Skip to main content

Apples: Role of Nutraceutical Compounds

  • Living reference work entry
  • First Online:
Compendium of Crop Genome Designing for Nutraceuticals
  • 72 Accesses

Abstract

Apples have long been deemed critical for maintaining a balanced human diet. This is attributed to the apple fruit’s contents of fiber, vitamin C, potassium, and various phytochemical secondary metabolites. In fact, apples are known to be excellent sources of various phytochemicals, including secondary metabolites such as polyphenols that have antioxidant properties that protect against oxidative damage. Therefore, these compounds in apple fruit provide additional health benefits to protect against disease in addition to their nutritional value. These antioxidant phytochemical compounds are termed as nutraceuticals. Efforts to investigate, assess, and enhance the nutraceutical content of apple fruits by capitalizing on the collective tools of genetics, genomic selection, genomics, transcriptomics, metabolomics, and other “omics” are contributing to our expanded knowledge of the relatively new field of apple nutraceutomics. However, it is important to keep in mind that there is a complex relationship between nutraceutical content, gene expression, and environmental factors in apple nutraceutomics. This chapter will provide an overview of various nutraceutical compounds present in apple fruits, their roles in benefiting human health and alleviating human health disease, structural and regulatory genes involved in key pathways of secondary metabolites, as well as ongoing efforts and future perspectives in the field of apple nutraceutomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alam MN, Almoyad M, Huq F (2018) Polyphenols in colorectal cancer: current state of knowledge including clinical trials and molecular mechanism of action. Biomed Res Int 2018:4154185

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980. https://doi.org/10.1105/tpc.113.122069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberti A, Zielinski A, Couto M, Judacewski P, Igarashi-Mafra L, Nogueira A (2017) Distribution of phenolic compounds and antioxidant capacity in apples tissues during ripening. J Food Sci Technol 54:1511–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allan A, Hellens R, Laing W (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  CAS  PubMed  Google Scholar 

  • Almanza-Aguilera E, Ceballos-Sánchez D, Achaintre D, Rothwell JA, Laouali N, Severi G, Katzke V, Johnson T, Schulze MB, Palli D, Gargano G, de Magistris MS, Tumino R, Sacerdote C, Scalbert A, Zamora-Ros R (2021) Urinary concentrations of (+)-catechin and(−)-epicatechin as biomarkers of dietary intake of flavan-3-ols in the European prospective investigation into cancer and nutrition (EPIC) study. Nutrients 13(11):4157. https://doi.org/10.3390/nu13114157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida DP, Gião MS, Pintado M, Gomes MH (2017) Bioactive phytochemicals in apple cultivars from the Portuguese protected geographical indication “Maçã de Alcobaça”: basis for market segmentation. Int J Food Prop 20:2206–2214

    Article  CAS  Google Scholar 

  • Amyotte B, Bowen AJ, Banks T, Rajcan I, Somers DJ (2017) Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study. PLoS One 12:e0171710

    Article  PubMed  PubMed Central  Google Scholar 

  • An XH, Tian Y, Chen KQ, Wang XF, Hao YJ (2012) The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. J Plant Physiol 169:710–717

    Article  CAS  PubMed  Google Scholar 

  • An J-P, Wang X-F, Espley R, Lin-Wang K, Bi S-Q, You C-X, Hao Y-J (2019) An apple B-box protein MdBBX37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant Cell Physiol 61:130–143. https://doi.org/10.1093/pcp/pcz185

    Article  CAS  Google Scholar 

  • An J-P, Liu Y-J, Zhang X-W, Bi S-Q, Wang X-F, You C-X, Hao Y-J (2020) Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple. J Exp Bot 71:3094–3109. https://doi.org/10.1093/jxb/eraa056

  • An JP, Zhang XW, Liu YJ, Wang XF, You CX, Hao YJ (2021) ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. J Exp Bot 72:1460–1472. https://doi.org/10.1093/jxb/eraa525

    Article  CAS  PubMed  Google Scholar 

  • Aprikian O, Duclos V, Guyot S, Besson C, Manach C, Bernalier A, Morand C, Rémésy C, Demigné C (2003) Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. J Nutr 133:1860–1865

    Article  CAS  PubMed  Google Scholar 

  • Awad M, de Jager A (2002a) Relationships between fruit nutrients and concentrations of flavonoids and chlorogenic acid in Elstar apple peels. Sci Hortic 92:265–276

    Article  CAS  Google Scholar 

  • Awad M, de Jager A (2002b) Formation of flavonoids, especially anthocyanin and chlorogenic acid in Jonagold apple peels: influences of growth regulators and fruit maturity. Sci Hortic 93:257–266

    Article  CAS  Google Scholar 

  • Awad M, de Jager A, van der Plas L, van der Krol A (2001a) Flavonoid and chlorogenic acid changes in peels of Elstar and Jonagold apples during development and ripening. Sci Hortic 90:69–83

    Article  CAS  Google Scholar 

  • Awad M, Wagenmakers P, de Jager A (2001b) Effects of light on flavonoid and chlorogenic acid levels in the peels of Jonagold apples. Sci Hortic 88:289–298

    Article  CAS  Google Scholar 

  • Bai S, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T (2014) An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta 240:1051–1062. https://doi.org/10.1007/s00425-014-2129-8

    Article  CAS  PubMed  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970. https://doi.org/10.1093/pcp/pcm066

    Article  CAS  PubMed  Google Scholar 

  • Bao M, Shen J, Jia Y, Li F, Ma W, Shen H, Shen L, Lin X, Zhang L, Dong X (2013) Apple polyphenol protects against cigarette smoke-induced acute lung injury. Nutrition 29:235–243. https://doi.org/10.1016/j.nut.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  • Bars-Cortina D, Martínez-Bardají A, Macià A, Motilva MJ, Piñol-Felis C (2020) Consumption evaluation of one apple flesh a day in the initial phases prior to adenoma/adenocarcinoma in an azoxymethane rat colon carcinogenesis model. J Nutr Biochem 83:108418

    Article  CAS  PubMed  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  CAS  PubMed  Google Scholar 

  • Bazzano LA, Serdula MK, Liu S (2003) Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr Atheroscler Rep 5:492–499

    Article  PubMed  Google Scholar 

  • Begić-Akagić A, Spaho N, Oručević S, Drkenda P, Kurtović M, Gaši F, Kopjar M, Piližota V (2011) Influence of cultivar, storage time, and processing on the phenol content of cloudy apple juice. Croat J Food Sci Technol 3(2):1–8

    Google Scholar 

  • Blesso CN (2019) Dietary anthocyanins and human health. Nutrients 11:2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller MJ, Oberritter H, Schulze M, Stehle P, Watzl B (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51:637–663. https://doi.org/10.1007/s00394-012-0380-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondonno NP, Bondonno CP, Ward NC, Hodgson JM, Croft KD (2017) The cardiovascular health benefits of apples: whole fruit vs. isolated compounds. Trends Food Sci Tech 69(Part B):243–256

    Google Scholar 

  • Bondonno NP, Davey RJ, Murray K, Radavelli-Bagatini S, Bondonno CP, Blekkenhorst LC, Sim M, Magliano DJ, Daly RM, Shaw JE, Lewis JR, Hodgson JM (2021) Associations between fruit intake and risk of diabetes in the AusDiab Cohort. J Clin Endocrinol Metab 106(10):e4097–e4108. https://doi.org/10.1210/clinem/dgab335

    Article  PubMed  PubMed Central  Google Scholar 

  • Borevitz JO, Xia YJ, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudichevskaia A, Kumar G, Sharma Y, Kapoor R, Singh AK (2020) Challenges and strategies for developing climate-smart apple varieties through genomic approaches. In: Kole C (ed) Genomic designing of climate-smart fruit crops. Springer, Cham, pp 23–71

    Chapter  Google Scholar 

  • Bowler RP (2004) Oxidative stress in the pathogenesis of asthma. Curr Allergy Asthma Rep 4:116–122. https://doi.org/10.1007/s11882-004-0056-7

    Article  PubMed  Google Scholar 

  • Boyer J, Liu RH (2003–2004) Antioxidants of apples. N Y Fruit Q 11(4):11–15

    Google Scholar 

  • Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 3:5. https://doi.org/10.1186/1475-2891-3-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Brazier Y (2019) What to know about apples. Medical News Today Newsletter. https://www.medicalnewstoday.com/articles/267290

  • Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21:1–38

    Article  Google Scholar 

  • Briguglio G, Costa C, Pollicino M, Giambò F, Catania S, Fenga C (2020) Polyphenols in cancer prevention: new insights. Int J Funct Nutr 1:9. https://doi.org/10.3892/ijfn.2020.9

    Article  Google Scholar 

  • Brizzolara S, Tenori L, Korban SS (2021) Metabolomic approaches for apple fruit quality improvement. In: Korban SS (ed) The apple genome. Springer, Cham, pp 311–340

    Chapter  Google Scholar 

  • Brueggemann J, Weisshaar B, Sagasser M (2010) A WD40-repeat gene from Malus x domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1. Plant Cell Rep 29:285–294. https://doi.org/10.1007/s00299-010-0821-0

    Article  CAS  PubMed  Google Scholar 

  • Busatto N, Matsumoto D, Tadiello A, Vrhovsek U, Costa F (2019) Multifaceted analyses disclose the role of fruit size and skin-russeting in the accumulation pattern of phenolic compounds in apple. PLoS One 14(7):e0219354. https://doi.org/10.1371/journal.pone.0219354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butkeviciute A, Viskelis J, Liaudanskas M, Viskelis P, Bobinas C, Janulis V (2021) Variation of triterpenes in apples stored in a controlled atmosphere. Molecules 26:3639. https://doi.org/10.3390/molecules26123639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbone K, Giannini B, Picchi V, Scalzo RL, Cecchini F (2011) Phenolic composition and free radical scavenging activity of different apple varieties in relation on the cultivar, tissue type and storage. Food Chem 127:493–500. https://doi.org/10.1016/j.foodchem.2011.01.030

    Article  CAS  PubMed  Google Scholar 

  • Celton J-M, Bianco L, Linsmith G, Balzerque S, Troggio M (2021) The apple genome and epigenome. In: Korban SS (ed) The apple genome. Springer, Cham, pp 169–187

    Chapter  Google Scholar 

  • Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12. https://doi.org/10.1186/1471-2229-12-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chagné D, Lin-Wang K, Espley RV, Volz RK, How NM, Rouse S, Brendolise C, Carlisle CM, Kumar S, De Silva N, Micheletti D, McGhie T, Crowhurst RN, Storey RD, Velasco R, Hellens RP, Gardiner SE, Allan AC (2013) An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol 161:225–239. https://doi.org/10.1104/pp.112.206771

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Kirk C, How N, Whitworth C, Fontic C, Reig G, Sawyer G, Rouse S, Poles L, Gardiner SE, Kumar S, Espley R, Volz RK, Troggio M, Iglesias I (2016) A functional genetic marker for apple red skin coloration across different environments. Tree Genet Genomes 12:67. https://doi.org/10.1007/s11295-016-1025-8

    Article  Google Scholar 

  • Chan A, Shea T (2009) Dietary supplementation with apple juice decreases endogenous amyloid-beta levels in murine brain. J Alzheimers Dis 16:167–171

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Lim Y (2018) Receptor to attenuate ligand-induced lipogenesis. J Agric Food Chem 66:10964–10976

    Article  PubMed  Google Scholar 

  • Chen M, Gowd V, Wang M, Chen F, Cheng K-W (2020) The apple dihydrochalcone phloretin suppresses growth and improves chemosensitivity of breast cancer cells via inhibition of cytoprotective autophagy. Food Funct 12:177–190

    Article  CAS  PubMed  Google Scholar 

  • Choi BY (2019) Biochemical basis of anti-cancer-effects of phloretin – a natural dihydrochalcone. Molecules 24(2):278. https://doi.org/10.3390/molecules24020278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clifford MN, Jaganath IB, Ludwig IA, Crozier A (2017) Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 34:1391–1421

    Article  CAS  PubMed  Google Scholar 

  • Cosme P, Rodríguez AB, Espino J, Garrido M (2020) Plant phenolics: bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 9:1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuthbertson D, Andrews PK, Reganold JP, Davies NM, Lange BM (2012) Utility of metabolomics toward assessing the metabolic basis of quality traits in apple fruit with an emphasis on antioxidants. J Agric Food Chem 60:8552–8560. https://doi.org/10.1021/jf3031088

  • Dashbaldan S, Pączkowski C, Szakiel A (2020) Variations in triterpenoid deposition in cuticular waxes during development and maturation of selected fruits of Rosaceae family. Int J Mol Sci 21:9762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daveri E, Adamo AM, Alfine E, Zhu W, Oteiza PI (2020) Hexameric procyanidins inhibit colorectal cancer cell growth through both redox and non-redox regulation of the epidermal growth factor signaling pathway. Redox Biol 38:101830

    Article  PubMed  PubMed Central  Google Scholar 

  • Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142:343–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, Jordan BR, Bowman JL, Schwinn KE (2020) The evolution of flavonoid biosynthesis: a bryophyte perspective. Front Plant Sci 11:7. https://doi.org/10.3389/fpls.2020.00007

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Iglesias R, Milagro FI, Boqué N, Martinez JA (2010) Healthy properties of proanthocyanidins. Biofactors 36:159–168. https://doi.org/10.1002/biof.79

    Article  CAS  Google Scholar 

  • De Paepe D, Valkenborg D, Noten B, Servaes K, Diels L, De Loose M, Van Droogenbroeck B, Voorspoels S (2015) Variability of the phenolic profiles in the fruits from old, recent and new apple cultivars cultivated in Belgium. Metabolomics 11:739–752

    Article  Google Scholar 

  • Devereux G, Seaton A (2005) Diet as a risk factor for atopy and asthma. J Allergy Clin Immunol 115:1109–1117

    Article  PubMed  Google Scholar 

  • Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P (2021) Polyphenols and human health: the role of bioavailability. Nutrients 13:273. https://doi.org/10.3390/nu13010273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear DNA content variation within the Rosaceae. Am J Bot 79:1081–1086. https://doi.org/10.2307/2444917

    Article  Google Scholar 

  • Dunemann F, Ulrich D, Boudichevskaia A, Grafe C, Weber WE (2009) QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny “Discovery” × “Prima”. Mol Breed 23:501–521

    Article  CAS  Google Scholar 

  • Efimtseva EA, Chelpanova TI (2020) Apples as a source of soluble and insoluble dietary fibers: effect of dietary fibers on appetite. Hum Physiol 46:224–234

    Article  CAS  Google Scholar 

  • Escarpa A, Gonzalez M (1998) High-performance liquid chromatography with diode-array detection for the performance of phenolic compounds in peel and pulp from different apple varieties. J Chromatography A 823:331–337. https://doi.org/10.1016/S0021-9673(98)00294-5

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427. https://doi.org/10.1111/j.1365-313X.2006.02964.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espley RV, Brendolise C, Chagne D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, Allan AC (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183. https://doi.org/10.1105/tpc.108.059329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espley RV, Bovy A, Bava C, Jaeger SR, Tomes S, Norling C, Crawford J, Rowan D, McGhie TK, Brendolise C, Putterill J, Schouten HJ, Hellens RP, Allan AC (2013) Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol J 11:408–419. https://doi.org/10.1111/pbi.12017

    Article  CAS  PubMed  Google Scholar 

  • Fabiani R, Minelli L, Rosignoli P (2016) Apple intake and cancer risk: a systematic review and meta-analysis of observational studies. Public Health Nutr 19:2603–2617

    Article  PubMed  Google Scholar 

  • Fang T, Zhen Q, Liao L, Owiti A, Zhao L, Korban SS, Han Y (2017) Variation of ascorbic acid concentration in fruits of cultivated and wild apples. Food Chem 225:132–137. https://doi.org/10.1016/j.foodchem.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Yi J, Li X, Wu X, Zhao Y, Ma Y, Bi J (2021) Systematic review of phenolic compounds in apple fruits: compositions, distribution, absorption, metabolism, and processing stability. J Agric Food Chem 69:7–27. https://doi.org/10.1021/acs.jafc.0c05481

    Article  CAS  PubMed  Google Scholar 

  • Fernandes I, de Freitas V, Mateus N (2014) Anthocyanins and human health: how gastric absorption may influence acute human physiology. Nutr Aging 2:1–14. https://doi.org/10.3233/NUA-130030

    Article  CAS  Google Scholar 

  • Fernando W, Rupasinghe HV, Hoskin DW (2019) Dietary phytochemicals with anti-oxidant and pro-oxidant activities: a double-edged sword in relation to adjuvant chemotherapy and radiotherapy? Cancer Lett 452:168–177

    Article  CAS  PubMed  Google Scholar 

  • Food and Agricultural Organization – FAOSTAT (2022) http://faostat.fao.org/. Accessed 20 Jan 2022

  • Francini A, Sebastiani L (2013) Phenolic compounds in apple (Malus x domestica Borkh.): compounds characterization and stability during postharvest and after processing. Antioxidants 2:181–193. https://doi.org/10.3390/antiox2030181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumitsu S, Villareal MO, Fujitsuka T, Aida K (2016) Anti-inflammatory and anti-arthritic effects of pentacyclic triterpenoids maslinic acid through NF-κB inactivation. Mol Nutr Food Res 60:399–409

    Article  CAS  PubMed  Google Scholar 

  • Furtado NAJC, Pirson L, Edelberg H, Miranda LM, Loira-Pastoriza C, Preat V, Larondelle Y, André CM (2017) Pentacyclic triterpene bioavailability: an overview of in vitro and in vivo studies. Molecules 22:400

    Article  Google Scholar 

  • Galvis-Sanchez AC, Rocha A (2016) Bioactive compounds of apples and pears as health promoters. In: Silva LR, Silva B (eds) Natural bioactive compounds from fruits and vegetables as health promoters. Bentham Science Publishers, Sharjah, pp 98–109

    Chapter  Google Scholar 

  • Gayer BA, Avendano EE, Edelson E, Nirmala N, Johnson EJ, Raman G (2019) Effects of intake of apples, pears, or their products on cardiometabolic risk factors and clinical outcomes: a systematic review and meta-analysis. Curr Dev Nutr 3:nzz109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo XF, Yang B, Tang J, Jiang JJ, Li D (2017) Apple and pear consumption and type 2 diabetes mellitus risk: a meta-analysis of prospective cohort studies. Food Funct 8:927–934

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Ding H, Tang X, Liang M, Li S, Zhang J, Cao J (2021) Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac Cancer 12:1415–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyenet SJ (2019) Impact of whole, fresh fruit consumption on energy intake and adiposity: a systematic review. Front Nutr 6:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Guyot S, Le Bourvellec C, Marnet N, Drilleau JF (2002) Procyanidins are the most abundant polyphenols in dessert apples at maturity. LWT Food Sci Technol 35:289–291

    Article  CAS  Google Scholar 

  • Guyot S, Marnet N, Sanoner P, Drilleau JF (2003) Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices. J Agric Food Chem 51:6240–6247

    Article  CAS  PubMed  Google Scholar 

  • Hammerstone J, Lazarus S, Schmitz H (2000) Procyanidin content and variation in some commonly consumed foods. J Nutr 130:2086S–2092S

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Korban SS (2021) Genetic and physical mapping of the apple genome. In: Korban SS (ed) The apple genome. Springer, Cham, pp 131–168

    Chapter  Google Scholar 

  • Han Y, Gasic K, Korban SS (2007) Multiple-copy cluster-type organization and evolution of genes encoding O-methyltransferases in apple. Genetics 176:2625–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Vimolmangkang S, Soria-Guerra R, Rosales-Mendoza S, Zheng D, Lygin AV, Korban SS (2010) Ectopic expression of apple F3′H genes contribute to the accumulation of anthocyanin in the Arabidopsis tt7 mutant grown under N-deficient conditions. Plant Physiol 153:806–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Vimolmangkang S, Soria-Guerra RE, Korban SS (2012) Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin. J Exp Bot 63:2437–2447. https://doi.org/10.1093/jxb/err415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han M, Li G, Liu X, Li A, Mao P, Liu P, Li H (2019) Phenolic profile, antioxidant activity and anti-proliferative activity of crabapple fruits. Hortic Plant J 5:155–163. https://doi.org/10.1016/j.hpj.2019.01.003

    Article  Google Scholar 

  • Hanhan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12:31–46. https://doi.org/10.1158/2159-8290.CD-21-105

    Article  Google Scholar 

  • Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171. https://doi.org/10.1007/s11103-004-6910-0

    Article  CAS  PubMed  Google Scholar 

  • Henry-Kirk RA, McGhie TK, Andre CM, Hellens RP, Allan AC (2012) Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. J Exp Bot 63:5437–5450. https://doi.org/10.1093/jxb/ers193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hichri I, Heppel SC, Pillet J, Léon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J (2010) The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant 3:509–523. https://doi.org/10.1093/mp/ssp118

    Article  CAS  PubMed  Google Scholar 

  • Ho KK, Ferruzzi MG, Wightman JD (2020) Potential health benefits of (poly) phenols derived from fruit and 100% fruit juice. Nutr Rev 78:145–174. https://doi.org/10.1093/nutrit/nuz041

    Article  PubMed  Google Scholar 

  • Hodgson JM, Prince RL, Woodman RJ, Bondonno CP, Ivey KL, Bondonno N, Rimm EB, Ward NC, Croft KD, Lewis JR (2016) Apple intake is inversely associated with all-cause and disease-specific mortality in elderly women. Br J Nutr 115(5):860–867

    Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465. https://doi.org/10.1105/tpc.020297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda C, Moriya S (2018) Anthocyanin biosynthesis in apple fruit. Hortic J 87:305–314

    Article  CAS  Google Scholar 

  • Hosseini B, Berthon BS, Wark P, Wood LG (2017) Effects of fruit and vegetable consumption on risk of asthma, wheezing and immune responses: a systematic review and meta-analysis. Nutrients 9(4):341. https://doi.org/10.3390/nu9040341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou N, Liu N, Han J, Yan Y, Li J (2017) Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anti-Cancer Drugs 28:59–65

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Fang H, Wang J, Yue X, Su M, Mao Z, Zou Q, Jiang H, Guo Z, Yu L, Feng T, Lu L, Peng Z, Zhang Z, Wang N, Chen X (2020) Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synthesis in apple. Plant Sci 292:110377. https://doi.org/10.1016/j.plantsci.2019.110377

    Article  CAS  PubMed  Google Scholar 

  • Hyson DA (2011) A comprehensive review of apples and apple components and their relationship to human health. Adv Nutr 2(5):408–420. https://doi.org/10.3945/an.111.000513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyun TK, Jang KI (2016) Apple as a source of dietary phytonutrients: an update on the potential health benefits of apple. EXCLI J 15:565

    PubMed  PubMed Central  Google Scholar 

  • Ichwan M, Walker TL, Nicola Z, Ludwig-Müller J, Böttcher C, Overall RW, Adusumilli VS, Bulut M, Sykes AM, Hübner N, Ramirez-Rodriguez G, Ortiz-López L, Lugo-Hernández EA, Kempermann G (2021) Apple peel and flesh contain pro-neurogenic compounds. Stem Cell Rep 16(3):548–565. https://doi.org/10.1016/j.stemcr.2021.01.005

    Article  CAS  Google Scholar 

  • Imeh U, Khokhar S (2002) Distribution of conjugated and free phenols in fruits: antioxidant activity and cultivar variations. J Agric Food Chem 50:6301–6306

    Article  CAS  PubMed  Google Scholar 

  • Jakopic J, Stampar F, Veberic R (2009) The influence of exposure to light on the phenolic content of “Fuji” apple. Sci Hortic 123:234–239

    Article  CAS  Google Scholar 

  • Jia L, Huang S, Yin X, Zan Y, Guo Y, Han L (2018) Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci 208:123–130

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Sun Q, Zhang T, Liu W, Wang N, Chen X (2021) MdMYB114 regulates anthocyanin biosynthesis and functions downstream of MdbZIP4-like in apple fruit. J Plant Physiol 257:153353. https://doi.org/10.1016/j.jplph.2020.153353

    Article  CAS  PubMed  Google Scholar 

  • Jugdé H, Nguy D, Moller I, Cooney JM, Atkinson RG (2008) Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple. FEBS J 275:3804–3814

    Article  PubMed  Google Scholar 

  • Kaeswurm JAH, Burandt MR, Mayer PS, Straub LV, Buchweitz M (2022) Bioaccessibility of apple polyphenols from peel and flesh during oral digestion. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.1c08130

  • Kalinowska M, Bielawska A, Lewandowska-Siwkiewicz H, Priebe W, Lewandowski W (2014) Apples: content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol Biochem 84:169–188

    Article  CAS  PubMed  Google Scholar 

  • Kalinowska M, Gryko K, Wróblewska AM, Jabłońska-Trypuć A, Karpowicz D (2020) Phenolic content, chemical composition and anti-/pro-oxidant activity of Gold Milenium and Papierowka apple peel extracts. Sci Rep 10:14951

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawser Hossain M, Abdal Dayem A, Han J, Yin Y, Kim K, Saha SK, Yang G-M, Choi HY, Cho S-G (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 17:569. https://doi.org/10.3390/ijms17040569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan A, Korban SS (2022) Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities. Theor Appl Genet 135:3961–3985. https://doi.org/10.1007/s00122-022-04093-0

  • Khan SA, Chibon PY, de Vos RC, Schipper BA, Walraven E, Beekwilder J, van Dijk T, Finkers R, Visser RG, van de Weg EW, Bovy A, Cestaro A, Velasco R, Jacobsen E, Schouten HJ (2012a) Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. J Exp Bot 63(8):2895–2908. https://doi.org/10.1093/jxb/err464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SA, Schaart JG, Beekwilder J, Allan AC, Tikunov YM, Jacobsen E, Schouten HJ (2012b) ThemQTL hotspot on linkage group 16 for phenolic compounds in apple fruits is probably the result of a leucoanthocyanidin reductase gene at that locus. BMC Res Notes 5:618

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan A, Gutierrez B, Chao T, Singh J (2021) Origin of the domesticated apple. In: Korban SS (ed) The apple genome. Springer, Cham, pp 383–394

    Chapter  Google Scholar 

  • Kidoń M, Grabowska J (2021) Bioactive compounds, antioxidant activity, and sensory qualities of red-fleshed apples dried by different methods. LWT 136:110302. https://doi.org/10.1016/j.lwt.2020.110302

    Article  CAS  Google Scholar 

  • Kim HS, Kim B-G, Sung S, Kim M, Mok H, Chong Y, Ahn J-H (2013) Engineering flavonoid glycosyltransferases for enhanced catalytic efficiency and extended sugar-donor selectivity. Planta 238:683–693

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Ku KH, Jeong MC, Kim SS, Mitchell AE, Lee J (2019) A comparison of the chemical composition and antioxidant activity of several new early- to mid-season apple cultivars for a warmer climate with traditional cultivars. J Sci Food Agric 99:4712–4724

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Ku K-H, Jeong M-C, Kwon S-I, Lee J (2020a) Metabolite profiling and antioxidant activity of 10 new early- to mid-season apple cultivars and 14 traditional cultivars. Antioxidants 9:443. https://doi.org/10.3390/antiox9050443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim U, Kim CY, Lee JM, Oh H, Ryu B, Kim J, Park JH (2020b) Phloretin inhibits the human prostate cancer cells through the generation of reactive oxygen species. Pathol Oncol Res 26:977–984

    Article  CAS  PubMed  Google Scholar 

  • Koh Y-C, Ho C-T, Pan M-H (2019) Recent advances in cancer chemoprevention with phytochemicals. J Food Drug Anal 28:14–37

    Article  PubMed  Google Scholar 

  • Korban SS (2021) Future prospects for “omics” and other technologies for genetic improvement of apple. In: Korban SS (ed) The apple genome. Springer, Cham, pp 395–412

    Chapter  Google Scholar 

  • Koutsos A, Tuohy KM, Lovegrove JA (2015) Apples and cardiovascular health – is the gut microbiota a core consideration? Nutrients 7:3959–3998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutsos A, Lima M, Conterno L, Gasperotti M, Bianchi M, Fava F, Vrhovsek U, Lovegrove JA, Tuohy KM (2017) Effects of commercial apple varieties on human gut microbiota composition and metabolic output using an in vitro colonic model. Nutrients 9:533

    Article  PubMed  PubMed Central  Google Scholar 

  • Koutsos A, Riccadonna S, Ulaszewska MM, Franceschi P, Trošt K, Galvin A, Braune T, Fava F, Perenzoni D, Mattivi F, Tuohy KM, Lovegrove JA (2020) Two apples a day lower serum cholesterol and improve cardiometabolic biomarkers in mildly hypercholesterolemic adults: a randomized, controlled, crossover trial. Am J Clin Nutr 111:307–318. https://doi.org/10.1093/ajcn/nqz282

    Article  PubMed  Google Scholar 

  • Kschonsek J, Wolfram T, Stöckl A, Böhm V (2018) Polyphenolic compounds analysis of old and new apple cultivars and contribution of polyphenolic profile to the in vitro antioxidant capacity. Antioxidants 7:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Łata B (2007) Relationship between apple peel and the whole fruit antioxidant content: year and cultivar variation. J Agric Food Chem 55:663–671

    Article  PubMed  Google Scholar 

  • Łata B, Trampczynska A, Paczesna J (2009) Cultivar variation in apple peel and whole fruit phenolic composition. Sci Hortic 121:176–181

    Article  Google Scholar 

  • Leng E, Xiao Y, Mo Z, Li Y, Zhang Y, Deng X, Li W (2018) Synergistic effect of phytochemicals on cholesterol metabolism and lipid accumulation in HepG2 cells. BMC Complement Altern Med 18:1–10

    Article  CAS  Google Scholar 

  • Li H, Huang CH, Ma H (2019) Whole-genome duplications in pear and apple. In: Korban SS (ed) The pear genome. Springer, Cham, pp 279–299

    Chapter  Google Scholar 

  • Li CX, Zhao XH, Zuo WF, Zhang TL, Zhang ZY, Chen XS (2020) Phytochemical profiles, antioxidant, and antiproliferative activities of four red-fleshed apple varieties in China. J Food Sci 85:718–726

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yu W, Xu J, Lu X, Liu Y (2022) Anthocyanin biosynthesis induced by MYB transcription factors in plants. Int J Mol Sci 23(19):11701. https://doi.org/10.3390/ijms231911701

  • Liao L, Vimolmangkang S, Wei G, Zhou H, Korban SS, Han Y (2015) Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple. Front Plant Sci 6:243. https://doi.org/10.3389/fpls.2015.00243

  • Lin S-T, Tu S-H, Yang P-S, Hsu S-P, Lee WH, Ho C-T, Wu C-H, Lai Y-H, Chen M-Y, Chen L-C (2016) Apple polyphenol phloretin inhibits colorectal cancer cell growth via inhibition of the type 2 glucose transporter and activation of p53-mediated signaling. J Agric Food Chem 64:6826–6837

    Article  CAS  PubMed  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagnè D, Rowan DD, Troggio M, Iglesias I, Allan AC (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176–1190. https://doi.org/10.1111/j.1365-3040.2011.02316.x

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Li R, Dai Y, Chen X, Wang X (2018) Genome-wide identification and expression analysis of the B-box gene family in the apple (Malus domestica Borkh.) genome. Mol Gen Genomics 293:303–315. https://doi.org/10.1007/s00438-017-1386-1

    Article  CAS  Google Scholar 

  • Liu W, Wang Y, Yu L, Jiang H, Guo Z, Xu H, Jiang S, Fang H, Zhang J, Su M, Zhang Z, Chen X, Chen X, Wang N (2019) MdWRKY11 participates in anthocyanin accumulation in red-fleshed apples by affecting MYB transcription factors and the photoresponse factor MdHY5. J Agric Food Chem 67:8783–8793. https://doi.org/10.1021/acs.jafc.9b02920

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Liu Z, Wu Y, Zheng L, Zhang G (2021) Regulatory mechanisms of anthocyanin biosynthesis in apple and pear. Int J Mol Sci 22(16):8441. https://doi.org/10.3390/ijms22168441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Hu YL, Wang H (2017) Ursolic acid inhibits breast cancer growth by inhibiting proliferation, inducing autophagy and apoptosis, and suppressing inflammatory responses via the PI3K/AKT and NF-κB signaling pathways in vitro. Exp Ther Med 14:3623–3631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105. https://doi.org/10.1146/annurev-arplant-042811-105439

    Article  CAS  PubMed  Google Scholar 

  • Maffei F, Tarozzi A, Carbone F, Marchesi A, Hrelia S, Angeloni C, Forti G, Hreliaa P (2007) Relevance of apple consumption for protection against oxidative damage induced by hydrogen peroxide in human lymphocytes. Br J Nutr 97:921–927

    Article  CAS  PubMed  Google Scholar 

  • Mahmud LSM, Tisha A, Sagor AT (2018) A comprehensive review on effective role of apple polyphenols in the treatment of obesity, diabetes, and liver dysfunctions with some possible molecular mechanisms. Oxid Antioxid Med Sci 7:9–27

    Article  Google Scholar 

  • Marín L, Miguélez EM, Villar CJ, Lombó F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:905215

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Rodríguez OP, Thompson-Bonilla MDR, Jaramillo-Flores ME (2020) Association between obesity and breast cancer: molecular bases and the effect of flavonoids in signaling pathways. Crit Rev Food Sci Nutr 60:3770–3792

    Article  PubMed  Google Scholar 

  • Masuda I, Koike M, Nakashima S, Mizutan Y, Ozawa Y, Watanabe K, Sawada Y, Sugiyama H, Sugimoto A, Nojiri H, Sashihara K, Yokote K, Shimizu T (2018) Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Sci Rep 8:7229. https://doi.org/10.1038/s41598-018-25348-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure KA, Gong Y, Song J, Vinqvist-Tymchuk M, Palmer LC, Fan L, Burgher-MacLellan K, Zhang ZQ, Celton J-M, Forney CF, Migicovsky Z, Myles S (2019) Genome-wide association studies in apple reveal loci of large effect controlling apple polyphenols. Hortic Res 6:107. https://doi.org/10.1038/s41438-019-0190-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGhie TK, Walton MC (2007) The bioavailability and adsorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51:702–713. https://doi.org/10.1002/mnfr.200700092

    Article  CAS  PubMed  Google Scholar 

  • Mellidou I, Chagné D, Laing W, Keulemans J, Davey MW (2012) Allelic variation in paralogues of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Plant Physiol 160:1613–1629. https://doi.org/10.1104/pp.112.203786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Wilson AM, Castro-Arredondo SI, Espinosa-Plascencia A, del Refugio Robles-Burgueño M, Balandrán-Quintana RR, del Carmen Bermúdez-Almada M (2016) Chemical composition and antioxidant-prooxidant potential of a polyphenolic extract and a proanthocyanidin-rich fraction of apple skin. Heliyon 2:e00073

    Article  PubMed  PubMed Central  Google Scholar 

  • Mignard P, Beguería S, Reig G, Font i Forcada C, Moreno MA (2021) Genetic origin and climate determine fruit quality and antioxidant traits on apple (Malus x domestica Borkh.). Sci Hortic 285:110142. https://doi.org/10.1016/j.scienta.2021.110142

    Article  CAS  Google Scholar 

  • Min J, Li X, Huang K, Tang H, Ding X, Qi C, Qin X, Xu Z (2015) Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways. Oncol Rep 34:2871–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosel HD, Herrmann K (1974) Changes in catechins and hydroxycinnamic acid derivatives during development of apples and pears. J Sci Food Agric 25:251–256

    Article  CAS  PubMed  Google Scholar 

  • Na W, Ma B, Shi S, Chen Y, Zhang H, Zhan Y, An H (2020) Procyanidin B1, a novel and specific inhibitor of Kv10.1 channel, suppresses the evolution of hepatoma. Biochem Pharmacol 178:114089

    Article  CAS  PubMed  Google Scholar 

  • Nasir A, Bullo MMH, Ahmed Z, Imtiaz A, Yaqoob E, Jadoon M, Ahmed H, Afreen A, Yaqoob S (2020) Nutrigenomics: epigenetics and cancer prevention: a comprehensive review. Crit Rev Food Sci Nutr 60:1375–1387

    Article  CAS  PubMed  Google Scholar 

  • Nezbedova L, McGhie T, Christensen M, Heyes J, Nasef NA, Mehta S (2021) Onco-preventive and chemo-protective effects of apple bioactive compounds. Nutrients 13(11):4025. https://doi.org/10.3390/nu13114025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LT, Lee YH, Sharma AR, Park JB, Jagga S, Sharma G, Lee SS, Nam JS (2017) Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. Korean J Physiol Pharmacol 21:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nile A, Nile SH, Shin J, Park G, Oh J-W (2021) Quercetin-3-glucoside extracted from apple pomace induces cell cycle arrest and apoptosis by increasing intracellular ROS levels. Int J Mol Sci 22:10749. https://doi.org/10.3390/ijms221910749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rourke D (2021) Economic importance of the apple industry. In: Korban SS (ed) The apple genome. Springer, Cham, pp 1–18

    Google Scholar 

  • Ou K, Gu L (2014) Absorption and metabolism of proanthocyanidins. J Funct Foods 7:43–53

    Article  CAS  Google Scholar 

  • Pereyra-Vergara F, Olivares-Corichi IM, Perez-Ruiz AG, Luna-Arias JP, García-Sánchez JR (2020) Apoptosis induced by (−)-epicatechin in human breast cancer cells is mediated by reactive oxygen species. Molecules 25:1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plunkett BJ, Henry-Kirk R, Friend A, Diack R, Helbig S, Mouhu K, Tomes S, Dare AP, Espley RV, Putterill J, Allan AC (2019) Apple B-box factors regulate light-responsive anthocyanin biosynthesis genes. Sci Rep 9:17762. https://doi.org/10.1038/s41598-019-54166-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podwyszyńska M, Marasek-Ciołakowska A (2021) Ploidy, genome size, and cytogenetics of apple. In: Korban SS (ed) The apple genome. Springer, Cham, pp 47–71

    Chapter  Google Scholar 

  • Rana S, Bhushan S (2016) Apple phenolics as nutraceuticals: assessment, analysis and application. J Food Sci Technol 53:1727–1738

    Article  CAS  PubMed  Google Scholar 

  • Raudone L, Raudonis R, Liaudanskas M, Janulis V, Viskelis P (2017) Phenolic antioxidant profiles in the whole fruit, flesh and peel of apple cultivars grown in Lithuania. Sci Hortic 216:186–192

    Article  CAS  Google Scholar 

  • Renard C, Baron A, Guyot S, Drilleau J (2001) Interactions between apple cell walls and native apple polyphenols’ quantification and some consequences. Int J Biol Macromol 29:115–125. https://doi.org/10.1016/S0141-8130(01)00155-6

    Article  CAS  PubMed  Google Scholar 

  • Renard CM, Dupont N, Guillermin P (2007) Concentrations and characteristics of procyanidins and other phenolics in apples during fruit growth. Phytochemistry 68:1128–1138

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Farias M, Carrasco-Pozo C (2019) The anti-cancer effect of quercetin: molecular implications in cancer metabolism. Int J Mol Sci 20:3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romieu I, Varraso R, Avenel V, Leynaert B, Kauffmann F, Clavel-Chapelon F (2006) Fruit and vegetable intakes and asthma in the E3N study. Thorax 61:209–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Mondru AK, Chakraborty T, Das A, Dasgupta S (2022) Apple polyphenol phloretin complexed with ruthenium is capable of reprogramming the breast cancer microenvironment through modulation of PI3K/Akt/mTOR/VEGF pathways. Toxicol Appl Pharmacol 434:115822. https://doi.org/10.1016/j.taap.2021.115822

    Article  CAS  PubMed  Google Scholar 

  • Rupasinghe VHP, Huber GM, Embree C, Forsline PL (2010) Red-fleshed apple as a source for functional beverages. Can J Plant Sci 90:95–100

    Article  Google Scholar 

  • Sapio L, Salzillo A, Illiano M, Ragone A, Spina A, Chiosi E, Pacifico S, Catauro M, Naviglio S (2020) Chlorogenic acid activates ERK1/2 and inhibits proliferation of osteosarcoma cells. J Cell Physiol 235:3741–3752

    Article  CAS  PubMed  Google Scholar 

  • Scafuri B, Marabotti A, Carbone V, Minasi P, Dotolo S, Facchiano A (2016) A theoretical study on predicted protein targets of apple polyphenols and possible mechanisms of chemoprevention in colorectal cancer. Sci Rep 6:32516. https://doi.org/10.1038/srep32516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selby-Pham SN, Miller RB, Howell K, Dunshea F, Bennett LE (2017) Physicochemical properties of dietary phytochemicals can predict their passive absorption in the human small intestine. Sci Rep 7:1931

    Article  PubMed  PubMed Central  Google Scholar 

  • Selma MV, Espín JC, Tomas-Barberan F (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57:6485–6501

    Article  CAS  PubMed  Google Scholar 

  • Shankar E, Zhang A, Franco D, Gupta S (2017) Betulinic acid-mediated apoptosis in human prostate cancer cells involves p53 and nuclear factor-kappa B (NF-κB) pathways. Molecules 22:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Shilpi A, Parbin S, Sengupta D, Kar S, Deb M, Rath SK, Pradhan N, Rakshit M, Patra SK (2015) Mechanisms of DNA methyltransferase-inhibitor interactions: procyanidin B2 shows new promise for therapeutic intervention of cancer. Chem Biol Interact 233:122–138

    Article  CAS  PubMed  Google Scholar 

  • Song W, Zhao X, Xu J, Zhang H (2017) Quercetin inhibits angiogenesis-mediated human retinoblastoma growth by targeting vascular endothelial growth factor receptor. Oncol Lett 14:3343–3348

    Article  PubMed  PubMed Central  Google Scholar 

  • Sotler R, Poljšak B, Dahmane R, Jukić T, Jukić DP, Rotim C, Trebše P, Starc A (2019) Prooxidant activities of antioxidants and their impact on health. Acta Clin Croat 58:726–736

    PubMed  PubMed Central  Google Scholar 

  • Starowicz M, Achrem-Achremowicz B, Piskula M, Zielinski H (2020) Phenolic compounds from apples: reviewing their occurrence, absorption, bioavailability, processing, and antioxidant activity – a review. Polish J Food Nutr Sci 70:321–336

    Article  CAS  Google Scholar 

  • Stone WL, Pham T (2022) Biochemistry: antioxidants. STATPEARLS. https://www.statpearls.com/ArticleLibrary/viewarticle/17703

  • Stracke BA, Rüfer CE, Weibe FP, Bub A, Watzl B (2009) Three-year comparison of the polyphenol contents and antioxidant capacities in organically and conventionally produced apples (Malus domestica Borkh. cultivar ‘Golden Delicious’). J Agric Food Chem 57:4598–4605

    Google Scholar 

  • Stushnoff C, McSay AE, Forseline PL, Luby J (2003) Diversity of phenolic antioxidant content and radical scavenging capacity in the USDA apple germplasm core collection. Acta Hortic 623:305–311

    Article  CAS  Google Scholar 

  • Sut S, Zengin G, Maggi F, Malagoli M, Dall’Acqua S (2019) Triterpene acid and phenolics from ancient apples of Friuli Venezia Giulia as nutraceutical ingredients: LC-MS study and in vitro activities. Molecules 24:1109. https://doi.org/10.3390/molecules24061109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232. https://doi.org/10.1104/pp.106.088104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teh SL, Kostick SA, Evans KM (2021) Genetics and breeding of apple scions. In: Korban SS (ed) The apple genome. Springer, Cham, pp 73–104

    Chapter  Google Scholar 

  • Thilakarathna SH, Rupasinghe HPV, Needs PW (2013) Apple peel bioactive rich extracts effectively inhibit in vitro human LDL cholesterol oxidation. Food Chem 138:463–470. https://doi.org/10.1016/j.foodchem.2012.09.121

    Article  CAS  PubMed  Google Scholar 

  • Thomas P, Dong J (2021)(−)-Epicatechin acts as a potent agonist of the membrane androgen receptor, ZIP9 (SLC39A9), to promote apoptosis of breast and prostate cancer cells. J Steroid Biochem Mol Biol 211:105906

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Zhang J, Han, Z-Y, Song T-T, Li J-Y, Wang Y-R, Yao Y-C (2017) McMYB12 transcription factors co-regulate proanthocyanidin and anthocyanin biosynthesis in Malus crabapple. Sci Rep 7:43715. https://doi.org/10.1038/srep43715

  • Tsao R, Yang R, Young JC, Zhu H (2003) Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J Agric Food Chem 51:6347–6353

    Article  CAS  PubMed  Google Scholar 

  • Ulaszewska M, Vázquez-Manjarrez N, Garcia-Aloy M, Llorach R, Mattivi F, Dragsted LO, Praticò G, Manach C (2018) Food intake biomarkers for apple, pear, and stone fruit. Genes Nutr 13:29. https://doi.org/10.1186/s12263-018-0620-8

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Sluis A, Dekker M, de Jager A, Jongen W (2001) Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. J Agric Food Chem 49:3606–3613

    Article  PubMed  Google Scholar 

  • van der Sluis A, Dekker M, Skrede G, Jongen W (2002) Activity and concentration of polyphenolic antioxidants in apple juice. 1. Effect of existing production methods. J Agric Food Chem 50:7211–7219

    Article  PubMed  Google Scholar 

  • van Nocker S, Berry G, Najdowski J, Roberto Michelutti R, Margie Luffman M, Philip Forsline P, Alsmairat N, Beaudry R, Nair MG, Ordidge M (2012) Genetic diversity of red-fleshed apples (Malus). Euphytica 185:281–293. https://doi.org/10.1007/s10681-011-0579-7

    Article  Google Scholar 

  • Veberic R, Trobec M, Herbinger K, Hofer M, Grill D, Stampar F (2005) Phenolic compounds in some apple (Malus domestica Borkh.) cultivars of organic and integrated production. J Sci Food Agric 85:1687–1694. https://doi.org/10.1002/jsfa.2113

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Ri AD, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury G, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner R, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Verdu CF, Guyot S, Childebrand N, Bahut M, Celton J-M, Gaillard S et al (2014) QTL analysis and candidate gene mapping for the polyphenol content in cider apple. PLoS One 9(10):e107103. https://doi.org/10.1371/journal.pone.0107103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vimolmangkang S, Han Y, Korban SS (2013) An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower style/stigma development. BMC Plant Biol 13:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Vimolmangkang S, Zheng D, Han Y, Khan MA, Soria-Guerra RE, Korban SS (2014) Transcriptome analysis of apple fruit excocarp identifies light-induced genes involved in red color pigmentation. Gene 534:78–87

    Article  CAS  PubMed  Google Scholar 

  • Vinayagam R, Xu B (2015) Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab 12:60

    Article  Google Scholar 

  • Volz RK, McGhie TK (2011) Genetic variability in apple fruit polyphenol composition in Malus x domestica and Malus sieversii germplasm grown in New Zealand. J Agric Food Chem 59:11509–11521. https://doi.org/10.1021/jf202680h

    Article  CAS  PubMed  Google Scholar 

  • Wang V, Chen X (2021) Genetics and genomics of fruit color development in apple. In: Korban SS (ed) The apple genome. Springer, Cham, pp 271–295

    Chapter  Google Scholar 

  • Wang X, Li C, Liang D, Zou Y, Li P, Ma F (2015) Phenolic compounds and antioxidant activity in red-fleshed apples. J Funct Foods 18(Part B):1086–1094

    Article  CAS  Google Scholar 

  • Wang N, Jiang S, Zhang Z, Fang H, Xu H, Wang Y, Chen X (2018) Malus sieversii: the origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples. Hortic Res 5:70. https://doi.org/10.1038/s41438-018-0084-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Du H, Chen P (2020) Chlorogenic acid inhibits the proliferation of human lung cancer A549 cell lines by targeting annexin A2 in vitro and in vivo. Biomed Pharmacother 131:110673

    Article  CAS  PubMed  Google Scholar 

  • Williams BA, Grant LJ, Gidley MJ, Mikkelsen D (2017) Gut fermentation of dietary fibres: physico-chemistry of plant cell walls and implications for health. Int J Mol Sci 18:2203

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojdyło A, Oszmiański J (2020) Antioxidant activity modulated by polyphenol contents in apple and leaves during fruit development and ripening. Antioxidants 9:1–12

    Article  Google Scholar 

  • Wojdyło A, Oszmiański J, Laskowski P (2008) Polyphenolic compounds and antioxidant activity in new and old apple varieties. J Agric Food Chem 56:6520–6530

    Article  PubMed  Google Scholar 

  • Wojdyło A, Nowicka P, Turkiewicz IP, Tkacz K, Hernandez F (2021) Comparison of bioactive compounds and health promoting properties of fruits and leaves of apple, pear and quince. Sci Rep 11:20253. https://doi.org/10.1038/s41598-021-99293-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe K, Liu RH (2003) Apple peels as a value-added food ingredient. J Agric Food Chem 51:1676–1683

    Article  CAS  PubMed  Google Scholar 

  • Wood LG, Gibson PG (2009) Dietary factors lead to innate immune activation in asthma. Pharmacol Ther 123:37–53. https://doi.org/10.1016/j.pharmthera.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  • Wruss J, Lanzerstorfer P, Huemer S, Himmelsbach M, Mangge H, Höglinger O, Weghuber D, Weghuber J (2015) Differences in pharmacokinetics of apple polyphenols after standardized oral consumption of unprocessed apple juice. Nutr J 14:1–11

    Article  CAS  Google Scholar 

  • Wu K-H, Ho C-T, Chen Z-F, Chen L-C, Whang-Peng J, Lin T-N, Ho Y-S (2017) The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J Food Drug Anal 26:221–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie X-B, Li S, Zhang R-F, Zhao J, Chen Y-C, Zhao Q, Yao Y-X, You C-X, Zhang X-S, Hao Y-J (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35:1884–1897. https://doi.org/10.1111/j.1365-3040.2012.02523.x

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Wang N, Liu J, Qu C, Wang Y, Jiang S, Lu N, Wang D, Zhang Z, Chen X (2017) The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Mol Biol 94:149–165. https://doi.org/10.1007/s11103-017-0601-0

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Gu W, Shen Z, Wang F (2018a) Anticancer activity of phloretin against human gastric cancer cell lines involves apoptosis, cell cycle arrest, and inhibition of cell invasion and JNK signalling pathway. Med Sci Monit 24:6551. https://doi.org/10.12659/MSM.910542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Shu B, Tian Y, Wang G, Wang Y, Wang J, Dong Y (2018b) Oleanolic acid induces osteosarcoma cell apoptosis by inhibition of Notch signaling. Mol Carcinog 57:896–902

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Liu N, Hou N, Dong L, Li J (2017) Chlorogenic acid inhibits hepatocellular carcinoma in vitro and in vivo. J Nutr Biochem 46:68–73

    Article  CAS  PubMed  Google Scholar 

  • Yap WH, Lim YM (2015) Mechanistic perspectives of maslinic acid in targeting inflammation. Biochem Res Int 2015:279356

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng A, Liang X, Zhu S, Liu C, Wang S, Zhang Q, Zhao J, Song L (2021) Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF-κB signaling pathway. Oncol Rep 45:717–727

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu H, Wang N, Jiang S, Fang H, Zhang Z, Yang G, Wang Y, Su M, Xu L, Chen X (2018) The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Mol Biol 98:205–218

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hu J, Han X, Li J, Gao Y, Richards CM, Zhang C, Tian Y, Liu G, Gul H, Wang D, Tian Y, Yang C, Meng M, Yuan G, Kang G, Wu Y, Wang K, Zhang H, Wang D, Cong P (2019a) A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat Commun 10:1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Virgous C, Si H (2019b) Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J Nutr Biochem 69:19–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Yang HJ, Yang YZ, Zhu ZZ, Li YN, Qu D, Zhao ZY (2020) mdm-miR828 participates in the feedback loop to regulate anthocyanin accumulation in apple peel. Front Plant Sci 11:608109. https://doi.org/10.3389/fpls.2020.608109

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Yang H-J, Qu D, Zhu Z-Z, Yang Y-Z, Zhao Z-Y (2022) The MdBBX22–miR858–MdMYB9/11/12 module regulates proanthocyanidin biosynthesis in apple peel. Plant Biotech J 20:1683–1700

    Google Scholar 

  • Zhao C-N, Meng X, Li Y, Li S, Liu Q, Tang G-Y, Li H-B (2017) Fruits for prevention and treatment of cardiovascular diseases. Nutrients 9:598

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Hu L, Li P, Gong X, Ma F (2017) Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Sci 265:131–145

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Evans KM, Peace C (2011) Utility testing of an apple skin color MdMYB1 marker in two progenies. Mol Breed 27:525–532

    Article  Google Scholar 

  • Zhu W, Li MC, Wang FR, Mackenzie GG, Oteiza PI (2020) The inhibitory effect of ECG and EGCG dimeric procyanidins on colorectal cancer cells growth is associated with their actions at lipid rafts and the inhibition of the epidermal growth factor receptor signaling. Biochem Pharmacol 175:113923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zielinska D, Laparra-Llopis JM, Zielinski H, Szawara-Nowak D, Giménez-Bastida JA (2019) Role of apple phytochemicals, phloretin and phloridzin, in modulating processes related to intestinal inflammation. Nutrients 11:1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou T, Wang B, Li S, Liu Y, You J (2020) Dietary apple polyphenols promote fat browning in high-fat diet-induced obese mice through activation of adenosine monophosphate-activated protein kinase α. J Sci Food Agric 100:2389–2398

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schuyler S. Korban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Korban, S.S. (2023). Apples: Role of Nutraceutical Compounds. In: Kole, C. (eds) Compendium of Crop Genome Designing for Nutraceuticals. Springer, Singapore. https://doi.org/10.1007/978-981-19-3627-2_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3627-2_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3627-2

  • Online ISBN: 978-981-19-3627-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics