Skip to main content

Covariant Growth Dynamics

  • Living reference work entry
  • First Online:
Handbook of Quantum Gravity
  • 14 Accesses

Abstract

The spacetime discreteness of causal set theory has enabled the formulation of novel spacetime dynamics. In these so-called “growth” dynamics, a causal set spacetime is generated probabilistically by means of a random walk on certain tree structures. The first growth dynamics – the classical sequential growth models – were proposed more than two decades ago, and their study has furthered our understanding of general covariance and covariant observables within causal set theory. In this setting, labels take the place of spacetime coordinates so that general covariance takes the form of label invariance and covariant observables are those order-theoretic properties of the causal set which are label-independent. In recent years, these insights have led to a new formulation of growth dynamics which makes no reference to labels. Here, we present an overview of these (manifestly) covariant growth dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. P.A. Schilpp (ed.), Albert Einstein: Philospher-Scientist. Library of Living Philosophers (Open Court Publishing, Evanston, 1949)

    Google Scholar 

  2. J. Stachel, The hole argument and some physical and philosophical implications. J. Liv. Rev. Relat. 17, 1 (2014)

    Article  Google Scholar 

  3. C. Rovelli, What is observable in classical and quantum gravity? Class. Quant. Grav. 8, 297–316 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. S.W. Hawking, Quantum gravity and path integrals. Phys. Rev. D 18, 1747–1753 (1978)

    Article  ADS  Google Scholar 

  5. R.D. Sorkin, Forks in the road, on the way to quantum gravity. Int. J. Theor. Phys. 36, 2759–2781 (1997)

    Article  MathSciNet  Google Scholar 

  6. G.W. Gibbons, N. Turok, The measure problem in cosmology. Phys. Rev. D 77, 063516 (2008)

    Article  ADS  Google Scholar 

  7. G.W. Gibbons, S.W. Hawking, J.M. Stewart, A natural measure on the set of all universes. Nucl. Phys. B 281(3), 736–751 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. G.W. Gibbons, S.W. Hawking, M.J. Perry, Path integrals and the indefiniteness of the gravitational action. Nucl. Phys. B 138(1), 141–150 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  9. D.P. Rideout, R.D. Sorkin, A classical sequential growth dynamics for causal sets. Phys. Rev. D61, 024002 (2000)

    ADS  MathSciNet  Google Scholar 

  10. G. Brightwell, M. Luczak, Order-invariant measures on causal sets. Ann. Appl. Prob. 21(4), 1493–1536 (2011)

    Article  MathSciNet  Google Scholar 

  11. G. Brightwell, M. Luczak, Order-invariant measures on fixed causal sets. Comb. Prob. Comput. 21, 330–357 (2012)

    Article  MathSciNet  Google Scholar 

  12. G. Brightwell, H. Fay Dowker, R.S. Garcia, J. Henson, R.D. Sorkin, General covariance and the ’Problem of time’ in a discrete cosmology, in Alternative Natural Philosophy Association Meeting, Cambridge, 16–21 Aug 2001 (2002)

    Google Scholar 

  13. G. Brightwell, H. Fay Dowker, R.S. Garcia, J. Henson, R.D. Sorkin, ‘Observables’ in causal set cosmology. Phys. Rev. D67, 084031 (2003)

    ADS  MathSciNet  Google Scholar 

  14. M. Varadarajan, D. Rideout, A general solution for classical sequential growth dynamics of causal sets. Phys. Rev. D 73, 104021 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. F. Dowker, S. Surya, Observables in extended percolation models of causal set cosmology. Class. Quant. Grav. 23, 1381–1390 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. D.P. Rideout, R.D. Sorkin, Evidence for a continuum limit in causal set dynamics. Phys. Rev. D 63, 104011 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Brightwell, N. Georgiou, Continuum limits for classical sequential growth models. Rand. Struct. Algorithm. 36(2), 218–250 (2010)

    Article  MathSciNet  Google Scholar 

  18. F. Dowker, S. Johnston, S. Surya, On extending the quantum measure. J. Phys. A43, 505305 (2010)

    MathSciNet  Google Scholar 

  19. F. Dowker, The birth of spacetime atoms as the passage of time, in Do We Need a Physics of ‘Passage’? Cape Town, South Africa, 10–14 Dec 2012 (2014)

    Google Scholar 

  20. C. Wuthrich, C. Callender, What becomes of a causal set? Brit. J. Phil. Sci. 68(3), 907–925 (2017)

    Article  MathSciNet  Google Scholar 

  21. R.D. Sorkin, Relativity theory does not imply that the future already exists: a counterexample. Fund. Theor. Phys. 153, 153–161 (2007)

    MathSciNet  Google Scholar 

  22. F. Dowker, Being and Becoming on the Road to Quantum Gravity; or, the Birth of a Baby Is Not a Baby (2020)

    Google Scholar 

  23. L. Bombelli, I. Seggev, S. Watson, A computation of the expected number of posts in a finite random graph order (2008)

    Google Scholar 

  24. R.D. Sorkin, Indications of causal set cosmology. Int. J. Theor. Phys. 39, 1731–1736 (2000)

    Article  MathSciNet  Google Scholar 

  25. X. Martin, D. O’Connor, D.P. Rideout, R.D. Sorkin, On the ’renormalization’ transformations induced by cycles of expansion and contraction in causal set cosmology. Phys. Rev. D63, 084026 (2001)

    ADS  MathSciNet  Google Scholar 

  26. A. Ash, P. McDonald, Moment problems and the causal set approach to quantum gravity. J. Math. Phys. 44, 1666–1678 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Ash, P. McDonald, Random partial orders, posts, and the causal set approach to discrete quantum gravity. J. Math. Phys. 46, 062502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Ahmed, D. Rideout, Indications of de Sitter spacetime from classical sequential growth dynamics of causal sets. Phys. Rev. D 81, 083528 (2010)

    Article  ADS  Google Scholar 

  29. F. Dowker, S. Zalel, Evolution of universes in causal set cosmology. Comptes Rendus Physique 18, 246–253 (2017)

    Article  ADS  Google Scholar 

  30. J. Norton, Time really passes. HUMANA.MENTE J. Philos. Stud. 4(13), 23–34 (2018)

    Google Scholar 

  31. F. Harary, E.M. Palmer, Graphical Enumeration (Academic, New York and London, 1973)

    Google Scholar 

  32. F. Dowker, N. Imambaccus, A. Owens, R. Sorkin, S. Zalel, A manifestly covariant framework for causal set dynamics. Class. Quant. Grav. 37(8), 085003 (2020)

    Google Scholar 

  33. S. Zalel, The structure of covtree: searching for manifestly covariant causal set dynamics. Class. Quant. Grav. 38(1), 015001 (2021)

    Google Scholar 

  34. B.V. Bento, F. Dowker, S. Zalel, If time had no beginning: growth dynamics for past-infinite causal sets. Class. Quant. Grav. 39(4), 045002 (2022)

    Google Scholar 

  35. R.D. Sorkin, A Specimen of Theory Construction From Quantum Gravity (1989)

    Google Scholar 

  36. G. Brightwell, Linear extensions of random orders. Discret. Math. 125(1), 87–96 (1994)

    Article  MathSciNet  Google Scholar 

  37. N. Alon, B. Bollobás, G. Brightwell, S. Janson, Linear extensions of a random partial order. Ann. Appl. Prob. 4(1), 108–123 (1994)

    Article  MathSciNet  Google Scholar 

  38. G.R. Brightwell, Linear extensions of infinite posets. Discret. Math. 70(2), 113–136 (1988)

    Article  MathSciNet  Google Scholar 

  39. R.D. Sorkin, Toward a ‘fundamental theorem of quantal measure theory’ (2011)

    Google Scholar 

  40. A.N. Kolmogorov, S.V. Fomin, Introductory Real Analysis (Dover Publications, New York, 1975)

    Google Scholar 

  41. The On-Line Encyclopedia of Integer Sequences. A000112 Number of partially ordered sets (“posets”) with n unlabeled elements. oeis.org/A000112

    Google Scholar 

  42. M. Rees, R. Fuffini, J. Archibald Wheeler, Black Holes, Gravitational Waves and Cosmology: An Introduction to Current Research. Topics in Astrophysics and Space Physics, vol. 10 (Gordon and Breach, Cambridge, 1974)

    Google Scholar 

  43. J. Bičák, The art of science: interview with Professor John Archibald Wheeler. Gen. Relat. Grav. 41(4), 679–689 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. L. Smolin, Did the universe evolve? Class. Quantum Grav. 9(1), 173–191 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  45. L. Smolin, The status of cosmological natural selection (2008). arXiv:hep-th/0612185

    Google Scholar 

  46. B. Honan, Causal set dynamics: interpretations of CPT invariance and defining a new dynamics. Master’s thesis, Imperial College, London, 2018

    Google Scholar 

  47. A.S. Gupta, Realising charge-parity-time symmetry in causal set dynamics. Master’s thesis, Imperial College, London, 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stav Zalel .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zalel, S. (2024). Covariant Growth Dynamics. In: Bambi, C., Modesto, L., Shapiro, I. (eds) Handbook of Quantum Gravity. Springer, Singapore. https://doi.org/10.1007/978-981-19-3079-9_82-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3079-9_82-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3079-9

  • Online ISBN: 978-981-19-3079-9

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics