Skip to main content

Metagenomic Approaches for Studying Plant–Microbe Interactions

  • Chapter
  • First Online:
Understanding the Microbiome Interactions in Agriculture and the Environment

Abstract

Plant microbiome from environmental samples, including soil rhizosphere, consists of all microbial genomes and plays an essential role in maintaining plant growth and health in addition to tolerating biotic and abiotic stresses and climate change. Plant microbiome is beneficial to the plant in many ways, such as nitrogen metabolism and enhancing plant growth-promoting (PGP) effects. It is also believed that plant growth-promoting microbes (PGPM) enhance plant growth by a variety of mechanisms such as enhancing soil nutrient bioavailability, disease resistance, damage due to herbivores, and improving water acquisition. However, the microbial composition is mostly influenced by soil factors, plant genotype, and exudates from the plants as well.

Moreover, the plant microbiome depends on the plant–microbe interactions and cultivation practices as well. Recently, more emphasis is on the study of underlying genes affecting plant–microbe interaction by high-throughput methodologies, including 16S rRNA marker gene sequencing and metagenome approaches for studying plant-microbiome interaction and microbial community in the plant surroundings. The metagenomic studies offer the possibility to explore the taxonomic composition of plant microbiome and its functional properties as well. Taxonomic analysis for amplicon sequencing is carried out using bioinformatics tools such as QIAMI and Greengenes database to identify operational taxonomic units (OTUs); however, in the case of whole-genome shotgun (WGS) sequencing, taxonomic classification is achieved using tools such as “Kraken.” Recent advances in metatranscriptomics characterize members of the microbial community that are responsible for specific functions and identify the genes playing an essential role in plant–microbe interaction. Therefore, the present chapter focuses on reviewing the above molecular methodologies in detail for studying plant microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T et al (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinform Online 12:5–16

    PubMed  PubMed Central  Google Scholar 

  • Bashiardes S, Zilberman-Schapira G, Elinav E (2016) Use of metatranscriptomics in microbiome research. Bioinform Biol Insights 10:19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA et al (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917

    Article  CAS  PubMed  Google Scholar 

  • Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K et al (2015) Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J 13:390–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitwieser FP, Jennifer L, Steven LS (2017) A review of methods and databases for metagenomic classification and assembly. Brief Bioinform 20:1125–1136

    Article  PubMed Central  CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK et al (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  CAS  PubMed  Google Scholar 

  • Callahan BJ, Sankaran K, Fukuyama JA et al (2016) Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Res 5:1492

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlton JM, Angiuoli SV, Suh BB, Kooji TW et al (2002) Genome sequence and comparative analysis of the model rodent malaria parasite plasmodium yoelii yoelii. Nature 419(6906):512–519

    Article  CAS  PubMed  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1(2):e24

    Article  PubMed Central  CAS  Google Scholar 

  • Chen Z, Zheng Y, Ding C, Ren X et al (2017) Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops. Ecotoxicol Environ Saf 145:111–118

    Article  CAS  PubMed  Google Scholar 

  • Claesson MJ, Wang Q, O'Sullivan O, Greene-Diniz R et al (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38(22):e200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q et al (2005) The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. https://doi.org/10.1093/nar/gkt1244

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Wipf HM, Pierroz G, Raab TK, Khanna R, Coleman-Derr D (2019) A plant growth-promoting microbial soil amendment dynamically alters the strawberry root bacterial microbiome. Sci Rep 9(1):17677. https://doi.org/10.1038/s41598-019-53623-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey RK et al (2020) Bioinformatic tools for soil microbiome analysis. In: Unravelling the soil microbiome. Springer briefs in environmental science. Springer International, Cham, pp 61–70

    Chapter  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OUT sequences from microbial amplicon reads. Nat Methods 10(10):996–998

    Article  CAS  PubMed  Google Scholar 

  • Fuentes A, Herrera H, Charles TC, Arriagada C (2020) Fungal and bacterial microbiome associated with the rhizosphere of native plants from the Atacama Desert. Microorganisms 8:209

    Article  CAS  PubMed Central  Google Scholar 

  • Glassing A, Dowd SE, Galandiuk S, Davis B et al (2016) Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog 8:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gweon HS, Oliver A, Taylor J, Booth T, Gibbs M, Read DS et al (2015) PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol Evol 6(8):973–980

    Article  PubMed  PubMed Central  Google Scholar 

  • Haichar FZ, Marol C, Berge O, Rangel-Castro JI et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Kaushal M, Kumar A, Kaushal R (2017) Bacillus pumilus strain YSPMK11 as plant growth promoter and biocontrol agent against Sclerotinia sclerotiorum. 3 Biotech 7:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuczynski J, Stombaugh J, Walters WA, González R (2011) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. In: Current protocols in bioinformatics. https://doi.org/10.1002/0471250953.bi1007s36

    Chapter  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phyto-pathogens. Microbiol Res 167:493–499

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, AlMomin S, Al-Aqeel H, Al-Salameen F (2018) Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa. PLoS One 13(8):e0202127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwak J, Park J (2018) What we can see from very small size sample of metagenomic sequences. BMC Bioinformatics 19. https://doi.org/10.1186/s12859-018-2431-8

  • Laserson J, Jojic V, Koller D (2011) Genovo: de novo assembly for metagenomes. J Comput Biol 18(3):429–443

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X et al (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Liu CM, Luo R, Sadakane K (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31(10):1674–1676

    Article  CAS  PubMed  Google Scholar 

  • Lucaciu R, Pelikan C, Gerner SM, Zioutis C et al (2019) A bioinformatics guide to plant microbiome analysis. Front Plant Sci 10:1313

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo C, Rodriguez RLM, Johnston ER, Wu L et al (2014) Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. Appl Environ Microbiol 80:1777–1786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manoj K, George M, Rony S (2020) Metagenomic insights of the root colonizing microbiome associated with symptomatic and non-symptomatic bananas in fusarium wilt infected fields. Plan Theory 2020(9):263

    Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, van Veen JA (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8(8):1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet : an extension of velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40(20):e155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neeru N, Kothe E, Behl RK (2009) Role of root exudates in plant-microbe interactions. J Appl Bot Food Qual 82:122–130

    Google Scholar 

  • Nilsson RH, Anslan S, Bahram M, Wurzbacher C et al (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17(2):95–109

    Article  CAS  PubMed  Google Scholar 

  • Nissinen R, Helander M, Kumar M, Saikkonen K (2019) Heritable Epichloë symbiosis shapes plant fungal but not bacterial communities. Sci Rep 9:5253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Partida-Martinez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7(2):e30619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res:D590–D596. https://doi.org/10.1093/nar/gks1219

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Law AD, Sahib MR, Pervaiz ZH et al (2018) Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6:47–51

    Article  Google Scholar 

  • Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173(14):4371–4378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakya M, Lo CC, Chain PSG (2019) Advances and challenges in metatranscriptomic analysis. Front Genet 10:904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon C, Daniel R (2009) Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 85:265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein JL, Marsh TL, Wu KY, Shizuya H et al (1996) Characterization of uncultivated prokaryotes: isolation and analysis of analysis of a 40-kilobase pair genome fragment from a planktonic marine archaeon. J Bacteriol 178:591–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suhaimi NSM, Goh SY, Ajam N, Othman RY (2017) Diversity of microbiota associated with symptomatic and non-symptomatic bacterial wilt-diseased banana plants determined using 16S rRNA metagenome sequencing. World J Microbiol Biotechnol 33:168

    Article  PubMed  CAS  Google Scholar 

  • Unno Y, Shinano T (2013) Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. Microbes Environ 28(1):120–127

    Article  PubMed  Google Scholar 

  • Wenhan Z, Alex L, Mark B (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38:e13

    Article  CAS  Google Scholar 

  • Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15(3):R46

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu L, Wang J, Wu H, Chen J et al (2018) Comparative metagenomic analysis of rhizosphere microbial community composition and functional potentials under Rehmannia glutinosa consecutive monoculture. Int J Mol Sci 19(8):2394

    Article  PubMed Central  CAS  Google Scholar 

  • Yurgel SN, Douglas GM, Comeau AM, Mammoliti M et al (2017) Variation in bacterial and eukaryotic communities associated with natural and managed wild blueberry habitats. Phytobioms J 1:102–113

    Article  Google Scholar 

  • Yurgel SN, Douglas GM, Dusault A, Percival D et al (2018) Dissecting community structure in wild blueberry root and soil microbiome. Front Microbiol 9:1187

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuzhen Y, Jeong-Hyeon C, Haixu T (2011) RAPSearch: a fast protein similarity search tool for short reads BMC. Bioinformatics 12:159

    Google Scholar 

  • Zaheer R, Noyes N, Ortega Polo R, Cook SR, Marinier E, Van Domselaar G, Belk KE, Morley PS, McAllister TA (2018) Impact of sequencing depth on the characterization of the microbiome and resistome. Sci Rep 8(1):5890. https://doi.org/10.1038/s41598-018-24280-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pola Sudhakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohan, S.M., Sudhakar, P. (2022). Metagenomic Approaches for Studying Plant–Microbe Interactions. In: Veera Bramhachari, P. (eds) Understanding the Microbiome Interactions in Agriculture and the Environment. Springer, Singapore. https://doi.org/10.1007/978-981-19-3696-8_12

Download citation

Publish with us

Policies and ethics