Skip to main content

Irrigation Mechanisms and Intrarenal Pressure in Flexible Ureteroscopy

  • Chapter
  • First Online:
Flexible Ureteroscopy

Abstract

Saline irrigation during flexible ureterorenoscopy (fURS) is necessary to maintain a clear vision during diagnostic and therapeutic procedures. Technological development has brought us different irrigation mechanisms, ranging from gravity irrigation to a variety of hand- and foot-controlled devices as well as automated pumps, the performance of which will be discussed in the clinical perspective.

As a result of scope manipulation and fluid irrigation, intrarenal pressure (IRP) unequivocally will increase during fURS. Data on IRP during experimental and clinical fURS is presented and discussed, including the role of ureteral access sheaths. Increases in IRP will often exceed thresholds for tubular (20–30 mmHg) and venous (30–50 mmHg) backflow, potentially resulting in septic complications. When IRP increases even further, forniceal rupture may occur, emerging into hemorrhagic complications. Additionally, IRP increments will produce strain in the pelvic/calyceal wall, thereby activating pacemaker cells that will initiate peristalsis, which may result in access-related problems. In this way, IRP variations represent the main determinant for adverse events in fURS. Preventive measures will be discussed, including potential role of pharmacological modulation of upper urinary tract dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

fURS:

Flexible ureteroscopy

IRP:

Intrarenal pressure

PCNL:

Percutaneous nephrolithotomy

sURS:

Semirigid ureteroscopy

UAS:

Ureteral access sheath

References

  1. Matlaga BR, Assimos DG. Changing indications of open stone surgery. Urology. 2002;59(4):490–3.

    Article  Google Scholar 

  2. Schwalb DM, Eshghi M, Davidian M, Franco I. Morphological and physiological changes in the urinary tract associated with ureteral dilation and ureteropyeloscopy: an experimental study. J Urol. 1993;149(6):1576–85.

    Article  CAS  Google Scholar 

  3. Jung H, Osther PJ. Intraluminal pressure profiles during flexible ureterorenoscopy. Springerplus. 2015;4:373. https://doi.org/10.1186/s40064-015-1114-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tokas T, Herrmann TRW, Skolarikos A, Nagele U. Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World J Urol. 2019;37(1):125–31. https://doi.org/10.1007/s00345-018-2378-4.

    Article  PubMed  Google Scholar 

  5. Osther PJS. Risks of flexible ureterorenoscopy: pathophysiology and prevention. Urolithiasis. 2018;46(1):59–67. https://doi.org/10.1007/s00240-017-1018-6.

    Article  PubMed  Google Scholar 

  6. Osther PJ, Pedersen KV, Lildal SK, Pless MS, Andreassen KH, Osther SS, Jung HU. Pathophysiological aspects of ureterorenoscopic management of upper urinary tract calculi. Curr Opin Urol. 2016;26(1):63–9. https://doi.org/10.1097/mou.0000000000000235.

    Article  PubMed  Google Scholar 

  7. Mykoniatis I, Sarafidis P, Memmos D, Anastasiadis A, Dimitriadis G, Hatzichristou D. Are endourological procedures for nephrolithiasis treatment associated with renal injury? A review of potential mechanisms and novel diagnostic indexes. Clin Kidney J. 2020;13(4):531–41. https://doi.org/10.1093/ckj/sfaa020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lildal SK, Andreassen KH, Baard J, Brehmer M, Bultitude M, Eriksson Y, Ghani KR, Jung H, Kamphuis G, Kronenberg P, Turney B, Traxer O, Ulvik Ø, Osther PJS. Consultation on kidney stones, Copenhagen 2019: aspects of intracorporeal lithotripsy in flexible ureterorenoscopy. World J Urol. 2020;39(6):1673–82. https://doi.org/10.1007/s00345-020-03481-9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thomsen HS, Dorph S, Larsen S, Talner LB. Intrarenal backflow and renal perfusion during increased intrapelvic pressure in excised porcine kidneys. Acta Radiol Diagn. 1983;24(4):327–36.

    Article  CAS  Google Scholar 

  10. Boddy SA, Nimmon CC, Jones S, Ramsay JW, Britton KE, Levison DA, Whitfield HN. Irrigation and acute ureteric dilatation—as for ureteroscopy. Br J Urol. 1989;63(1):11–3.

    Article  CAS  Google Scholar 

  11. Kreydin EI, Eisner BH. Risk factors for sepsis after percutaneous renal stone surgery. Nat Rev Urol. 2013;10(10):598–605. https://doi.org/10.1038/nrurol.2013.183.

    Article  PubMed  Google Scholar 

  12. Yahsi S, Tonyali S, Ceylan C, Yildiz KY, Ozdal L. Intraparenchymal hematoma as a late complication of retrograde intrarenal surgery. Int Braz J Urol. 2017;43(2):367–70. https://doi.org/10.1590/s1677-5538.ibju.2016.0121.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Farag M, Timm B, Davis N, Wong LM, Bolton DM, Jack GS. Pressurized-bag irrigation versus hand-operated irrigation pumps during ureteroscopic laser lithotripsy: comparison of infectious complications. J Endourol. 2020;34(9):914–8. https://doi.org/10.1089/end.2020.0148.

    Article  PubMed  Google Scholar 

  14. Mitsuzuka K, Nakano O, Takahashi N, Satoh M. Identification of factors associated with postoperative febrile urinary tract infection after ureteroscopy for urinary stones. Urolithiasis. 2016;44(3):257–62. https://doi.org/10.1007/s00240-015-0816-y.

    Article  PubMed  Google Scholar 

  15. Lechevallier E, Luciani M, Nahon O, Lay F, Coulange C. Transurethral ureterorenolithotripsy using new automated irrigation/suction system controlling pressure and flow compared with standard irrigation: a randomized pilot study. J Endourol. 2003;17(2):97–101. https://doi.org/10.1089/08927790360587423.

    Article  PubMed  Google Scholar 

  16. Tokas T, Skolarikos A, Herrmann TRW, Nagele U. Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures. World J Urol. 2019;37(1):133–42. https://doi.org/10.1007/s00345-018-2379-3.

    Article  PubMed  Google Scholar 

  17. Guzelburc V, Balasar M, Colakogullari M, Guven S, Kandemir A, Ozturk A, Karaaslan P, Erkurt B, Albayrak S. Comparison of absorbed irrigation fluid volumes during retrograde intrarenal surgery and percutaneous nephrolithotomy for the treatment of kidney stones larger than 2 cm. Springerplus. 2016;5(1):1707. https://doi.org/10.1186/s40064-016-3383-y.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Loftus C, Byrne M, Monga M. High pressure endoscopic irrigation: impact on renal histology. Int Braz J Urol. 2021;47(2):350–6. https://doi.org/10.1590/s1677-5538.ibju.2020.0248.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Blew BD, Dagnone AJ, Pace KT, Honey RJ. Comparison of peditrol irrigation device and common methods of irrigation. J Endourol. 2005;19(5):562–5. https://doi.org/10.1089/end.2005.19.562.

    Article  PubMed  Google Scholar 

  20. MacCraith E, Yap LC, Elamin M, Patterson K, Brady CM, Hennessey DB. Evaluation of the impact of ureteroscope, access sheath, and irrigation system selection on intrarenal pressures in a porcine kidney model. J Endourol. 2020;35(4):512–7. https://doi.org/10.1089/end.2020.0838.

    Article  PubMed  Google Scholar 

  21. Proietti S, Dragos L, Somani B, Butticè S, Talso M, Emiliani E, Baghdadi M, Giusti G, Traxer O. In vitro comparison of maximum pressure developed by irrigation systems in a kidney model. J Endourol. 2017;31(5):522–7. https://doi.org/10.1089/end.2017.0005.

    Article  PubMed  Google Scholar 

  22. Noureldin YA, Kallidonis P, Ntasiotis P, Adamou C, Zazas E, Liatsikos EN. The effect of irrigation power and ureteral access sheath diameter on the maximal intra-pelvic pressure during ureteroscopy: in vivo experimental study in a live anesthetized pig. J Endourol. 2019;33(9):725–9. https://doi.org/10.1089/end.2019.0317.

    Article  PubMed  Google Scholar 

  23. Inoue T, Yamamichi F, Okada S, Hamamoto S, Fujisawa M. Change in irrigation flow through a flexible ureteroscope with various devices in the working channel: comparison between an automatic irrigation pump and gravity-based irrigation. Int J Urol. 2020;27(4):333–8. https://doi.org/10.1111/iju.14197.

    Article  PubMed  Google Scholar 

  24. Lama DJ, Owyong M, Parkhomenko E, Patel RM, Landman J, Clayman RV. Fluid dynamic analysis of hand-pump infuser and UROMAT endoscopic automatic system for irrigation through a flexible ureteroscope. J Endourol. 2018;32(5):431–6. https://doi.org/10.1089/end.2017.0811.

    Article  PubMed  Google Scholar 

  25. Doersch KM, Hart KD, Elmekresh A, Milburn PA, Machen GL, El Tayeb MM. Comparison of utilization of pressurized automated versus manual hand irrigation during ureteroscopy in the absence of ureteral access sheath. Proc (Baylor Univ Med Cent). 2018;31(4):432–5. https://doi.org/10.1080/08998280.2018.1482518.

    Article  Google Scholar 

  26. Jefferson FA, Sung JM, Limfueco L, Lu S, Cottone CM, Tapiero S, Patel RM, Clayman RV, Landman J. Prospective randomized comparison of standard hand pump infuser irrigation vs an automated irrigation pump during percutaneous nephrolithotomy and ureteroscopy: assessment of operating room efficiency and surgeon satisfaction. J Endourol. 2020;34(2):156–62. https://doi.org/10.1089/end.2019.0419.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bedke J, Leichtle U, Lorenz A, Nagele U, Stenzl A, Kruck S. 1.2 French stone retrieval baskets further enhance irrigation flow in flexible ureterorenoscopy. Urolithiasis. 2013;41(2):153–7. https://doi.org/10.1007/s00240-012-0540-9.

    Article  PubMed  Google Scholar 

  28. Kruck S, Anastasiadis AG, Gakis G, Walcher U, Hennenlotter J, Merseburger AS, Stenzl A, Nagele U. Flow matters: irrigation flow differs in flexible ureteroscopes of the newest generation. Urol Res. 2011;39(6):483–6. https://doi.org/10.1007/s00240-011-0373-y.

    Article  PubMed  Google Scholar 

  29. Noureldin YA, Farsari E, Ntasiotis P, Adamou C, Vagionis A, Vrettos T, Liatsikos EN, Kallidonis P. Effects of irrigation parameters and access sheath size on the intra-renal temperature during flexible ureteroscopy with a high-power laser. World J Urol. 2020;39(4):1257–62. https://doi.org/10.1007/s00345-020-03287-9.

    Article  CAS  PubMed  Google Scholar 

  30. Hein S, Petzold R, Suarez-Ibarrola R, Müller PF, Schoenthaler M, Miernik A. Thermal effects of Ho:YAG laser lithotripsy during retrograde intrarenal surgery and percutaneous nephrolithotomy in an ex vivo porcine kidney model. World J Urol. 2020;38(3):753–60. https://doi.org/10.1007/s00345-019-02808-5.

    Article  PubMed  Google Scholar 

  31. Deng X, Song L, Xie D, Fan D, Zhu L, Yao L, Wang X, Liu S, Zhang Y, Liao X, Liu S, Peng Z, Hu M, Zhu X, Huang J, Liu T, Du C, Guo S, Yang Z, Peng G, Ye Z. A novel flexible ureteroscopy with intelligent control of renal pelvic pressure: an initial experience of 93 cases. J Endourol. 2016;30(10):1067–72. https://doi.org/10.1089/end.2015.0770.

    Article  PubMed  Google Scholar 

  32. Patel RM, Jefferson FA, Owyong M, Hofmann M, Ayad ML, Osann K, Okhunov Z, Landman J, Clayman RV. Characterization of intracalyceal pressure during ureteroscopy. World J Urol. 2020;39(3):883–9. https://doi.org/10.1007/s00345-020-03259-z.

    Article  PubMed  Google Scholar 

  33. Fedrigon D III, Alshara L, Monga M. Comparison of automated irrigation systems using an in vitro ureteroscopy model. Int Braz J Urol. 2020;46(3):390–7. https://doi.org/10.1590/s1677-5538.ibju.2019.0230.

    Article  PubMed  PubMed Central  Google Scholar 

  34. De S, Torricelli FC, Sarkissian C, Kartha G, Monga M. Evaluating the automated Thermedx fluid management system in a ureteroscopy model. J Endourol. 2014;28(5):549–53. https://doi.org/10.1089/end.2013.0697.

    Article  PubMed  Google Scholar 

  35. Doizi S, Letendre J, Cloutier J, Ploumidis A, Traxer O. Continuous monitoring of intrapelvic pressure during flexible ureteroscopy using a sensor wire: a pilot study. World J Urol. 2020;39(2):555–61. https://doi.org/10.1007/s00345-020-03216-w.

    Article  PubMed  Google Scholar 

  36. Kiil F. Pressure recordings in the upper urinary tract. Scand J Clin Lab Investig. 1953;5(4):383–4. https://doi.org/10.3109/00365515309094217.

    Article  CAS  Google Scholar 

  37. Djurhuus JC. Aspects of renal pelvic function. Copenhagen: University of Copenhagen; 1980.

    Google Scholar 

  38. Jung HU, Jakobsen JS, Mortensen J, Osther PJ, Djurhuus JC. Irrigation with isoproterenol diminishes increases in pelvic pressure without side-effects during ureterorenoscopy: a randomized controlled study in a porcine model. Scand J Urol Nephrol. 2008;42(1):7–11. https://doi.org/10.1080/00365590701520073.

    Article  CAS  PubMed  Google Scholar 

  39. Jakobsen JS, Jung HU, Gramsbergen JB, Osther PJ, Walter S. Endoluminal isoproterenol reduces renal pelvic pressure during semirigid ureterorenoscopy: a porcine model. BJU Int. 2010;105(1):121–4. https://doi.org/10.1111/j.1464-410X.2009.08678.x.

    Article  PubMed  Google Scholar 

  40. Rattner WH. Human ureter and renal pelvis. J Urol. 1957;78(4):359–62. https://doi.org/10.1016/S0022-5347(17)66448-6.

    Article  CAS  PubMed  Google Scholar 

  41. Thomsen HS. Pyelorenal backflow. Clinical and experimental investigations. Radiologic, nuclear, medical and pathoanatomic studies. Dan Med Bull. 1984;31(6):438–57.

    CAS  PubMed  Google Scholar 

  42. Hinman F. Pyelovenous backflow. J Am Med Assoc. 1926;87(16):1287–93. https://doi.org/10.1001/jama.1926.02680160035011.

    Article  Google Scholar 

  43. Stenberg A, Bohman SO, Morsing P, Müller-Suur C, Olsen L, Persson AE. Back-leak of pelvic urine to the bloodstream. Acta Physiol Scand. 1988;134(2):223–34. https://doi.org/10.1111/j.1748-1716.1988.tb08483.x.

    Article  CAS  PubMed  Google Scholar 

  44. Jung H, Pless MS, Osther PJS. Anatomic variations and stone formation. Curr Opin Urol. 2018;28(5):420–7. https://doi.org/10.1097/mou.0000000000000519.

    Article  PubMed  Google Scholar 

  45. Pless MS, Williams JC Jr, Andreassen KH, Jung HU, Osther SS, Christensen DR, Osther PJS. Endoscopic observations as a tool to define underlying pathology in kidney stone formers. World J Urol. 2019;37(10):2207–15. https://doi.org/10.1007/s00345-018-02616-3.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kukreja RA, Desai MR, Sabnis RB, Patel SH. Fluid absorption during percutaneous nephrolithotomy: does it matter? J Endourol. 2002;16(4):221–4. https://doi.org/10.1089/089277902753752160.

    Article  CAS  PubMed  Google Scholar 

  47. Boccafoschi C, Lugnani F. Intra-renal reflux. Urol Res. 1985;13(5):253–8. https://doi.org/10.1007/bf00261587.

    Article  CAS  PubMed  Google Scholar 

  48. Shao Y, Shen ZJ, Zhu YY, Sun XW, Lu J, Xia SJ. Fluid-electrolyte and renal pelvic pressure changes during ureteroscopic lithotripsy. Minim Invasive Ther Allied Technol MITAT. 2012;21(4):302–6. https://doi.org/10.3109/13645706.2011.595419.

    Article  PubMed  Google Scholar 

  49. Wilson WT, Preminger GM. Intrarenal pressures generated during flexible deflectable ureterorenoscopy. J Endourol. 1990;4:135–42.

    Article  Google Scholar 

  50. Jung HU, Jakobsen JS, Frimodt-Moeller PC, Osther PJ. Irrigation with isoproterenol during ureterorenoscopy causes no systemic side-effects. Scand J Urol Nephrol. 2008;42(2):158–63. https://doi.org/10.1080/00365590701570631.

    Article  CAS  PubMed  Google Scholar 

  51. Doizi S, Uzan A, Keller EX, De Coninck V, Kamkoum H, Barghouthy Y, Ventimiglia E, Traxer O. Comparison of intrapelvic pressures during flexible ureteroscopy, mini-percutaneous nephrolithotomy, standard percutaneous nephrolithotomy, and endoscopic combined intrarenal surgery in a kidney model. World J Urol. 2020;39(7):2709–17. https://doi.org/10.1007/s00345-020-03450-2.

    Article  PubMed  Google Scholar 

  52. Jung H, Norby B, Frimodt-Moller PC, Osther PJ. Endoluminal isoproterenol irrigation decreases renal pelvic pressure during flexible ureterorenoscopy: a clinical randomized, controlled study. Eur Urol. 2008;54(6):1404–13. https://doi.org/10.1016/j.eururo.2008.03.092.

    Article  PubMed  Google Scholar 

  53. Auge BK, Pietrow PK, Lallas CD, Raj GV, Santa-Cruz RW, Preminger GM. Ureteral access sheath provides protection against elevated renal pressures during routine flexible ureteroscopic stone manipulation. J Endourol. 2004;18(1):33–6. https://doi.org/10.1089/089277904322836631.

    Article  PubMed  Google Scholar 

  54. Guohua Z, Wen Z, Xun L, Wenzhong C, Yongzhong H, Zhaohui H, Ming L, Kaijun W. The influence of minimally invasive percutaneous nephrolithotomy on renal pelvic pressure in vivo. Surg Laparosc Endosc Percutan Tech. 2007;17(4):307–10. https://doi.org/10.1097/SLE.0b013e31806e61f4.

    Article  PubMed  Google Scholar 

  55. Landman J, Venkatesh R, Ragab M, Rehman J, Lee DI, Morrissey KG, Monga M, Sundaram CP. Comparison of intrarenal pressure and irrigant flow during percutaneous nephroscopy with an indwelling ureteral catheter, ureteral occlusion balloon, and ureteral access sheath. Urology. 2002;60(4):584–7. https://doi.org/10.1016/s0090-4295(02)01861-7.

    Article  PubMed  Google Scholar 

  56. Troxel SA, Low RK. Renal intrapelvic pressure during percutaneous nephrolithotomy and its correlation with the development of postoperative fever. J Urol. 2002;168(4 Pt 1):1348–51. https://doi.org/10.1097/01.ju.0000030996.64339.f1.

    Article  PubMed  Google Scholar 

  57. Alsyouf M, Abourbih S, West B, Hodgson H, Baldwin DD. Elevated renal pelvic pressures during percutaneous nephrolithotomy risk higher postoperative pain and longer hospital stay. J Urol. 2018;199(1):193–9. https://doi.org/10.1016/j.juro.2017.08.039.

    Article  PubMed  Google Scholar 

  58. Malhotra SK, Khaitan A, Goswami AK, Gill KD, Dutta A. Monitoring of irrigation fluid absorption during percutaneous nephrolithotripsy: the use of 1% ethanol as a marker. Anaesthesia. 2001;56(11):1103–6. https://doi.org/10.1046/j.1365-2044.2001.01962-3.x.

    Article  CAS  PubMed  Google Scholar 

  59. Gehring H, Nahm W, Zimmermann K, Fornara P, Ocklitz E, Schmucker P. Irrigating fluid absorption during percutaneous nephrolithotripsy. Acta Anaesthesiol Scand. 1999;43(3):316–21. https://doi.org/10.1034/j.1399-6576.1999.430312.x.

    Article  CAS  PubMed  Google Scholar 

  60. Traxer O, Thomas A. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol. 2013;189(2):580–4. https://doi.org/10.1016/j.juro.2012.08.197.

    Article  PubMed  Google Scholar 

  61. Rehman J, Monga M, Landman J, Lee DI, Felfela T, Conradie MC, Srinivas R, Sundaram CP, Clayman RV. Characterization of intrapelvic pressure during ureteropyeloscopy with ureteral access sheaths. Urology. 2003;61(4):713–8.

    Article  Google Scholar 

  62. Yoshida T, Inoue T, Abe T, Matsuda T. Evaluation of intrapelvic pressure when using small-sized ureteral access sheaths of ≤ 10/12 F in an ex vivo porcine kidney model. J Endourol. 2018;32(12):1142–7. https://doi.org/10.1089/end.2018.0501.

    Article  PubMed  Google Scholar 

  63. Fang L, Xie G, Zheng Z, Liu W, Zhu J, Huang T, Lu Y, Cheng Y. The effect of ratio of endoscope-sheath diameter on intrapelvic pressure during flexible ureteroscopic lasertripsy. J Endourol. 2019;33(2):132–9. https://doi.org/10.1089/end.2018.0774.

    Article  PubMed  Google Scholar 

  64. Sener TE, Cloutier J, Villa L, Marson F, Butticè S, Doizi S, Traxer O. Can we provide low intrarenal pressures with good irrigation flow by decreasing the size of ureteral access sheaths? J Endourol. 2016;30(1):49–55. https://doi.org/10.1089/end.2015.0387.

    Article  PubMed  Google Scholar 

  65. Wright A, Williams K, Somani B, Rukin N. Intrarenal pressure and irrigation flow with commonly used ureteric access sheaths and instruments. Cent Eur J Urol. 2015;68(4):434–8. https://doi.org/10.5173/ceju.2015.604.

    Article  CAS  Google Scholar 

  66. Oratis AT, Subasic JJ, Hernandez N, Bird JC, Eisner BH. A simple fluid dynamic model of renal pelvis pressures during ureteroscopic kidney stone treatment. PLoS One. 2018;13(11):e0208209. https://doi.org/10.1371/journal.pone.0208209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stern JM, Yiee J, Park S. Safety and efficacy of ureteral access sheaths. J Endourol. 2007;21(2):119–23. https://doi.org/10.1089/end.2007.9997.

    Article  PubMed  Google Scholar 

  68. Lildal SK, Nørregaard R, Andreassen KH, Christiansen FE, Jung H, Pedersen MR, Osther PJ. Ureteral access sheath influence on the ureteral wall evaluated by cyclooxygenase-2 and tumor necrosis factor-α in a porcine model. J Endourol. 2017;31(3):307–13. https://doi.org/10.1089/end.2016.0773.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lildal SK, Sørensen FB, Andreassen KH, Christiansen FE, Jung H, Pedersen MR, Osther PJS. Histopathological correlations to ureteral lesions visualized during ureteroscopy. World J Urol. 2017;35(10):1489–96. https://doi.org/10.1007/s00345-017-2035-3.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Traxer O, Wendt-Nordahl G, Sodha H, Rassweiler J, Meretyk S, Tefekli A, Coz F, de la Rosette JJ. Differences in renal stone treatment and outcomes for patients treated either with or without the support of a ureteral access sheath: the Clinical Research Office of the Endourological Society Ureteroscopy Global Study. World J Urol. 2015;33(12):2137–44. https://doi.org/10.1007/s00345-015-1582-8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. De Coninck V, Keller EX, Rodríguez-Monsalve M, Audouin M, Doizi S, Traxer O. Systematic review of ureteral access sheaths: facts and myths. BJU Int. 2018;122(6):959–69. https://doi.org/10.1111/bju.14389.

    Article  PubMed  Google Scholar 

  72. Zhong W, Leto G, Wang L, Zeng G. Systemic inflammatory response syndrome after flexible ureteroscopic lithotripsy: a study of risk factors. J Endourol. 2015;29(1):25–8. https://doi.org/10.1089/end.2014.0409.

    Article  PubMed  Google Scholar 

  73. Jung HU, Frimodt-Moller PC, Osther PJ, Mortensen J. Pharmacological effect on pyeloureteric dynamics with a clinical perspective: a review of the literature. Urol Res. 2006;34(6):341–50. https://doi.org/10.1007/s00240-006-0069-x.

    Article  CAS  PubMed  Google Scholar 

  74. Park YC, Tomiyama Y, Hayakawa K, Akahane M, Ajisawa Y, Miyatake R, Kiwamoto H, Sugiyama T, Kurita T. Existence of a beta3-adrenoceptro and its functional role in the human ureter. J Urol. 2000;164(4):1364–70.

    Article  CAS  Google Scholar 

  75. Canda AE, Turna B, Cinar GM, Nazli O. Physiology and pharmacology of the human ureter: basis for current and future treatments. Urol Int. 2007;78(4):289–98. https://doi.org/10.1159/000100830.

    Article  PubMed  Google Scholar 

  76. Holst U, Dissing T, Rawashdeh YF, Frokiaer J, Djurhuus JC, Mortensen J. Norepinephrine inhibits the pelvic pressure increase in response to flow perfusion. J Urol. 2003;170(1):268–71. https://doi.org/10.1097/01.ju.0000069824.13258.14.

    Article  CAS  PubMed  Google Scholar 

  77. Jung H, Nørby B, Frimodt-Møller PC, Osther PJ. Endoluminal isoproterenol irrigation decreases renal pelvic pressure during flexible ureterorenoscopy: a clinical randomized, controlled study. Eur Urol. 2008;54(6):1404–13. https://doi.org/10.1016/j.eururo.2008.03.092.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palle Osther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lildal, S.K., Osther, P., Jung, H. (2022). Irrigation Mechanisms and Intrarenal Pressure in Flexible Ureteroscopy. In: Zeng, G., Parikh, K., Sarica, K. (eds) Flexible Ureteroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-19-2936-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2936-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2935-9

  • Online ISBN: 978-981-19-2936-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics