Interact 14:768–774

    Article  CAS  PubMed  Google Scholar 

  • Vorhoelter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rueckert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Puehler A (2008) The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 134:33–45

    Article  CAS  Google Scholar 

  • Vorholter FJ, Niehaus K, Puhler A (2001) Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core. Mol Genet Genomics 266:79–95

    Article  CAS  PubMed  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    Article  CAS  PubMed  Google Scholar 

  • Wagner G, Charton S, Lariagon C, Laperche A, Lugan R, Hopkins J, Frendo P, Bouchereau A, Delourme R, Gravot A, Manzanares-Dauleux MJ (2012) Metabotyping: a new approach to investigate rapeseed (Brassica napus L.) genetic diversity in the metabolic response to clubroot infection. Mol Plant Microbe Interact 25:1478–1491

    Article  CAS  PubMed  Google Scholar 

  • Walker JC (1957) Plant pathology. McGraw-Hill, New York, pp 214–219

    Google Scholar 

  • Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300

    Article  CAS  PubMed  Google Scholar 

  • Wan JR, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 206(1):471–481

    Article  Google Scholar 

  • Wang P, Heitman J (2005) The cyclophilins. Genom Biol 6:226

    Article  Google Scholar 

  • Wang X, Zafian P, Choudhary M, Lawton M (1996) The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defence proteins. Proc Natl Acad Sci U S A 93:2598–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–1040

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Devoto A, Turner JG, Xiao S (2007) Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. Mol Plant Microbe Interact 206(1):966–976

    Article  Google Scholar 

  • Wang Z, Cao G, Wang X, Miao J, Liu X, Chen Z, Qu LJ, Gu H (2008) Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants. Plant Cell Reptr 27:125–135

    Article  CAS  Google Scholar 

  • Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S (2009) Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Mol Plant Microbe Interact 22:235–244

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li J, Hou S, Wang X, Li Y, Ren D, Chen S, Tang X, Zhou JM (2010) A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell 22:2033–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu W, Hou Z, Wang C, Zhou X, Jonkers W, Ding S, Kistler HC, Xu JR (2011) A novel transcriptional factor important for pathogenesis and ascosporo-genesis in Fusarium graminearum. Mol Plant Microbe Interact 24:118–128

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yan C, Li Y, Hirata K, Yamamoto M, Yan N, Hu Q (2014) Crystal structure of a bacterial homologue of SWEET transporters. Cell Res 24:1486–1489. https://doi.org/10.1038/cr.2014.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Liu Y, Liu J, Zhang Y, Zhang X, Pan H (2016) The Sclerotinia sclerotiorum FoxE2 gene is required for apothecial development. Mycology 106:484–490

    CAS  Google Scholar 

  • Wang S, Boevink PC, Welsh L, Zhang R, Whisson SC, Birch PRJ (2017) Delivery of cytoplasmic and apoplastic effectors from Phytophthora infestans haustoria by distinct secretion pathways. New Phytol 216:205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Ma LY, Li X, Zhao FY, Sarwar R, Cao J, Li YL, Ding LN, Zhu KM, Yang YH, Tan XL (2020) Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum. Plant Cell Rep 39(6):709–722. https://doi.org/10.1007/s00299-020-02525-z

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, Lam E (2009) Bax inhibitor-1, a conserved cell death suppressor, is a key molecular switch downstream from a variety of biotic and abiotic stress signals in plants. Int J Mol Sci 10:3149–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei K, Tang DJ, He YQ, Feng JX, Jiang BL, Lu GT, Chen BS, Tang JL (2007) hpaR, a putative marR family transcriptional regulator, is positively controlled by HrpG and HrpX and involved in the pathogenesis, hypersensitive response, and extracellular protease production of Xanthomonas campestris pathovar campestris. J Bacteriol 189:2055–2062

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Li W, Du H, Li J (2016) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J 14(6):1368–1380

    Article  CAS  PubMed  Google Scholar 

  • Weis C, Huckelhoven R, Eichmann R (2013) LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi. J Exp Bot 64(12):3855–3867. https://doi.org/10.1093/jxb/ert217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wengelnik K, Rossier O, Bonas U (1999) Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes. J Bacteriol 181(21):6828–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weßling R, Epple P, Altmann S, He Y, Yang L, Henz SR, McDonald N, Wiley K, Bader KC, Glaßer C, Mukhtar MS, Haigis S, Ghamsari L, Stephens AE, Ecker JR, Vidal M, Jones JDG, Mayer KFX, van Themaat EVL, Weigel D, Schulze-Lefert P, Dangl JL, Panstruga R, Braun P (2014) Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16(3):364–375. https://doi.org/10.1016/j.chom.2014.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West JS, Kharbanda PD, Barbetti MJ, Fitt BDL (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol 50:10–27

    Article  Google Scholar 

  • Whetzel HH (1945) A synopsis of the genera and species of the Sclerotiniaceae, a family of stromatic in-operculate discomycetes. Mycologia 37:648–714. https://doi.org/10.1080/00275514.1945.12024025

    Article  Google Scholar 

  • Whipps JM, Cooke RC (1978) Occurrence of flagellar beads on zoospores of Albugo tragopogonis. Trans Br Mycol Soc 71:141–142

    Article  Google Scholar 

  • White FF, Potnis N, Jones JB, Koebnik R (2009) The type III effectors of Xanthomonas. Mol Plant Pathol 10:749–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildermuth MC (2010) Modulation of host nuclear ploidy: a common plant biotroph mechanism. Curr Opin Plant Biol 13:449–458

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm S (1955) Longevity of the Verticillium wilt fungus in the laboratory and in the field. Phytopathology 45:180–181

    Google Scholar 

  • Williams PH, Keen NT, Strandberg JO, McNabola SS (1968) Metabolic synthesis and degradation during clubroot development in cabbage hypocotyls. Phytopathology 58:921–928

    CAS  Google Scholar 

  • Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson G, Beverley MC (1987) The purification of acidic glutathione S-transferases from pea seeds and their activity with lipid peroxidation products. Biochem Soc Trans 15:1103–1104

    Article  CAS  Google Scholar 

  • Wilson TJG, Bertrand N, Tang JL, Feng JX, Pan MQ, Barber CE, Dow JM, Daniels MJ (1998) The rpfA gene of Xanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase. Mol Microbiol 28:961–970

    Article  CAS  PubMed  Google Scholar 

  • Wirtz M, Hell R (2007) Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. Plant Cell 19:625–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA (2007) Transcript profiling in host–pathogen interactions. Annu Rev Phytopathol 45:329–369. https://doi.org/10.1146/annurev.phyto.45.011107.143944

    Article  CAS  PubMed  Google Scholar 

  • Wong Sak Hoi J, Dumas B (2010) Ste12 and Ste12-like proteins, fungal transcription factors regulating development and pathogenicity. Eukaryot Cell 9:480–485

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright DP, Baldwin BC, Shephard MC, Scholes JD (1995a) Source-sink relationships in wheat leaves infected with powdery mildew. I. Alterations in carbohydrate metabolism. Physiol Mol Plant Pathol 47(1):237–253

    Article  CAS  Google Scholar 

  • Wright DP, Baldwin BC, Shephard MC, Scholes JD (1995b) Source-sink relationships in wheat leaves infected with powdery mildew. II. Changes in the regulation of the Calvin cycle. Physiol Mol Plant Pathol 47(1):255–267

    Article  CAS  Google Scholar 

  • Wu L, Siemens J, Li S, Ludwig-Müller J, Gong Y, Zhong L, He J (2012) Estimating Plasmodiophora brassicae gene expression in lines of B. rapa by RT-PCR. Sci Hortic 133(1):1–5. https://doi.org/10.1016/j.scienta.2011.09.036

    Article  CAS  Google Scholar 

  • Wuthrich KL, Bovet L, Hunziker PE, Donnison IS, Hortensteiner S (2000) Molecular cloning, functional expression and characterization of RCC reductase involved in chlorophyll catabolism. Plant J 21:189–198

    Article  CAS  PubMed  Google Scholar 

  • Xia S, Xu Y, Hoy R, Zhang J, Qin L, Li X (2020) The notorious soil borne pathogenic fungus Sclerotinia sclerotiorum: an update on genes studied with mutant analysis. Pathogens 9(1):27. https://doi.org/10.3390/pathogens9010027

  • Xiao SY, Calis O, Patrick E, Zhang GG, Charoenwattana P, Muskett P, Parker JE, Turner JG (2005) The atypical resistance gene, RPW8, recruits’ components of basal defence for powdery mildew resistance in Arabidopsis. Plant J 426(1):95–110

    Article  Google Scholar 

  • Xiao X, Xie J, Cheng J, Li G, Yi X, Jiang D, Fu Y (2014) Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development. Mol Plant Microbe Interact 27:40–55

    Article  CAS  PubMed  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581(7):1464–1474. https://doi.org/10.1016/j.febslet.2007.02.074

    Article  CAS  PubMed  Google Scholar 

  • Xu JR (2000) MAP kinases in fungal pathogens. Fungal Genet Biol 31:137–152

    Article  CAS  PubMed  Google Scholar 

  • Xu RQ, Li XZ, Wei HY, Jiang B, Li K, He YQ, Feng JX, Tang JL (2006) Regulation of eight avr genes by hrpG and hrpX in Xanthomonas campestris pv. campestris and their role in pathogenicity. Prog Nat Sci 16:1288–1294

    Article  Google Scholar 

  • Xu RQ, Blanvillain S, Feng JX, Jiang BL, Li XZ, Wei HY, Kroj T, Lauber E, Roby D, Chen B, He YQ, Lu GT, Tang DJ, Vasse J, Arlat M, Tang JL (2008) AvrAC (Xcc 8004), a type III effector with a leucine-rich repeat domain from Xanthomonas campestris pathovar campestris confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. J Bacteriol 190:343–355

    Article  CAS  PubMed  Google Scholar 

  • Yaeno T, Li H, Chaparro-Garcia A, Schornack S, Koshiba S, Watanabe S, Kigawa T, Kamoun S, Shirasu K (2011) Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proc Natl Acad Sci U S A 108(35):14682–14687. https://doi.org/10.1073/pnas.1106002108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka K, Sasagawa Y, Ogura T (2012) Recent advances in p97/VCP/Cdc48 cellular functions. Biochem Biophys Act 1823:130–137

    Article  CAS  Google Scholar 

  • Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L (2018) Colletotrichum higginsianum as a model for understanding host–pathogen interactions: a review. Int J Mol Sci 19(7):2142. https://doi.org/10.3390/ijms19072142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci U S A 98:741–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Sugio A, White FF (2006a) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci U S A 103:10503–10508. https://doi.org/10.1073/pnas.0604088103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS (2006b) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18(6):1339–1347. https://doi.org/10.1105/tpc.105.040535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Tang L, Gong Y, Xie J, Fu Y, Jiang D, Li G, Collinge DB, Chen W, Cheng J (2018) A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. New Phytol 217:739–755

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Koller W (1994) Diversity of cutinases from plant pathogenic fungi: cloning and characterization of a cutinase gene from Alternaria brassicicola. Physiol Mol Plant Pathol 44:81–92

    Article  CAS  Google Scholar 

  • Yao CL, Koller W (1995) Diversity of cutinases from plant pathogenic fungi: different cutinases are expressed during saprophytic and pathogenic stages of Alternaria brassicicola. Mol Plant Microbe Interact 8:122–130

    Article  CAS  Google Scholar 

  • You BJ, Chung KR (2007) Phenotypic characterization of mutants of the citrus pathogen Colletotrichum acutatum defective in a PacC-mediated pH regulatory pathway. FEMS Microbiol Lett 277:107–114

    Article  CAS  PubMed  Google Scholar 

  • Yousef GM, Kopolovic AD, Elliott MB, Diamandis EP (2003) Genomic overview of serine proteases. Biochem Biophys Res Commun 305:28–36

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Zhang X, Huang Z, Chu M, Song T, Falk KC, Deora A, Chen Q, Zhang Y, McGregor L, Gossen BD, McDonald MR, Peng G (2016) Identification of genome-wide variants and discovery of variants associated with Brassica rapa clubroot resistance gene Rcr1 through bulked segregant RNA sequencing. PLoS One 11:e0153218. https://doi.org/10.1371/journal.pone.0153218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Du J, Wang Y, Zhang M, Huang Z, Cai J, Fang A, Yang Y, Qing L, Bi C, Cheng J (2019) Survival factor 1 contributes to the oxidative stress response and is required for full virulence of Sclerotinia sclerotiorum. Mol Plant Pathol 20(7):895–906. https://doi.org/10.1111/mpp.12801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Wang S (2013) Rice MtN3/saliva/SWEET family genes and their homologues in cellular organisms. Mol Plant 6:665–674. https://doi.org/10.1093/mp/sst035

    Article  CAS  PubMed  Google Scholar 

  • Yun MH, Torres PS, El Oirdi M, Rigano LA, Gonzalez-Lamothe R, Marano MR, Castagnaro AP, Dankert MA, Bouarab K, Vojnov A (2006) Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol 141:178–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang N, Tang DJ, Wei ML, He YQ, Chen BS, Feng JX, Xu J, Gan YQ, Jiang BL, Tang JL (2007) Requirement of a mip-like gene for virulence in the phytopathogenic bacterium Xanthomonas campestris pv. campestris. Mol Plant Microbe Interact 20:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zeilmaker T, Ludwig NR, Elberse J, Seidl MF, Berke L, Van Doorn A, Schuurink RC, Snel B, Van den Ackerveken G (2015) DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGEN-ASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant J 81:210–222

    Article  CAS  PubMed  Google Scholar 

  • Zeise K, von Tiedemann A (2001) Morphological and physiological differentiation among vegetative compatibility groups of Verticillium dahliae in relation to V. longisporum. J Phytopathol 149:469–475

    Article  Google Scholar 

  • Zeise K, von Tiedemann A (2002) Host specialization among vegetative compatibility groups of Verticillium dahliae in relation to Verticillium longisporum. J Phytopathol 150:112–119

    Article  Google Scholar 

  • Zhang K, McKinlay C, Hocart CH, Djordjevic MA (2006) The Medicago truncatula small protein proteome and peptidome. J Proteome Res 5:3355–3367

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1:175–185

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wu Y, Gao M, Zhang J, Kong Q, Liu Y, Ba H, Zhou J, Zhang Y (2012) Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11:253–263

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Fraiture M, Kolb D, Loffelhardt B, Desaki Y, Boutrot FG, Tor M, Zipfel C, Gust A, Brunner F (2013) Arabidopsis receptor-like protein 30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25:4227–4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wu Q, Cao S, Zhao T, Chen L, Zhuang P, Zhou X, Gao Z (2014) A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants. Plant Mol Biol 86(4–5):495–511. https://doi.org/10.1007/s11103-014-0244-3

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lun C-Y, Tsui S (2015) Metagenomics: a new way to illustrate the crosstalk between infectious diseases and host microbiome. Int J Mol Sci 16:26263–26279. https://doi.org/10.3390/ijms161125957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6:1701–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Buchwaldt L, Rimmer SR, Sharpe A, McGregor L, Bekkaoui D, Hegedus D (2009) Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum. Mol Plant Pathol 10(5):635–649. https://doi.org/10.1111/j.1364-3703.2009.00558.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Bi K, Gao Z, Chen T, Liu H, Xie J, Cheng J, Fu Y, Jiang D (2017) Transcriptome analysis of Arabidopsis thaliana in response to Plasmodiophora brassicae during early infection. Front Microbiol 8:673

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Wei W, Fu Y, Cheng J, Xie J, Li G, Yi X, Kang Z, Dickman MB, Jiang D (2013) A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One 8:e53901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu GL, Yu G, Zhang YH, Rollins JA, Li J, Pan H (2019) The formaldehyde dehydrogenase SsFdh1 is regulated by and functionally cooperates with the GATA transcription. MSystems 4:1–19

    Article  Google Scholar 

  • Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 406(1):633–646

    Article  Google Scholar 

  • Zuppini A, Navazio L, Sella L, Castiglioni C, Favaron F, Mariani P (2005) An endopolygalacturonase from Sclerotinia sclerotiorum induces calcium-mediated signaling and programmed cell death in soybean cells. Mol Plant Microbe Interact 18:849–855

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh Saharan, G., Mehta, N.K., Meena, P.D. (2023). Genomics of Host–Pathogen Interaction. In: Genomics of Crucifer's Host- Pathosystem . Springer, Singapore. https://doi.org/10.1007/978-981-19-3812-2_3

Download citation

Publish with us

Policies and ethics