Skip to main content

Shock-Driven Multi-mode Interface Evolution

  • Chapter
  • First Online:
Fundamental Studies of Shock-Driven Hydrodynamic Instabilities

Part of the book series: Springer Theses ((Springer Theses))

  • 186 Accesses

Abstract

This chapter focuses on the evolution of a multi-mode interface induced by a shock wave. To understand the deviation of a multi-mode RM unstable interface from a single-mode one, the development of 2D single-mode interfaces, 2D quasi-single-mode interfaces, 2D multi-mode interfaces, and 3DMS interfaces induced by a shock wave are studied experimentally and theoretically. The soap film technique is first developed to form a 2D gaseous interface free of short-wavelength perturbation, diffusion layer, and three-dimensionality. The dependence of the amplitude growth of a multi-mode interface on its initial spectrum is quantified. A universal nonlinear model is finally established to cover the RM instability of a multi-mode interface from the quasi-linear regime to the late nonlinear regime considering various initial conditions, including different amplitude-wavelength ratios, Atwood numbers and Mach numbers. Finally, the universal nonlinear model is extended to describe the RM instability of a 3DMS interface considering the coupling between 3D modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu L, Liang Y, Ding J, Liu N, Luo X (2018) An elaborate experiment on the single-mode Richtmyer-Meshkov instability. J Fluid Mech 853:R2

    Article  CAS  Google Scholar 

  2. Drake RP (2018) High-energy-density physics: foundation of inertial fusion and experimental astrophysics. Springer

    Google Scholar 

  3. Luo XS, Wang XS, Si T (2013) The Richtmyer-Meshkov instability of a three-dimensional air/SF\(_6\) interface with a minimum-surface feature. J Fluid Mech 722:R2

    Article  Google Scholar 

  4. Morgan RV, Aure R, Stockero JD, Greenough JA, Cabot W, Likhachev OA, Jacobs JW (2012) On the late-time growth of the two-dimensional Richtmyer-Meshkov instability in shock tube experiments. J Fluid Mech 712:354–383

    Article  Google Scholar 

  5. Brouillette M, Sturtevant B (1994) Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface. J Fluid Mech 263:271–292

    Article  Google Scholar 

  6. Vetter M, Sturtevant B (1995) Experiments on the Richtmyer-Meshkov instability of an air/SF\(_6\) interface. Shock Waves 4:247–252

    Article  Google Scholar 

  7. Cohen RD (1991) Shattering of a liquid drop due to impact. Proc R Soc Lond A 435:483–503

    Article  CAS  Google Scholar 

  8. Hosseini SHR, Takayama K (2005) Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves. Phys Fluids 17:084101

    Article  CAS  Google Scholar 

  9. Ranjan D, Anderson M, Oakley J, Bonazza R (2005) Experimental investigation of a strongly shocked gas bubble. Phys Rev Lett 94:184507

    Article  CAS  Google Scholar 

  10. Sadot O, Erez L, Alon U, Oron D, Levin LA, Ben-Dor G, Shvarts D (1998) Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability. Phys Rev Lett 80:1654–1657

    Article  CAS  Google Scholar 

  11. Jourdan G, Houas L (2005) High-amplitude single-mode perturbation evolution at the Richtmyer-Meshkov instability. Phys Rev Lett 95:204502

    Article  CAS  Google Scholar 

  12. Vandenboomgaerde M, Souffland D, Mariani C, Biamino L, Jourdan G, Houas L (2014) An experimental and numerical investigation of the dependency on the initial conditions of the Richtmyer-Meshkov instability. Phys Fluids 26:024109

    Article  CAS  Google Scholar 

  13. Jacobs JW, Krivets VV (2005) Experiments on the late-time development of single-mode Richtmyer-Meshkov instability. Phys Fluids 17:034105

    Article  CAS  Google Scholar 

  14. Meshkov EE (1969) Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn 4:101–104

    Article  Google Scholar 

  15. Brouillette M, Bonazza R (1999) Experiments on the Richtmyer-Meshkov instability: Wall effects and wave phenomena. Phys Fluids 11(5):1127–1142

    Article  CAS  Google Scholar 

  16. Mariani C, Vandenboomgaerde M, Jourdan G, Souffland D, Houas L (2008) Investigation of the Richtmyer-Meshkov instability with stereolithographed interfaces. Phys Rev Lett 100:254503

    Article  CAS  Google Scholar 

  17. Balakumar BJ, Orlicz GC, Ristorcelli JR, Balasubramanian S, Prestridge KP, Tomkins CD (2012) Turbulent mixing in a Richtmyer-Meshkov fluid layer after reshock: velocity and density statistics. J Fluid Mech 696:67–93

    Article  CAS  Google Scholar 

  18. Weber C, Haehn N, Oakley J, Rothamer D, Bonazza R (2012) Turbulent mixing measurements in the Richtmyer-Meshkov instability. Phys Fluids 24(7):074105

    Article  CAS  Google Scholar 

  19. Collins BD, Jacobs JW (2002) PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF\(_6\) interface. J Fluid Mech 464:113–136

    Article  Google Scholar 

  20. Lombardini M, Pullin DI (2009) Startup process in the Richtmyer-Meshkov instability. Phys Fluids 21(4):044104

    Article  CAS  Google Scholar 

  21. Vandenboomgaerde M, Gauthier S, Mügler C (2002) Nonlinear regime of a multimode Richtmyer-Meshkov instability: A simplified perturbation theory. Phys Fluids 14(3):1111–1122

    Article  CAS  Google Scholar 

  22. Mikaelian KO (2008) Limitations and failures of the Layzer model for hydrodynamic instabilities. Phys Rev E 78(1):015303

    Article  CAS  Google Scholar 

  23. Niederhaus CE, Jacobs JW (2003) Experimental study of the Richtmyer-Meshkov instability of incompressible fluids. J Fluid Mech 485:243–277

    Article  Google Scholar 

  24. Liang Y, Zhai Z, Ding J, Luo X (2019) Richtmyer-Meshkov instability on a quasi-single-mode interface. J Fluid Mech 872:729–751

    Article  CAS  Google Scholar 

  25. Wang M, Si T, Luo X (2013) Generation of polygonal gas interfaces by soap film for Richtmyer-Meshkov instability study. Exp Fluids 54:1427

    Article  Google Scholar 

  26. Zhai Z, Wang M, Si T, Luo X (2014) On the interaction of a planar shock with a light polygonal interface. J Fluid Mech 757:800

    Article  Google Scholar 

  27. Bakhrakh S, Klopov B, Meshkov E, Tolshmyakov A, Yanilkin Y (1995) Development of perturbations of a shock-accelerated interface between two gases. J Appl Mech Tech Phys 36:341–346

    Article  Google Scholar 

  28. Erez L, Sadot O, Oron D, Erez G, Levin LA, Shvarts D, Ben-Dor G (2000) Study of the membrane effect on turbulent mixing measurements in shock tubes. Shock Waves 10:241–251

    Article  Google Scholar 

  29. Prasad JK, Rasheed A, Kumar S, Sturtevant B (2000) The late-time development of the Richtmyer-Meshkov instability. Phys Fluids 12:2108–2115

    Article  CAS  Google Scholar 

  30. Vandenboomgaerde M, Rouzier P, Souffland D, Biamino L, Jourdan G, Houas L, Mariani C (2018) Nonlinear growth of the converging Richtmyer-Meshkov instability in a conventional shock tube. Phys. Rev. Fluids 3:014001

    Article  Google Scholar 

  31. Brouillette M (2002) The Richtmyer-Meshkov instability. Ann Rev Fluid Mech 34:445–468

    Google Scholar 

  32. Jones MA, Jacobs JW (1997) A membraneless experiment for the study of Richtmyer-Meshkov instability of a shock-accelerated gas interface. Phys Fluids 9:3078–3085

    Article  CAS  Google Scholar 

  33. Luo X, Dong P, Si T, Zhai Z (2016) The Richtmyer-Meshkov instability of a ‘V’ shaped air/SF\(_{6}\) interface. J Fluid Mech 802:186–202

    Article  CAS  Google Scholar 

  34. Luo X, Liang Y, Si T, Zhai Z (2019) Effects of non-periodic portions of interface on Richtmyer-Meshkov instability. J Fluid Mech 861:309–327

    Article  CAS  Google Scholar 

  35. McFarland JA, Greenough JA, Ranjan D (2013) Investigation of the initial perturbation amplitude for the inclined interface Richtmyer-Meshkov instability. Phys Scr 2013(T155):014014

    Google Scholar 

  36. Holmes RL, Dimonte G, Fryxell B, Gittings ML, Grove JW, Schneider M, Sharp DH, Velikovich AL, Weaver RP, Zhang Q (1999) Richtmyer-Meshkov instability growth: experiment, simulation and theory. J Fluid Mech 389:55–79

    Google Scholar 

  37. Hawley JF, Zabusky NJ (1989) Vortex paradigm for shock-accelerated density-stratified interfaces. Phys Rev Lett 63(12):1241

    Article  CAS  Google Scholar 

  38. McFarland JA, Greenough JA, Ranjan D (2011) Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface. Phys Rev E 84(2):026303

    Article  CAS  Google Scholar 

  39. Wang T, Liu JH, Bai JS, Jiang Y, Li P, Liu K (2012) Experimental and numerical investigation of inclined air/SF\(_6\) interface instability under shock wave. Appl Math Mech-Engl 33(1):37–50

    Google Scholar 

  40. McFarland JA, Greenough JA, Ranjan D (2014) Simulations and analysis of the reshocked inclined interface Richtmyer-Meshkov instability for linear and nonlinear interface perturbations. J Fluid Eng-T ASME 136(7):071203

    Article  Google Scholar 

  41. McFarland JA, Reilly D, Black W, Greenough JA, Ranjan D (2015) Modal interactions between a large-wavelength inclined interface and small-wavelength multimode perturbations in a Richtmyer-Meshkov instability. Phys Rev E 92(1):013023

    Article  CAS  Google Scholar 

  42. Sadot O, Rikanati A, Oron D, Ben-Dor G, Shvarts D (2003) An experimental study of the high Mach number and high initial-amplitude effects on the evolution of the single-mode Richtmyer-Meshkov instability. Laser Part Beams 21:341–346

    Google Scholar 

  43. Rikanati A, Oron D, Sadot O, Shvarts D (2003) High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability. Phys Rev E 67:026307

    Article  CAS  Google Scholar 

  44. Richtmyer RD (1960) Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math 13:297–319

    Article  Google Scholar 

  45. Dell ZR, Pandian A, Bhowmick AK, Swisher NC, Stanic M, Stellingwerf RF, Abarzhi SI (2017) Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability. Phys Plasmas 24(9):090702

    Article  CAS  Google Scholar 

  46. Buttler WT, Or\(\acute{o}\) DM, Preston DL, Mikaelian KO, Cherne FJ, Hixson RS, Mariam FG, Morris C, Stone JB, Terrones G, Tupa D (2012) Unstable Richtmyer-Meshkov growth of solid and liquid metals in vacuum. J Fluid Mech 703: 60–84

    Google Scholar 

  47. Di Stefano CA, Malamud G, Kuranz CC, Klein SR, Stoeckl C, Drake RP (2015) Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime. Appl Phys Lett 106(11):114103

    Article  CAS  Google Scholar 

  48. Mikaelian KO (2005) Richtmyer-Meshkov instability of arbitrary shapes. Phys Fluids 17:034101

    Article  CAS  Google Scholar 

  49. Liang Y, Liu L, Zhai Z, Ding J, Si T, Luo X (2021) Richtmyer-Meshkov instability on two-dimensional multi-mode interfaces. J Fluid Mech A 928:37. https://doi.org/10.1017/jfm.2021.849

  50. Mansoor MM, Dalton SM, Martinez AA, Desjardins T, Charonko JJ, Prestridge KP (2020) The effect of initial conditions on mixing transition of the Richtmyer-Meshkov instability. J Fluid Mech A 904:3

    Google Scholar 

  51. Sewell EG, Ferguson KJ, Krivets VV, Jacobs JW (2021) Time-resolved particle image velocimetry measurements of the turbulent Richtmyer-Meshkov instability. J Fluid Mech A 917:41. https://doi.org/10.1017/jfm.2021.258

  52. Abarzhi SI (2008) Coherent structures and pattern formation in Rayleigh-Taylor turbulent mixing. Phys Scr 78(1):015401

    Article  CAS  Google Scholar 

  53. Abarzhi SI (2010) Review of theoretical modelling approaches of Rayleigh-Taylor instabilities and turbulent mixing. Phil Trans R Soc A 368(1916):1809–1828

    Article  Google Scholar 

  54. Pandian A, Stellingwerf RF, Abarzhi SI (2017) Effect of a relative phase of waves constituting the initial perturbation and the wave interference on the dynamics of strong-shock-driven Richtmyer-Meshkov flows. Phys Rev Fluids 2(7):073903

    Article  Google Scholar 

  55. Mohaghar M, Carter J, Pathikonda G, Ranjan D (2019) The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions. J Fluid Mech 871:595–635

    Google Scholar 

  56. Drazin PG, Reid WH (2004) Hydrodynamic stability. Cambridge university Press

    Google Scholar 

  57. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press

    Google Scholar 

  58. Mügler C, Gauthier S (1998) Numerical simulations of single-mode Richtmyer-Meshkov experiments. Phys Rev E 58(4):4548

    Article  Google Scholar 

  59. Mikaelian KO (2003) Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Phys Rev E 67:026319

    Article  CAS  Google Scholar 

  60. Dell Z, Stellingwerf RF, Abarzhi SI (2015) Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks. Phys Plasmas 22(9):092711

    Article  CAS  Google Scholar 

  61. Zhai Z, Dong P, Si T, Luo X (2016) The Richtmyer-Meshkov instability of a V shaped air/helium interface subjected to a weak shock. Phys Fluids 28(8):082104

    Article  CAS  Google Scholar 

  62. Di Stefano CA, Malamud G, Kuranz CC, Klein SR, Drake RP (2015) Measurement of Richtmyer-Meshkov mode coupling under steady shock conditions and at high energy density. High Energy Density Phys 17:263–269

    Article  Google Scholar 

  63. Meyer KA, Blewett PJ (1972) Numerical investigation of the stability of a shock-accelerated interface between two fluids. Phys Fluids 15:753–759

    Article  Google Scholar 

  64. Guo X, Zhai Z, Ding J, Si T, Luo X (2020) Effects of transverse shock waves on early evolution of multi-mode chevron interface. Phys Fluids 32(10):106101

    Article  CAS  Google Scholar 

  65. Dimonte G, Ramaprabhu P (2010) Simulations and model of the nonlinear Richtmyer-Meshkov instability. Phys Fluids 22:014104

    Article  CAS  Google Scholar 

  66. Hurricane OA, Burke E, Maples S, Viswanathan M (2000) Saturation of Richtmyer’s impulsive model. Phys Fluids 12(8):2148–2151

    Article  CAS  Google Scholar 

  67. Haan SW (1991) Weakly nonlinear hydrodynamic instabilities in inertial fusion. Phys Fluids B 3:2349–2355

    Article  CAS  Google Scholar 

  68. Ofer D, Alon U, Shvarts D, McCrory RL, Verdon CP (1996) Modal model for the nonlinear multimode Rayleigh-Taylor instability. Phys Plasmas 3(8):3073–3090

    Article  CAS  Google Scholar 

  69. Miles AR, Edwards MJ, Blue B, Hansen JF, Robey HF et al (2004) The effects of a short-wavelength mode on the evolution of a long-wavelength perturbation driven by a strong blast wave. Phys Plasmas 11:5507–5519

    Google Scholar 

  70. Hecht J, Alon U, Shvarts D (1994) Potential flow models of Rayleigh-Taylor and Richtmyer-Meshkov bubble fronts. Phys Fluids 6:4019–4030

    Article  CAS  Google Scholar 

  71. Alon U, Hecht J, Ofer D, Shvarts D (1995) Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts. Phys Rev Lett 74:534–537

    Article  CAS  Google Scholar 

  72. Mikaelian KO (1998) Analytic approach to nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Phys Rev Lett 80:508–511

    Article  CAS  Google Scholar 

  73. Velikovich AL, Dimonte G (1996) Nonlinear perturbation theory of the incompressible Richtmyer-Meshkov instability. Phys Rev Lett 76(17):3112

    Article  CAS  Google Scholar 

  74. Zhang Q, Sohn SI (1997) Nonlinear theory of unstable fluid mixing driven by shock wave. Phys Fluids 9:1106–1124

    Article  CAS  Google Scholar 

  75. Nishihara K, Wouchuk JG, Matsuoka C, Ishizaki R, Zhakhovsky VV (2010) Richtmyer-Meshkov instability: theory of linear and nonlinear evolution. Phil Trans R Soc A 368:1769–1807

    Article  CAS  Google Scholar 

  76. Velikovich A, Herrmann M, Abarzhi S (2014) Perturbation theory and numerical modelling of weakly and moderately nonlinear dynamics of the incompressible Richtmyer-Meshkov instability. J Fluid Mech 751:432–479

    Article  CAS  Google Scholar 

  77. Alon U, Hecht J, Mukamel D, Shvarts D (1994) Scale invariant mixing rates of hydrodynamically unstable interface. Phys Rev Lett 72:2867–2870

    Article  CAS  Google Scholar 

  78. Zhou Y (2017) Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720–722:1–136

    Google Scholar 

  79. Zhou Y (2017) Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725:1–160

    Google Scholar 

  80. Dimonte G, Frerking CE, Schneider M, Remington B (1996) Richtmyer-Meshkov instability with strong radiatively driven shocks. Phys Plasmas 3(2):614–630

    Article  CAS  Google Scholar 

  81. Oron D, Arazi L, Kartoon D, Rikanati A, Alon U, Shvarts D (2001) Dimensionality dependence of the Rayleigh-Taylor and Richtmyer-Meshkov instability late-time scaling laws. Phys Plasmas 8:2883–2889

    Article  CAS  Google Scholar 

  82. Rikanati A, Alon U, Shvarts D (1998) Vortex model for the nonlinear evolution of the multimode Richtmyer-Meshkov instability at low Atwood numbers. Phys Rev E 58:7410–7418

    Article  CAS  Google Scholar 

  83. Liang Y, Liu L, Zhai Z, Si T, Luo X (2021) Universal perturbation growth of Richtmyer-Meshkov instability for minimum-surface featured interface induced by weak shock waves. Phys Fluids 33(3):032110

    Google Scholar 

  84. Isenberg C (1992) The science of soap films and soap bubbles. Dover publications INC., New York

    Google Scholar 

  85. Guan B, Zhai Z, Si T, Lu X, Luo X (2017) Manipulation of three-dimensional Richtmyer-Meshkov instability by initial interfacial principal curvatures. Phys Fluids 29(3):032106

    Article  CAS  Google Scholar 

  86. Guan B, Wang D, Wang G, Fan E, Wen CY (2020) Numerical study of the Richtmyer-Meshkov instability of a three-dimensional minimum-surface featured SF\(_6\)/air interface. Phys Fluids 32(2):024108

    Article  CAS  Google Scholar 

  87. Liang Y, Zhai Z, Luo X (2018) Interaction of strong converging shock wave with SF\(_6\) gas bubble. Sci China: Phys Mech Astron 61(6):1–9

    Google Scholar 

  88. Long CC, Krivets VV, Greenough JA, Jacobs JW (2009) Shock tube experiments and numerical simulation of the single-mode, three-dimensional Richtmyer-Meshkov instability. Phys Fluids 21:114104

    Article  CAS  Google Scholar 

  89. Goncharov VN (2002) Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Phys Rev Lett 88:134502

    Article  CAS  Google Scholar 

  90. Yosef-Hai A, Sadot O, Kartoon D, Oron D, Levin LA, Sarid E, Elbaz Y, Ben-Dor G, Shvarts D (2003) Late-time growth of the Richtmyer-Meshkov instability for different Atwood numbers and different dimensionalities. Laser Part Beams 21(3):363–368

    Article  CAS  Google Scholar 

  91. Guo W, Zhang Q (2020) Universality and scaling laws among fingers at Rayleigh-Taylor and Richtmyer-Meshkov unstable interfaces in different dimensions. Physica D 403:132304

    Article  Google Scholar 

  92. Sohn SI (2004) Vortex model and simulations for Rayleigh-taylor and Richtmyer-meshkov instabilities. Phys Rev E 69:036703. https://doi.org/10.1103/PhysRevE.69.036703

    Article  CAS  Google Scholar 

  93. Latini M, Schilling O, Don WS (2007) High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: comparison to experimental data and to amplitude growth model predictions. Phys Fluids 19(2):024104

    Article  CAS  Google Scholar 

  94. Chapman PR, Jacobs JW (2006) Experiments on the three-dimensional incompressible Richtmyer-Meshkov instability. Phys Fluids 18(7):3453–3475

    Article  CAS  Google Scholar 

  95. Luo X, Liu L, Liang Y, Ding J, Wen CY (2020) Richtmyer-Meshkov instability on a dual-mode interface. J Fluid Mech A 905:5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liang .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, Y. (2022). Shock-Driven Multi-mode Interface Evolution. In: Fundamental Studies of Shock-Driven Hydrodynamic Instabilities. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-19-2992-2_2

Download citation

Publish with us

Policies and ethics