Skip to main content

Emerging Non-invasive Brain–Computer Interface Technologies and Their Clinical Applications

  • Chapter
  • First Online:
Emerging IT/ICT and AI Technologies Affecting Society

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 478))

Abstract

Brain–computer interfaces (BCIs) are a continuously evolving technology of great importance to society and human wellbeing. With a wide range of applications and the integration of many emerging technologies, BCIs have the capacity to change many fields, in particular, the field of clinical medicine and patient health. This chapter covers current developments in non-invasive BCIs and their use for a variety of clinical applications. It provides an overview of EEG hardware and non-invasive BCI systems and covers common electrophysiological recording techniques and signal processing algorithms often employed in BCIs. It then details examples of how these are implemented for particular clinical applications, including attention-deficit hyperactivity disorder identification, stroke rehabilitation, and sleep enhancement, highlighting the potential capabilities of BCI to address such current and future clinical challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee YC, Lin WC, Cherng FY, Ko LW (2016) A visual attention monitor based on steady-state visual evoked potential. IEEE Trans Neural Syst Rehabil Eng 24(3):399–408. https://doi.org/10.1109/TNSRE.2015.2501378

    Article  Google Scholar 

  2. Ko L-W et al (2021) Integrated gait triggered mixed reality and neurophysiological monitoring as a framework for next-generation ambulatory stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng 29:2435–2444. https://doi.org/10.1109/TNSRE.2021.3125946

    Article  Google Scholar 

  3. Brain Computer Interface Market Size and Industry Trends|2030. Allied market research. https://www.alliedmarketresearch.com/brain-computer-interfaces-market. Accessed 16 Dec 2021

  4. Brain Computer Interface Market Size Report, 2020–2027. https://www.grandviewresearch.com/industry-analysis/brain-computer-interfaces-market. Accessed 16 Dec 2021

  5. Gu X et al (2021) EEG-based brain-computer interfaces (BCIs): a survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Trans Comput Biol Bioinform 18(5):1645–1666. https://doi.org/10.1109/TCBB.2021.3052811

    Article  Google Scholar 

  6. Schalk G (2010) Can electrocorticography (ECoG) support robust and powerful brain-computer interfaces? Front Neuroengineering. https://doi.org/10.3389/fneng.2010.00009

    Article  Google Scholar 

  7. Naseer N, Hong K-S (2015) fNIRS-based brain-computer interfaces: a review. Front Hum Neurosci 9(JAN):1–15. https://doi.org/10.3389/fnhum.2015.00003

    Article  Google Scholar 

  8. Sitaram R, Weiskopf N, Caria A, Veit R, Erb M, Birbaumer N (2008) fMRI brain-computer interfaces. IEEE Signal Process Mag 25(1):95–106. https://doi.org/10.1109/MSP.2008.4408446

    Article  Google Scholar 

  9. Liao L-D et al (2014) A novel 16-channel wireless system for electroencephalography measurements with dry spring-loaded sensors. IEEE Trans Instrum Meas 63(6):1545–1555. https://doi.org/10.1109/TIM.2013.2293222

    Article  Google Scholar 

  10. Ko L-W et al (2019) Development of a smart helmet for strategical BCI applications. Sensors 19(8):1867. https://doi.org/10.3390/s19081867

    Article  Google Scholar 

  11. Ko L-W, Su C-H, Liao P-L, Liang J-T, Tseng Y-H, Chen S-H (2021) Flexible graphene/GO electrode for gel-free EEG. J Neural Eng 18(4):046060. https://doi.org/10.1088/1741-2552/abf609

    Article  Google Scholar 

  12. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791. https://doi.org/10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

  13. Nan W et al (2012) Individual alpha neurofeedback training effect on short term memory. Int J Psychophysiol 86(1):83–87. https://doi.org/10.1016/j.ijpsycho.2012.07.182

    Article  Google Scholar 

  14. Mousavi M, Krol LR, de Sa VR (2020) Hybrid brain-computer interface with motor imagery and error-related brain activity. J Neural Eng 17(5):056041. https://doi.org/10.1088/1741-2552/abaa9d

    Article  Google Scholar 

  15. Parikh D, George K (2020) Quadcopter control in three-dimensional space using SSVEP and motor imagery-based brain-computer interface. In: 2020 11th IEEE annual information technology, electronics and mobile communication conference (IEMCON), Vancouver, BC, Canada, Nov 2020, pp 0782–0785. https://doi.org/10.1109/IEMCON51383.2020.9284924

  16. Wang R et al (2020) Design and implement the continuous flickering SSVEP-BCI in augmented reality. J Phys Conf Ser 1631(1):012172. https://doi.org/10.1088/1742-6596/1631/1/012172

    Article  Google Scholar 

  17. Wen D, Liang B, Zhou Y, Chen H, Jung T-P (2021) The current research of combining multi-modal brain-computer interfaces with virtual reality. IEEE J Biomed Health Inform 25(9):3278–3287. https://doi.org/10.1109/JBHI.2020.3047836

    Article  Google Scholar 

  18. Lin C-T et al (2008) Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver’s drowsiness detection and warning. IEEE Trans Biomed Eng 55(5):1582–1591. https://doi.org/10.1109/TBME.2008.918566

    Article  Google Scholar 

  19. Morgan ST, Hansen JC, Hillyard SA (1996) Selective attention to stimulus location modulates the steady-state visual evoked potential. Proc Natl Acad Sci 93(10):4770–4774. https://doi.org/10.1073/pnas.93.10.4770

    Article  Google Scholar 

  20. Nakanishi M, Wang Y, Chen X, Wang Y-T, Gao X, Jung T-P (2018) Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng 65(1):104–112. https://doi.org/10.1109/TBME.2017.2694818

    Article  Google Scholar 

  21. Nakanishi M, Wang Y, Wang Y-T, Mitsukura Y, Jung T-P (2014) A high-speed brain speller using steady-state visual evoked potentials. Int J Neural Syst 24(06):1450019. https://doi.org/10.1142/S0129065714500191

    Article  Google Scholar 

  22. Nayak T, Ko L-W, Jung T-P, Huang Y (2019) Target classification in a novel SSVEP-RSVP based BCI gaming system. In: 2019 IEEE international conference on systems, man and cybernetics (SMC), Bari, Italy, Oct 2019, pp 4194–4198. https://doi.org/10.1109/SMC.2019.8914174

  23. Zhang H-Y, Stevenson CE, Jung T-P, Ko L-W (2020) Stress-induced effects in resting EEG spectra predict the performance of SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng 28(8):1771–1780. https://doi.org/10.1109/TNSRE.2020.3005771

    Article  Google Scholar 

  24. Nakanishi M et al (2017) Detecting glaucoma with a portable brain-computer interface for objective assessment of visual function loss. JAMA Ophthalmol 135(6):550. https://doi.org/10.1001/jamaophthalmol.2017.0738

    Article  Google Scholar 

  25. Mohan A et al (2016) The significance of the default mode network (DMN) in neurological and neuropsychiatric disorders: a review. Yale J Biol Med 89(1):49–57

    Google Scholar 

  26. Rubia K et al (2019) Functional connectivity changes associated with fMRI neurofeedback of right inferior frontal cortex in adolescents with ADHD. Neuroimage 188:43–58. https://doi.org/10.1016/j.neuroimage.2018.11.055

    Article  Google Scholar 

  27. Phang C-R, Noman F, Hussain H, Ting C-M, Ombao H (2020) A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns. IEEE J Biomed Health Inform 24(5):1333–1343. https://doi.org/10.1109/JBHI.2019.2941222

    Article  Google Scholar 

  28. Hu S, Wang H, Zhang J, Kong W, Cao Y (2014) Causality from Cz to C3/C4 or between C3 and C4 revealed by granger causality and new causality during motor imagery. In: 2014 International joint conference on neural networks (IJCNN), Beijing, China, Jul 2014, pp 3178–3185. https://doi.org/10.1109/IJCNN.2014.6889769

  29. Kuś R, Ginter JS, Blinowska KJ (2006) Propagation of EEG activity during finger movement and its imagination. Acta Neurobiol Exp (Warsz) 66(3):195–206

    Google Scholar 

  30. Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA (2003) Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol 114(7):1226–1236. https://doi.org/10.1016/S1388-2457(03)00067-1

    Article  Google Scholar 

  31. Wang Y, Hong B, Gao X, Gao S (2006) Phase synchrony measurement in motor cortex for classifying single-trial EEG during motor imagery. In: 2006 International conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, Aug 2006, pp 75–78. https://doi.org/10.1109/IEMBS.2006.259673

  32. Phang C-R, Ko L-W (2020) Global cortical network distinguishes motor imagination of the left and right foot. IEEE Access 8:103734–103745. https://doi.org/10.1109/ACCESS.2020.2999133

    Article  Google Scholar 

  33. Phang C-R, Ko L-W (2020) Intralobular and interlobular parietal functional network correlated to MI-BCI performance. IEEE Trans Neural Syst Rehabil Eng 28(12):2671–2680. https://doi.org/10.1109/TNSRE.2020.3038657

    Article  Google Scholar 

  34. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. 5th edn. American Psychiatric Association. https://doi.org/10.1176/appi.books.9780890425596. https://web.archive.org/web/20220113074628/. https://dsm.psychiatryonline.org/doi/book/https://doi.org/10.1176/appi.books.9780890425596

  35. Sroubek A, Kelly M, Li X (2013) Inattentiveness in attention-deficit/hyperactivity disorder. Neurosci Bull 29(1):103–110. https://doi.org/10.1007/s12264-012-1295-6

    Article  Google Scholar 

  36. Moffitt TE et al (2015) Is adult ADHD a childhood-onset neurodevelopmental disorder? Evidence from a four-decade longitudinal cohort study. Am J Psychiatry 172(10):967–977. https://doi.org/10.1176/appi.ajp.2015.14101266

    Article  Google Scholar 

  37. Conners C (2015) Conners kiddie continuous performance test 2nd edition (K–CPT 2). Multi-Health Syst Inc.MHS Tor

    Google Scholar 

  38. Lenartowicz A, Loo SK (2014) Use of EEG to diagnose ADHD. Curr Psychiatry Rep 16(11):498. https://doi.org/10.1007/s11920-014-0498-0

    Article  Google Scholar 

  39. Lansbergen MM, Arns M, van Dongen-Boomsma M, Spronk D, Buitelaar JK (2011) The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency. Prog Neuropsychopharmacol Biol Psychiatry 35(1):47–52. https://doi.org/10.1016/j.pnpbp.2010.08.004

    Article  Google Scholar 

  40. Ogrim G, Kropotov J, Hestad K (2012) The quantitative EEG theta/beta ratio in attention deficit/hyperactivity disorder and normal controls: Sensitivity, specificity, and behavioral correlates. Psychiatry Res 198(3):482–488. https://doi.org/10.1016/j.psychres.2011.12.041

    Article  Google Scholar 

  41. Loo SK, Cho A, Hale TS, McGough J, McCracken J, Smalley SL (2013) Characterization of the theta to beta ratio in ADHD: identifying potential sources of heterogeneity. J Atten Disord 17(5):384–392. https://doi.org/10.1177/1087054712468050

    Article  Google Scholar 

  42. Shi T et al (2012) EEG characteristics and visual cognitive function of children with attention deficit hyperactivity disorder (ADHD). Brain Dev 34(10):806–811. https://doi.org/10.1016/j.braindev.2012.02.013

    Article  Google Scholar 

  43. U.S. Food & Drug Administration., Device Classification Under Section 513(f)(2)(De Novo). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/denovo.cfm?ID=DEN110019. Accessed 13 Jan 2022

  44. Arns M, Conners CK, Kraemer HC (2013) A decade of EEG theta/beta ratio research in ADHD: a meta-analysis. J Atten Disord 17(5):374–383. https://doi.org/10.1177/1087054712460087

    Article  Google Scholar 

  45. Markovska-Simoska S, Pop-Jordanova N (2017) Quantitative EEG in children and adults with attention deficit hyperactivity disorder: comparison of absolute and relative power spectra and theta/beta ratio. Clin EEG Neurosci 48(1):20–32. https://doi.org/10.1177/1550059416643824

    Article  Google Scholar 

  46. Chen I-C, Chang C-H, Chang Y, Lin D-S, Lin C-H, Ko L-W (2021) Neural dynamics for facilitating ADHD diagnosis in preschoolers: central and parietal delta synchronization in the kiddie continuous performance test. IEEE Trans Neural Syst Rehabil Eng 29:1524–1533. https://doi.org/10.1109/TNSRE.2021.3097551

    Article  Google Scholar 

  47. Chen I-C, Lee P-W, Wang L-J, Chang C-H, Lin C-H, Ko L-W (2021) Incremental validity of multi-method and multi-informant evaluations in the clinical diagnosis of preschool ADHD. J Atten Disord 108705472110457. https://doi.org/10.1177/10870547211045739

  48. Chang Y, He C, Tsai B-Y, Ko L-W, Multi-parameter physiological state monitoring in target detection under real-world settings. Front Hum Neurosci 793

    Google Scholar 

  49. Kollins SH et al (2020) A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): a randomised controlled trial. Lancet Digit Health 2(4):e168–e178. https://doi.org/10.1016/S2589-7500(20)30017-0

    Article  Google Scholar 

  50. Teo WP et al (2016) Does a combination of virtual reality, neuromodulation and neuroimaging provide a comprehensive platform for neurorehabilitation?—a narrative review of the literature. Front Hum Neurosci 10(June):1–15. https://doi.org/10.3389/fnhum.2016.00284

    Article  Google Scholar 

  51. Calabrò RS et al (2017) The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J NeuroEngineering Rehabil 14(1):53. https://doi.org/10.1186/s12984-017-0268-4

    Article  Google Scholar 

  52. Li M, Xu G, Xie J, Chen C (2018) A review: motor rehabilitation after stroke with control based on human intent. Proc Inst Mech Eng 232(4):344–360. https://doi.org/10.1177/0954411918755828

    Article  Google Scholar 

  53. Heo P, Gu GM, Lee S, Rhee K, Kim J (2012) Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int J Precis Eng Manuf 13(5):807–824. https://doi.org/10.1007/s12541-012-0107-2

    Article  Google Scholar 

  54. Shi D, Zhang W, Zhang W, Ding X (2019) A review on lower limb rehabilitation exoskeleton robots. Chin J Mech Eng 32(1):74. https://doi.org/10.1186/s10033-019-0389-8

    Article  Google Scholar 

  55. Shafiul Hasan SM, Siddiquee MR, Atri R, Ramon R, Marquez JS, Bai O (2020) Prediction of gait intention from pre-movement EEG signals: a feasibility study. J NeuroEngineering Rehabil 17(1):50. https://doi.org/10.1186/s12984-020-00675-5

    Article  Google Scholar 

  56. Khalighi S, Sousa T, Oliveira D, Pires G, Nunes U (2011) Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM. In: 2011 Annual international conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, Aug 2011, pp 3306–3309. https://doi.org/10.1109/IEMBS.2011.6090897

  57. Alickovic E, Subasi A (2018) Ensemble SVM method for automatic sleep stage classification. IEEE Trans Instrum Meas 67(6):1258–1265. https://doi.org/10.1109/TIM.2018.2799059

    Article  Google Scholar 

  58. Koley B, Dey D (2012) An ensemble system for automatic sleep stage classification using single channel EEG signal. Comput Biol Med 42(12):1186–1195. https://doi.org/10.1016/j.compbiomed.2012.09.012

    Article  Google Scholar 

  59. Klok AB, Edin J, Cesari M, Olesen AN, Jennum P, Sorensen HBD (2018) A new fully automated random-forest algorithm for sleep staging. In: 2018 40th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, Jul 2018, pp 4920–4923. https://doi.org/10.1109/EMBC.2018.8513413

  60. Wu H, Talmon R, Lo Y-L (2015) Assess sleep stage by modern signal processing techniques. IEEE Trans Biomed Eng 62(4):1159–1168. https://doi.org/10.1109/TBME.2014.2375292

    Article  Google Scholar 

  61. Phan H, Andreotti F, Cooray N, Chen OY, De Vos M (2019) Joint classification and prediction CNN framework for automatic sleep stage classification. IEEE Trans Biomed Eng 66(5):1285–1296. https://doi.org/10.1109/TBME.2018.2872652

    Article  Google Scholar 

  62. Supratak A, Dong H, Wu C, Guo Y (2017) DeepSleepNet: a model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans Neural Syst Rehabil Eng 25(11):1998–2008. https://doi.org/10.1109/TNSRE.2017.2721116

    Article  Google Scholar 

  63. Yuan Y et al (2019) A hybrid self-attention deep learning framework for multivariate sleep stage classification. BMC Bioinformatics 20(S16):586. https://doi.org/10.1186/s12859-019-3075-z

    Article  Google Scholar 

  64. Ko L-W, Su C-H, Yang M-H, Liu S-Y, Su T-P (2021) A pilot study on essential oil aroma stimulation for enhancing slow-wave EEG in sleeping brain. Sci Rep 11(1):1078. https://doi.org/10.1038/s41598-020-80171-x

    Article  Google Scholar 

  65. Putze F, Weiß D, Vortmann L-M, Schultz T (2019) Augmented reality interface for smart home control using SSVEP-BCI and eye gaze. In: 2019 IEEE international conference on systems, man and cybernetics (SMC), Bari, Italy, Oct 2019, pp 2812–2817. https://doi.org/10.1109/SMC.2019.8914390

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Wei Ko .

Editor information

Editors and Affiliations

Appendices

Appendix 1: References for Wet-electrode EEG Systems

  1. a)

    http://compumedicsnuroscan.com/

  2. b)

    https://www.advancedbrainmonitoring.com/neurotechnology/

  3. c)

    https://mbraintrain.com/smarting/

  4. d)

    https://www.neuroelectrics.com/products/enobio/enobio-8/

  5. e)

    http://www.gtec.at/Products

  6. f)

    https://openbci.com/

  7. g)

    https://www.brainproducts.com/products_by_apps.php?aid=5

Appendix 2: References for Dry-electrode EEG Systems

  1. a)

    http://neurosky.com/

  2. b)

    https://www.emotiv.com/

  3. c)

    https://www.cognionics.net/us-price

  4. d)

    https://vandrico.com/wearables/search/node/Imec

  5. e)

    http://www.bri.com.tw/product_br8plus.html

  6. f)

    http://www.quasarusa.com/products_dsi.htm; https://bio-medical.com/freedom-24d-wireless-eeg-headset-w-brainavatar-acquisition-software.html

  7. g)

    https://www.neuroelectrics.com/products/enobio/enobio-8/

  8. h)

    http://www.gtec.at/Products

  9. i)

    https://openbci.com/

  10. j)

    https://www.brainproducts.com/products_by_apps.php?aid=5

  11. k)

    http://zeto-inc.com/

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevenson, C. et al. (2023). Emerging Non-invasive Brain–Computer Interface Technologies and Their Clinical Applications. In: Chaurasia, M.A., Juang, CF. (eds) Emerging IT/ICT and AI Technologies Affecting Society. Lecture Notes in Networks and Systems, vol 478. Springer, Singapore. https://doi.org/10.1007/978-981-19-2940-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2940-3_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2939-7

  • Online ISBN: 978-981-19-2940-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics