Skip to main content

Advances in Perovskite Solar Cells: Prospects of Lead-Free Perovskite Materials

  • Chapter
  • First Online:
Recent Advances in Thin Film Photovoltaics

Abstract

Renewable energy sources are needed to overcome the worldwide increasing energy demands. Conversion of sunlight into electricity belongs to the most abundant and easily accessible renewable energy sources. Over the past decade, hybrid lead halide solution-processed perovskite solar cells have shown great potential for low-cost photovoltaic technology. Till now, the perovskite solar cells efficiency has already surpassed the polycrystalline and thin-film silicon solar cells efficiency. However, material toxicity and the stability of lead are the two foremost concerns toward commercialization that need to be addressed. Therefore, it would be enviable to find stable and lead-free alternatives which keep the unique optical and electronic properties of lead halide perovskite. To date, many new alternative lead-free halide perovskites solar absorbers have been explored and utilized in solar cell devices. This review presents a brief overview of the prospects and critical challenges faced by the lead-free perovskite materials in advancing the advancement of perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiao, Z., Song, Z., & Yan, Y. (2019). From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Advanced Materials, 31, 1803792. https://doi.org/10.1002/adma.201803792

    Article  Google Scholar 

  2. Jeon, N. J., Noh, J. H., Yang, W. S., et al. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517, 476–480. https://doi.org/10.1038/nature14133

    Article  Google Scholar 

  3. Yang, W. S., Noh, J. H., Jeon, N. J., et al. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234–1237. https://doi.org/10.1126/science.aaa9272

    Article  Google Scholar 

  4. Lin, K., Xing, J., Quan, L. N., et al. (2018). Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 562, 245–248. https://doi.org/10.1038/s41586-018-0575-3

    Article  Google Scholar 

  5. Cho, H., Jeong, S.-H., Park, M.-H., et al. (2015). Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 350, 1222–1225. https://doi.org/10.1126/science.aad1818

    Article  Google Scholar 

  6. Saidaminov, M. I., Haque, Md. A., Savoie, M., et al. (2016). Perovskite photodetectors operating in both narrowband and broadband regimes. Advanced Materials, 28, 8144–8149. https://doi.org/10.1002/adma.201601235

    Article  Google Scholar 

  7. Dou, L., Yang, Y. M., You J, et al. (2014). Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 5, 5404. https://doi.org/10.1038/ncomms6404.

  8. Xu, Y.-F., Yang, M.-Z., Chen, B.-X., et al. (2017). A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. Journal of the American Chemical Society, 139, 5660–5663. https://doi.org/10.1021/jacs.7b00489

    Article  Google Scholar 

  9. Chen, K., Deng, X., Dodekatos, G., & Tüysüz, H. (2017). Photocatalytic polymerization of 3,4-ethylenedioxythiophene over cesium lead iodide perovskite quantum dots. Journal of the American Chemical Society, 139, 12267–12273. https://doi.org/10.1021/jacs.7b06413

    Article  Google Scholar 

  10. Wang, X., Wang, H., Zhang, H., et al. (2018). Dynamic interaction between methylammonium lead Iodide and TiO2 nanocrystals leads to enhanced photocatalytic H2 evolution from HI splitting. ACS Energy Letters, 3, 1159–1164. https://doi.org/10.1021/acsenergylett.8b00488

    Article  Google Scholar 

  11. Tang, X., Hu, Z., Chen, W., et al. (2016). Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy, 28, 462–468. https://doi.org/10.1016/j.nanoen.2016.08.062

    Article  Google Scholar 

  12. Meinardi, F., Akkerman, Q. A., Bruni, F., et al. (2017). Doped halide perovskite nanocrystals for reabsorption-free luminescent solar concentrators. ACS Energy Letters, 2, 2368–2377. https://doi.org/10.1021/acsenergylett.7b00701

    Article  Google Scholar 

  13. Zdražil, L., Kalytchuk, S., Langer, M., et al. (2021). Transparent and low-loss luminescent solar concentrators based on self-trapped exciton emission in lead-free double perovskite nanocrystals. ACS Appl Energy Mater, 4, 6445–6453. https://doi.org/10.1021/acsaem.1c00360

    Article  Google Scholar 

  14. Kim, Y. C., Kim, K. H., Son, D.-Y., et al. (2017). Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 550, 87–91. https://doi.org/10.1038/nature24032

    Article  Google Scholar 

  15. Lei, H., Hardy, D., Gao, F. (2021). Lead-free double perovskite Cs2 AgBiBr6 : Fundamentals, applications, and perspectives. Advanced Functional Materials, 2105898. https://doi.org/10.1002/adfm.202105898

  16. Liao, W., Zhao, D., Yu, Y., et al. (2016). Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Advanced Materials, 28, 9333–9340. https://doi.org/10.1002/adma.201602992

    Article  Google Scholar 

  17. Krishnamoorthy, T., Ding, H., Yan, C., et al. (2015). Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry A, 3, 23829–23832. https://doi.org/10.1039/C5TA05741H

    Article  Google Scholar 

  18. Park, B.-W., Philippe, B., Zhang, X., et al. (2015). Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or Cesium) for solar cell application. Advanced Materials, 27, 6806–6813. https://doi.org/10.1002/adma.201501978

    Article  Google Scholar 

  19. Saparov, B., Hong, F., Sun, J.-P., et al. (2015). Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chemistry of Materials, 27, 5622–5632. https://doi.org/10.1021/acs.chemmater.5b01989

    Article  Google Scholar 

  20. Slavney, A. H., Hu, T., Lindenberg, A. M., & Karunadasa, H. I. (2016). A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. Journal of the American Chemical Society, 138, 2138–2141. https://doi.org/10.1021/jacs.5b13294

    Article  Google Scholar 

  21. McClure, E. T., Ball, M. R., Windl, W., & Woodward, P. M. (2016). Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chemistry of Materials, 28, 1348–1354. https://doi.org/10.1021/acs.chemmater.5b04231

    Article  Google Scholar 

  22. Majher, J. D., Gray, M. B., Strom, T. A., & Woodward, P. M. (2019). Cs2 NaBiCl6: Mn2+—A new orange-red halide double perovskite phosphor. Chemistry of Materials, 31, 1738–1744. https://doi.org/10.1021/acs.chemmater.8b05280

    Article  Google Scholar 

  23. Zhang, C., Gao, L., Teo, S., et al. (2018). Design of a novel and highly stable lead-free Cs2 NaBiI6 double perovskite for photovoltaic application. Sustainable Energy and Fuels, 2, 2419–2428. https://doi.org/10.1039/C8SE00154E

    Article  Google Scholar 

  24. Deng, W., Deng, Z.-Y., He, J., et al. (2017). Synthesis of Cs2AgSbCl6 and improved optoelectronic properties of Cs2AgSbCl6/TiO2 heterostructure driven by the interface effect for lead-free double perovskites solar cells. Applied Physics Letters, 111, 151602. https://doi.org/10.1063/1.4999192

    Article  Google Scholar 

  25. Volonakis, G., Haghighirad, A. A., Milot, R. L., et al. (2017). Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. Journal of Physical Chemistry Letters, 8, 772–778. https://doi.org/10.1021/acs.jpclett.6b02682

    Article  Google Scholar 

  26. Ahmad, R., Zdražil, L., Kalytchuk, S., et al. (2021). Uncovering the role of trioctylphosphine on colloidal and emission stability of Sb-Alloyed Cs2NaInCl6 double perovskite nanocrystals. ACS Applied Materials and Interfaces, 13, 47845–47859. https://doi.org/10.1021/acsami.1c10782

    Article  Google Scholar 

  27. Luo, J., Wang, X., Li, S., et al. (2018). Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 563, 541–545. https://doi.org/10.1038/s41586-018-0691-0

    Article  Google Scholar 

  28. Greul, E., Petrus, M. L., Binek, A., et al. (2017). Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. Journal of Materials Chemistry A, 5, 19972–19981. https://doi.org/10.1039/C7TA06816F

    Article  Google Scholar 

  29. Wang, B., Li, N., Yang, L., et al. (2021). Organic Dye/Cs2AgBiBr6 double perovskite heterojunction solar cells. Journal of the American Chemical Society, 143, 14877–14883. https://doi.org/10.1021/jacs.1c07200

    Article  Google Scholar 

  30. Bartel, C. J., et al. (2019, Feb). New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 5(2), eaav0693. https://doi.org/10.1126/sciadv.aav0693.

  31. Etgar, L. (2018). The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite? Energy and Environmental Science, 11(2), 234–242. https://doi.org/10.1039/C7EE03397D

    Article  Google Scholar 

  32. Du, M. H. (2014). Efficient carrier transport in halide perovskites: Theoretical perspectives. Journal of Materials Chemistry A, 2(24), 9091–9098. https://doi.org/10.1039/C4TA01198H

    Article  Google Scholar 

  33. Stoumpos, C. C., Malliakas, C. D., & Kanatzidis, M. G. (2013). Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 52(15), 9019–9038. https://doi.org/10.1021/ic401215x

    Article  Google Scholar 

  34. Chen, Z., et al. (2012). Photoluminescence study of polycrystalline CsSnI3 thin films: Determination of exciton binding energy. Journal of Luminescence, 132(2), 345–349. https://doi.org/10.1016/j.jlumin.2011.09.006

    Article  Google Scholar 

  35. Noel, N. K., et al. (2014). Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy and Environmental Science, 7(9), 3061–3068. https://doi.org/10.1039/C4EE01076K

    Article  Google Scholar 

  36. Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H., & Kanatzidis, M. G. (2014). Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, 8(6), 489–494. https://doi.org/10.1038/nphoton.2014.82

    Article  Google Scholar 

  37. Shi, T., et al. (2017). Effects of organic cations on the defect physics of tin halide perovskites. Journal of Materials Chemistry A, 5(29), 15124–15129. https://doi.org/10.1039/C7TA02662E

    Article  Google Scholar 

  38. Koh, T. M., et al. (2015). Formamidinium tin-based perovskite with low Eg for photovoltaic applications. Journal of Materials Chemistry A, 3(29), 14996–15000. https://doi.org/10.1039/C5TA00190K

    Article  Google Scholar 

  39. Lee, S. J., et al. (2016). Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2 –Pyrazine complex. Journal of the American Chemical Society, 138(12), 3974–3977. https://doi.org/10.1021/jacs.6b00142

    Article  Google Scholar 

  40. Liao, W., et al. (2016). Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Advanced Materials, 28(42), 9333–9340. https://doi.org/10.1002/adma.201602992

    Article  Google Scholar 

  41. Zhu, Z., Chueh, C., Li, N., Mao, C., & Jen, A. K. Y. (2018). Realizing efficient lead-free formamidinium tin triiodide perovskite solar cells via a sequential deposition route. Advanced Materials, 30(6), 1703800. https://doi.org/10.1002/adma.201703800

    Article  Google Scholar 

  42. Lee, S. J., et al. (2018). Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar Cells. ACS Energy Letters, 3(1), 46–53. https://doi.org/10.1021/acsenergylett.7b00976

    Article  Google Scholar 

  43. Gao, W., et al. (2020, Aug). A Site Cation Engineering of Metal Halide Perovskites: Version 3.0 of Efficient Tin Based Lead-Free Perovskite Solar Cells. Advanced Functional Materials, 30(34), 2000794. https://doi.org/10.1002/adfm.202000794.

  44. Zhao, Z., et al. (2017, Nov) Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%,” Advanced Science, 4(11), 1700204. https://doi.org/10.1002/advs.201700204.

  45. Liao, Y., et al. (2017). Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. Journal of the American Chemical Society, 139(19), 6693–6699. https://doi.org/10.1021/jacs.7b01815

    Article  Google Scholar 

  46. Wang, F., et al. (2018). 2D-Quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule, 2(12), 2732–2743. https://doi.org/10.1016/j.joule.2018.09.012

    Article  Google Scholar 

  47. Jokar, E., Chien, C.-H., Tsai, C.-M., Fathi, A., & Diau, E.W.-G. (2019). Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Advanced Materials, 31(2), 1804835. https://doi.org/10.1002/adma.201804835

    Article  Google Scholar 

  48. Jiang, X., et al. (2020). Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nature Communications, 11(1), 1245. https://doi.org/10.1038/s41467-020-15078-2

    Article  Google Scholar 

  49. Yu, Y., et al. (2016). Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Advances, 6(93), 90248–90254. https://doi.org/10.1039/C6RA19476A

    Article  Google Scholar 

  50. Shao, S., et al. (2018). Highly reproducible sn-based hybrid perovskite solar cells with 9% efficiency. Advanced Energy Materials, 8(4), 1702019. https://doi.org/10.1002/aenm.201702019

    Article  Google Scholar 

  51. Liu, J., et al. (2018). Lead-free solar cells based on tin halide perovskite films with high coverage and improved aggregation. Angew Chemie, 130(40), 13405–13409. https://doi.org/10.1002/ange.201808385

    Article  Google Scholar 

  52. Kayesh, M. E., et al. (2018). Enhanced photovoltaic performance of fasni3 -based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Letters, 3(7), 1584–1589. https://doi.org/10.1021/acsenergylett.8b00645

    Article  Google Scholar 

  53. Kayesh, M. E., et al. (2019). Coadditive engineering with 5-ammonium valeric acid iodide for efficient and stable sn perovskite solar cells. ACS Energy Letters, 4(1), 278–284. https://doi.org/10.1021/acsenergylett.8b02216

    Article  Google Scholar 

  54. Qiu, J., et al. (2019). 2D intermediate suppression for efficient ruddlesden-popper (RP) phase lead-free perovskite solar cells. ACS Energy Letters, 4(7), 1513–1520. https://doi.org/10.1021/acsenergylett.9b00954

    Article  Google Scholar 

  55. Chowdhury, T. H., Kayesh, M. E., Lee, J.-J., Matsushita, Y., Kazaoui, S., & Islam, A. (2019). Post deposition vapor annealing enables fabrication of 1 cm2 lead-free perovskite solar cells. Solar RRL, 3(12), 1900245. https://doi.org/10.1002/solr.201900245

    Article  Google Scholar 

  56. Lin, Z., et al. (2020). Preparation of efficient inverted tin-based perovskite solar cells via the bidentate coordination effect of 8-hydroxyquinoline. Chemical Communications, 56(28), 4007–4010. https://doi.org/10.1039/D0CC01106A

    Article  Google Scholar 

  57. Wu, T., et al. (2020). Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base. Science China: Chemistry, 63(1), 107–115. https://doi.org/10.1007/s11426-019-9653-8

    Article  Google Scholar 

  58. Li, M., et al. (2020). Tin halide perovskite films made of highly oriented 2d crystals enable more efficient and stable lead-free perovskite solar cells. ACS Energy Letters, 5(6), 1923–1929. https://doi.org/10.1021/acsenergylett.0c00782

    Article  Google Scholar 

  59. Meng, X., et al. (2020). Surface-controlled oriented growth of FASNI3 crystals for efficient lead-free perovskite solar cells. Joule, 4(4), 902–912. https://doi.org/10.1016/j.joule.2020.03.007

    Article  Google Scholar 

  60. Stoumpos, C. C., et al. (2015). Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. Journal of the American Chemical Society, 137(21), 6804–6819. https://doi.org/10.1021/jacs.5b01025

    Article  Google Scholar 

  61. Krishnamoorthy, T., et al. (2015). Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry A, 3(47), 23829–23832. https://doi.org/10.1039/C5TA05741H

    Article  Google Scholar 

  62. Kopacic, I., et al. (2018). Enhanced performance of germanium halide perovskite solar cells through compositional engineering. ACS Applied Energy Materials, 1(2), 343–347. https://doi.org/10.1021/acsaem.8b00007

    Article  Google Scholar 

  63. Nie, R., Sumukam, R. R., Reddy, S. H., Banavoth, M., & Seok, S. I. (2020). Lead-free perovskite solar cells enabled by hetero-valent substitutes. Energy Environment Science, 13(8), 2363–2385. https://doi.org/10.1039/D0EE01153C.

  64. Park, B.-W., Philippe, B., Zhang, X., Rensmo, H., Boschloo, G., & Johansson, E. M. J. (2015). Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or Cesium) for solar cell application. Advanced Materials, 27(43), 6806–6813. https://doi.org/10.1002/adma.201501978

    Article  Google Scholar 

  65. Zhang, Z., et al. (2017). High-Quality (CH3NH3)3Bi2I9 film-based solar cells: Pushing efficiency up to 1.64%. Journal of Physical Chemistry Letters, 8(17), 4300–4307. https://doi.org/10.1021/acs.jpclett.7b01952

    Article  Google Scholar 

  66. Shin, S. S., et al. (2018). Solvent-engineering method to deposit compact bismuth-based thin films: Mechanism and application to photovoltaics. Chemistry of Materials, 30(2), 336–343. https://doi.org/10.1021/acs.chemmater.7b03227

    Article  Google Scholar 

  67. Jain, S. M., et al. (2018). An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy, 49, 614–624. https://doi.org/10.1016/j.nanoen.2018.05.003

    Article  Google Scholar 

  68. Hebig, J.-C., Kühn, I., Flohre, J., & Kirchartz, T. (2016). Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Letters, 1(1), 309–314. https://doi.org/10.1021/acsenergylett.6b00170

    Article  Google Scholar 

  69. Sabba, D., et al. (2015). Impact of anionic Br—substitution on open circuit voltage in lead free perovskite (CsSnI3-xBrx) solar cells. Journal of Physical Chemistry C, 119(4), 1763–1767. https://doi.org/10.1021/jp5126624

    Article  Google Scholar 

  70. Wang, N., et al. (2016). Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films. Advanced Energy Materials, 6(24), 1601130. https://doi.org/10.1002/aenm.201601130

    Article  Google Scholar 

  71. Li, W., Li, J., Li, J., Fan, J., Mai, Y., & Wang, L. (2016). Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. Journal of Materials Chemistry A, 4(43), 17104–17110. https://doi.org/10.1039/C6TA08332C

    Article  Google Scholar 

  72. Chen, L.-J., Lee, C.-R., Chuang, Y.-J., Wu, Z.-H., & Chen, C. (2016). Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. Journal of Physical Chemistry Letters, 7(24), 5028–5035. https://doi.org/10.1021/acs.jpclett.6b02344

    Article  Google Scholar 

  73. Bai, F., Hu, Y., Hu, Y., Qiu, T., Miao, X., & Zhang, S. (2018). Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Solar Energy Materials and Solar Cells, 184, 15–21. https://doi.org/10.1016/j.solmat.2018.04.032

    Article  Google Scholar 

  74. Heo, J. H., Kim, J., Kim, H., Moon, S. H., Im, S. H., & Hong, K.-H. (2018). Roles of SnX2 (X = F, Cl, Br) additives in tin-based halide perovskites toward highly efficient and stable lead-free perovskite solar cells. Journal of Physical Chemistry Letters, 9(20), 6024–6031. https://doi.org/10.1021/acs.jpclett.8b02555

    Article  Google Scholar 

  75. Chen, M., et al. (2019). Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nature Communications, 10(1), 16. https://doi.org/10.1038/s41467-018-07951-y

    Article  Google Scholar 

  76. Yang, B., Chen, J., Yang, S., et al. (2018). Lead-free silver-bismuth halide double perovskite nanocrystals. Angewandte Chemie, 130, 5457–5461. https://doi.org/10.1002/ange.201800660

    Article  Google Scholar 

  77. Creutz, S. E., Crites, E. N., De Siena, M. C., & Gamelin, D. R. (2018). Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials. Nano Letters, 18, 1118–1123. https://doi.org/10.1021/acs.nanolett.7b04659

    Article  Google Scholar 

  78. Bekenstein, Y., Dahl, J. C., Huang, J., et al. (2018). The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions. Nano Letters, 18, 3502–3508. https://doi.org/10.1021/acs.nanolett.8b00560

    Article  Google Scholar 

  79. Zhang, Y., Shah, T., Deepak, F. L., & Korgel, B. A. (2019). Surface science and colloidal stability of double-perovskite Cs2 AgBiBr6 nanocrystals and their superlattices. Chemistry of Materials, 31, 7962–7969. https://doi.org/10.1021/acs.chemmater.9b02149

    Article  Google Scholar 

  80. Ahmad, R., Nutan, G. V., Singh, D., et al. (2021). Colloidal lead-free Cs2AgBiBr 6 double perovskite nanocrystals: Synthesis, uniform thin-film fabrication, and application in solution-processed solar cells. Nano Research, 14, 1126–1134. https://doi.org/10.1007/s12274-020-3161-6

    Article  Google Scholar 

  81. Ning, W., Wang, F., Wu, B., et al. (2018). Long electron-hole diffusion length in high-quality lead-free double perovskite films. Advanced Materials, 30, 1706246. https://doi.org/10.1002/adma.201706246

    Article  Google Scholar 

  82. Gao, W., Ran, C., Xi, J., et al. (2018). High quality Cs2 AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2 % efficiency. ChemPhysChem, 19, 1696–1700. https://doi.org/10.1002/cphc.201800346

    Article  Google Scholar 

  83. Wu, C., Zhang, Q., Liu, Y., et al. (2018). The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2 AgBiBr6 film. Advancement of Science, 5, 1700759. https://doi.org/10.1002/advs.201700759

    Article  Google Scholar 

  84. Wang, M., Zeng, P., Bai, S., et al. (2018). High quality sequential vapor deposited Cs2 AgBiBr6 thin films for lead-free perovskite solar cells. Solar RRL, 2, 1800217. https://doi.org/10.1002/solr.201800217

    Article  Google Scholar 

  85. Igbari, F., Wang, R., Wang, Z.-K., et al. (2019). Composition stoichiometry of Cs2 AgBiBr6 films for highly efficient lead-free perovskite solar cells. Nano Letters, 19, 2066–2073. https://doi.org/10.1021/acs.nanolett.9b00238

    Article  Google Scholar 

  86. Pantaler, M., Cho, K. T., Queloz, V. I. E., et al. (2018). Hysteresis-free lead-free double-perovskite solar cells by interface engineering. ACS Energy Letters, 3, 1781–1786. https://doi.org/10.1021/acsenergylett.8b00871

    Article  Google Scholar 

  87. Wang, B., Yang, L., Dall’Agnese, C., et al. (2020). Photoactive zn-chlorophyll hole transporter sensitized lead-Free Cs2 AgBiBr6 perovskite solar cells. Solar RRL, 4, 2000166. https://doi.org/10.1002/solr.202000166

  88. Yang, X., Chen, Y., Liu, P., et al. (2020). Multifunctional dye interlayers: simultaneous power conversion efficiency and stability enhancement of Cs2 AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer (Adv. Funct. Mater. 23/2020). Advanced Functional Materials, 30, 2070147. https://doi.org/10.1002/adfm.202070147

  89. Wang, B., Li, N., Yang, L., et al. (2021). Chlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2 AgBiBr6 double perovskite solar cells. Journal of the American Chemical Society, 143, 2207–2211. https://doi.org/10.1021/jacs.0c12786

    Article  Google Scholar 

  90. Pantaler, M., Olthof, S., Meerholz, K., & Lupascu, D. C. (2019). Bismuth-Antimony mixed double perovskites Cs2AgBi1−xSbxBr 6 in solar cells. MRS Advances, 4, 3545–3552. https://doi.org/10.1557/adv.2019.404

    Article  Google Scholar 

  91. Liu, Y., Zhang, L., Wang, M., et al. (2019). Bandgap-tunable double-perovskite thin films by solution processing. Materials Today, 28, 25–30. https://doi.org/10.1016/j.mattod.2019.04.023

    Article  Google Scholar 

Download references

Acknowledgements

Authors Harshit Sharma and Lalita acknowledge University Grant Commission (UGC) for providing the Senior Research Fellowship (Dec 16-513348) and Junior Research Fellowship (Dec19-191620164349) respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, R. et al. (2022). Advances in Perovskite Solar Cells: Prospects of Lead-Free Perovskite Materials. In: Singh, U.P., Chaure, N.B. (eds) Recent Advances in Thin Film Photovoltaics. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-3724-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3724-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3723-1

  • Online ISBN: 978-981-19-3724-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics