Skip to main content

Chemical Processing of Liquid Metal

  • Living reference work entry
  • First Online:
Handbook of Liquid Metals
  • 27 Accesses

Abstract

Liquid metals (LMs) are emerging as new functional materials with rather unique physical or chemical behaviors. They are generally safe and non-toxic; have high boiling points, reflectivities, excellent thermal and electrical conductivities, intrinsic flexibility, fluidity, and self-healing capability; and remain in liquid state at room temperature. These properties have endowed them to overcome numerous conventional technical bottlenecks and open applications in diverse fields. Particularly, the surface properties of liquid metals play a crucial role in determining their significant functions and applications. However, the surfaces of liquid metals usually present as silver-white appearance and distinct metallic textures, thereby confining their applications to specific domains. As a remedy, chemical processing of liquid metals can break through the limitations of their inherent properties and provide new opportunities for their innovative applications. Herein, the recent developments in the surface properties, chemical processing, and relevant functionalizations of liquid metals are comprehensively investigated. The strategies, structures, properties, and applications of chemical processing for liquid metals are systematically analyzed and compared. The effectiveness and characteristics of chemical processing induced by coating, mixing, compounding, surface modification, and external stimuli are provided, aiming to establish a potential system for the chemical processing of liquid metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Y.R. Ding, M.Q. Zeng, L. Fu, Surface chemistry of gallium-based liquid metals. Matter 03, 1477–1506 (2020)

    Article  Google Scholar 

  2. L.F. Duan, T. Zhou, Y.M. Zhang, J.H. Zhao, J. Zhang, Q. Li, J. Liu, Q.J. Liu, Colourful liquid metals. Nat. Rev. Mater. 07, 503 (2022)

    Article  Google Scholar 

  3. Liquid-metal-enabled flexible metasurface with self-healing characteristics, Adv. Mater. Interfaces 09, 2102141 (2022)

    Article  Google Scholar 

  4. Y.X. Zhang, S.J. Jiang, Y.L. Hu, T. Wu, Y.Y. Zhang, H.Z. Li, A. Li, Y.C. Zhang, H. Wu, Y.L. Ding, E.Q. Li, J.W. Li, D. Wu, Y.S. Song, J.R. Chu, Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation. Nano Lett. 22, 2923–2933 (2022)

    Article  PubMed  Google Scholar 

  5. F.C. Simeone, H.J. Yoon, M.M. Thuo, J.R. Barber, B. Smith, G.M. Whitesides, Defining the value of injection current and effective electrical contact area for EGaIn-based molecular tunneling junctions. J. Am. Chem. Soc. 135, 18131–18144 (2013)

    Article  PubMed  Google Scholar 

  6. H. Song, T. Kim, S. Kang, H. Jin, K. Lee, H.J. Yoon, Ga-based liquid metal micro/nanoparticles: recent advances and applications. Small 16, 1903391 (2020)

    Article  Google Scholar 

  7. P. Zhu, S.S. Gao, H. Lin, X.Y. Lu, B.W. Yang, L.L. Zhang, Y. Chen, J.L. Shi, Inorganic nanoshell-stabilized liquid metal for targeted photonanomedicine in NIR-II biowindow. Nano Lett. 19, 2128–2137 (2019)

    Article  PubMed  Google Scholar 

  8. Y.Z. Yu, F.J. Liu, R.C. Zhang, J. Liu, Suspension 3D printing of liquid metal into self-healing hydrogen. Adv. Mater. Technol. 02, 1700173 (2017)

    Article  Google Scholar 

  9. Y.M. Zhang, J.H. Zhao, J. Zhang, X.X. Jiang, Z.Q. Zhu, Q.J. Liu, Interface engineering based on liquid metal for compact-layer-free, fully printable mesoscopic perovskite solar cells. ACS Appl. Mater. Interfaces 18, 15616–15623 (2018)

    Article  Google Scholar 

  10. Y. Li, Y.G. Cui, M.J. Zhang, X.D. Li, R. Li, W.Y. Si, Q.H. Sun, L.M. Yu, C.H. Huang, Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets. Nano Lett. 22, 2817–2825 (2022)

    Article  PubMed  Google Scholar 

  11. S.L. Zhang, Y. Liu, Q.N. Fan, C.F. Zhang, T.F. Zhou, K.Z. Kourosh, Z.P. Guo, Liquid metal batteries for future energy storage. Energy Environ. Sci. 19, 01–26 (2021)

    Google Scholar 

  12. J. Yang, W.L. Cheng, K.Z. Kourosh, Electronic skins based on liquid metals. Proc. IEEE 107, 2168–2184 (2019)

    Article  Google Scholar 

  13. S.E. Byeon, H.G. Kang, H.J. Yoon, Toward printed molecular electronics: direct printing of liquid metal microelectrode on self-assembled monolayers. Adv. Electron. Mater. 07, 2000829 (2021)

    Article  Google Scholar 

  14. H.Z. Wang, B. Yuan, S.T. Liang, R. Guo, W. Rao, X.L. Wang, H. Chang, Y.J. Ding, J. Liu, L. Wang, PLUS-M: a porous liquid-metal enabled ubiquitous soft material. Mater. Horiz. 05, 222–229 (2018)

    Article  Google Scholar 

  15. D. Kim, P. Thissen, G. Viner, D.W. Lee, W. Choi, Y.J. Chabal, J.B. Lee, Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl. Mater. Interfaces 05, 179–185 (2013)

    Article  Google Scholar 

  16. J. Zhang, Y.Y. Yao, L. Sheng, J. Liu, Self-fueled biomimetic liquid metal mollusk. Adv. Mater. 27, 2648–2655 (2015)

    Article  PubMed  Google Scholar 

  17. L. Hu, L. Wang, Y.J. Ding, S.H. Zhan, J. Liu, Manipulation of liquid metals on a graphite surface. Adv. Mater. 41, 9210–9217 (2016)

    Article  Google Scholar 

  18. L. Hu, B. Yuan, J. Liu, Liquid metal amoeba with spontaneous pseudopodia formation and motion capability. Sci. Rep. 07, 7256 (2017)

    Article  Google Scholar 

  19. L. Wang, J. Liu, Liquid metal folding patterns induced by electric capillary force. Appl. Phys. Lett. 108, 161602 (2016)

    Article  Google Scholar 

  20. C.F. Pan, K. Kumar, J.Z. Li, E.J. Markvicka, P.R. Herman, C. Majidi, Visually imperceptible liquid-metal circuits for transparent, stretchable electronics with direct laser writing. Adv. Mater. 30, 1706937 (2018)

    Article  Google Scholar 

  21. L.X. Tang, L. Mou, W. Zhang, X.Y. Jiang, Large-scale fabrication of highly elastic conductors on a broad range of surfaces. ACS Appl. Mater. Interfaces 11, 7138–7147 (2019)

    Article  PubMed  Google Scholar 

  22. K. Doudrick, S.L.Z. Liu, E.M. Mutunga, K.L. Klein, V. Damle, K.K. Varanasi, K. Rykaczewski, Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir 30, 6867–6877 (2014)

    Article  PubMed  Google Scholar 

  23. Y.T. Cui, F. Liang, Z.Z. Yang, S. Xu, X. Zhao, Y.J. Ding, Z.S. Lin, J. Liu, Metallic bond-enabled wetting behavior at the liquid Ga/CuGa2 interfaces. ACS Appl. Mater. Interfaces 11, 9203–9210 (2018)

    Article  Google Scholar 

  24. X. Zhao, S. Xu, J. Liu, Surface tension of liquid metal: role, mechanism and application. Front. Energy 11, 535–567 (2017)

    Article  Google Scholar 

  25. L.F. Duan, Y.M. Zhang, J.H. Zhao, Q. Li, J. Zhang, J.J. He, J. Liu, Q.J. Liu, Formation of multiphase soft metal from compositing GaInSn and BiInSn alloy systems. ACS Appl. Electron. Mater. 04, 112–123 (2022)

    Article  Google Scholar 

  26. N.B. Morley, J. Burris, L.C. Cadwallader, M.D. Nornberg, Gainsn usage in the research laboratory. Rev. Sci. Instrum. 79, 112–192 (2008)

    Article  Google Scholar 

  27. L. Wang, J. Liu, Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen. Proc. R. Soc. A Math. Phys. 470, 20140609 (2014)

    Google Scholar 

  28. P. Sen, C.J. Kim, Microscale liquid-metal switches a review. IEEE Trans. Ind. Electron. Control. Instrum. 56, 1314–1330 (2009)

    Article  Google Scholar 

  29. D. L. Wang, Construction of Gallium-Based Swimming Nanorobots and Active Target of Cancer Cells, vol. 12. Harbin Institute Technology Ph.D. thesis, 2020, pp. 01–30

    Google Scholar 

  30. I.A.D. Castro, A.F. Chrimes, A. Zavabeti, K.J. Berean, B.J. Carey, J.C. Zhuang, Y. Du, S.X. Dou, K. Suzuki, R.A. Shanks, N.L. Reece, G. Bryant, K. Khoshmanesh, K.Z. Kourosh, T. Daeneke, A gallium-based magnetocaloric liquid metal ferrofluid. Nano Lett. 17, 7831–7838 (2017)

    Article  Google Scholar 

  31. J.B. Tang, X. Zhao, J. Li, R. Guo, Y. Zhou, J. Liu, Gallium-based liquid metal amalgams: transitional-state metallic mixtures (TransM2ixes) with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl. Mater. Interfaces 41, 35977–35987 (2017)

    Article  Google Scholar 

  32. M.C. Yu, X.F. Bian, T.Q. Wang, J.Z. Wang, Metal-based magnetic fluids with core-shell structure FeB@SiO2 amorphous particles. Soft Matter 37, 6340–6348 (2017)

    Article  Google Scholar 

  33. Z.B. Wang, Y. Wang, H. Gao, J.Z. Niu, J. Zhang, Z.Q. Peng, Z.H. Zhang, ‘Painting’ nanostructured metals – playing with liquid metal. Nanoscale Horiz. 03, 408–416 (2018)

    Article  Google Scholar 

  34. I.V. Baklanova, V.N. Krasil’nikov, A.P. Tyutyunnik, A.N. Enyashin, Y.V. Baklanova, O.I. Gyrdasova, R.F. Samigullina, E.G. Vovkotrub, Synthesis, spectroscopic and luminescence properties of Ga-doped γ-Al2O3. Spectrochim. Acta A 227, 117658 (2020)

    Article  Google Scholar 

  35. A.I. Kostyukov, A.V. Zhuzhgov, V.V. Kaichev, A.A. Rastorguev, V.N. Snytnikov, V.N. Snytnikov, Photoluminescence of oxygen vacancies in nanostructured Al2O3. Opt. Mater. 75, 757–763 (2018)

    Article  Google Scholar 

  36. V.B. Mikhailik, P.C. Stefano, S. Henry, H. Kraus, A. Lynch, V. Tsybulskyi, M.A. Verdier, Studies of concentration dependences in the luminescence of Ti-doped Al2O3. J. Appl. Phys. 109, 053116 (2011)

    Article  Google Scholar 

  37. G.S. Huang, X.L. Wu, Y. Xie, X.F. Shao, S.H. Wang, Light emission from silicon-based porous anodic alumina formed in 0.5 M oxalic acid. J. Appl. Phys. 94, 2407 (2003)

    Article  Google Scholar 

  38. Y.C. Lee, Y.L. Liu, C.K. Wang, J.L. Shen, P.W. Cheng, C.F. Cheng, C.H. Ko, T.Y. Lin, Decay dynamics of blue-green luminescence in meso-porous MCM-41 nanotubes. J. Lumin. 113, 258–264 (2005)

    Article  Google Scholar 

  39. S. Banerjee, A. Datta, Photoluminescent silica nanotubes and nanodisks prepared by the reverse micelle sol-gel method. Langmuir 26, 1172–1176 (2010)

    Article  PubMed  Google Scholar 

  40. L.F. Duan, Y.M. Zhang, J.H. Zhao, J. Zhang, Q. Li, Y. Chen, J. Liu, Q.J. Liu, Unique and excellent paintable liquid metal for fluorescent display. ACS Appl. Mater. Interfaces 14, 23951–23963 (2022)

    Article  Google Scholar 

  41. J.B. Tang, X. Zhao, Y. Zhou, J. Liu, Triggering and tracing electro-hydrodynamic liquid-metal surface convection with a particle raft. Adv. Mater. Interfaces 22, 1700939 (2017)

    Article  Google Scholar 

  42. Y.C. Yao, S. Chen, J. Ye, Y.T. Cui, Z.S. Deng, Self-assembled copper film-enabled liquid metal core-shell composite. ACS Appl. Mater. Interfaces 50, 60660–60671 (2021)

    Article  Google Scholar 

  43. J.L. Ma, H.X. Dong, Z.Z. He, Electrochemically enabled manipulation of gallium-based liquid metals within porous copper. Mater. Horiz. 05, 675–682 (2018)

    Article  Google Scholar 

  44. W.K. Xing, H. Wang, S. Chen, P. Tao, W. Shang, B.W. Fu, C.Y. Song, T. Deng, Gallium-based liquid metal composites with enhanced thermal and electrical performance enabled by structural engineering of filler. Adv. Eng. Mater. 20, 2101678 (2022)

    Article  Google Scholar 

  45. S.C. Tan, X.H. Yang, H. Gui, Y.J. Ding, L. Wang, B. Yuan, J. Liu, Galvanic corrosion couple-induced Marangoni flow of liquid metal. Soft Matter 13, 2309–2314 (2017)

    Article  PubMed  Google Scholar 

  46. A. Zavabeti, J.Z. Ou, B.J. Carey, N. Syed, R. Orrell-Trigg, E.L.H. Mayes, C. Xu, O. Kavehei, A.P. O’Mullane, R.B. Kaner, K. Kalantar-zadeh, T. Daeneke, A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332 (2017)

    Article  PubMed  Google Scholar 

  47. H.Z. Li, R. Abbasi, Y.F. Wang, F.M. Allioux, P. Koshy, S.A. Idrus-Saidi, M.A. Rahim, J. Yang, M. Mousavi, J.B. Tang, M.B. Ghasemian, R. Jalili, K. Kalantar-Zadeh, M. Mayyas, Liquid metal-supported synthesis of cupric oxide. J. Mater. Chem. C 08, 1656–1665 (2020)

    Article  Google Scholar 

  48. J.B. Tang, X. Zhao, J. Li, J. Liu, Thin, porous, and conductive networks of metal nanoparticles through electrochemical welding on a liquid metal template. Adv. Mater. Interfaces 19, 1800406 (2018)

    Article  Google Scholar 

  49. V. Sivan, S.Y. Tang, A.P. O’Mullane, P. Petersen, N. Eshtiaghi, K. Kalantar-zadeh, A. Mitchell, Liquid metals: liquid metal marbles. Adv. Funct. Mater. 23, 144 (2013)

    Article  Google Scholar 

  50. J.B. Tang, J. Wang, J. Liu, Y. Zhou, A volatile fluid assisted thermo-pneumatic liquid metal energy harvester. Appl. Phys. Lett. 108, 223901 (2016)

    Article  Google Scholar 

  51. J.B. Tang, X. Zhao, J. Li, Y. Zhou, J. Liu, Liquid metal phagocytosis: intermetallic wetting induced particle internalization. Adv. Sci. 04, 1700024 (2017)

    Article  Google Scholar 

  52. R. David, N. Miki, Tunable noble metal thin films on Ga alloys via galvanic replacement. Langmuir 34, 10550–10559 (2018)

    Article  PubMed  Google Scholar 

  53. F. Hoshyargar, J. Crawford, A.P. O’Mullane, Galvanic replacement of the liquid metal Galinstan. J. Am. Chem. Soc. 139, 1464–1471 (2017)

    Article  PubMed  Google Scholar 

  54. R. David, N. Miki, Synthesis of sub-micrometer biphasic Au-AuGa2/liquid metal frameworks. Nanoscale 11, 21419–21432 (2019)

    Article  PubMed  Google Scholar 

  55. D. Esrafilzadeh, A. Zavabeti, R. Jalili, P. Atkin, J. Choi, B.J. Carey, R. Brkljaca, A.P. O’Mullane, M.D. Dickey, D.L. Officer, D.R. MacFarlane, T. Daeneke, K. Kalantar-Zadeh, Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nat. Commun. 10, 865 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Y.T. Cui, F. Liang, C. Ji, S. Xu, H.Z. Wang, Z.S. Lin, J. Liu, Discoloration effect and one-step synthesis of hydrogen tungsten and molybdenum bronze (HxMO3) using liquid metal at room temperature. ACS Omega 04, 7428–7435 (2019)

    Article  Google Scholar 

  57. M.A.H. Khondoker, D. Sameoto, Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater. Struct. 25, 093001 (2016)

    Article  Google Scholar 

  58. M.B. Ghasemian, M. Mayyas, S.A. Idrus-Saidi, M.A. Jamal, J. Yang, S.S. Mofarah, E. Adabifiroozjaei, J.B. Tang, N. Syed, A.P. O’Mullane, T. Daeneke, K. Kalantar-Zadeh, Self-limiting galvanic growth of MnO2 monolayers on a liquid metal-applied to photocatalysis. Adv. Funct. Mater. 36, 1901649 (2019)

    Article  Google Scholar 

  59. L.H. Song, M.R. Song, Z.Y. Lu, G. Yu, Z. Liang, W. Hou, Q.W. Liao, Y.J. Song, Recent advances of preparation and application of two-dimension van der Waals heterostructure. Coatings 12, 1152 (2022)

    Article  Google Scholar 

  60. B.W. Stuart, G.E. Stan, Physical vapour deposited biomedical coatings. Coatings 11, 619 (2021)

    Article  Google Scholar 

  61. D. Vernardou, Advances in chemical vapor deposition. Materials 13, 4167 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  62. J.H. Fu, T.Y. Liu, Y.T. Cui, J. Liu, Interfacial engineering of room temperature liquid metals. Adv. Mater. Interfaces 08, 2001936 (2021)

    Article  Google Scholar 

  63. X.L. Wang, L.L. Fan, J. Zhang, X.Y. Sun, H. Chang, B. Yuan, R. Guo, M.H. Duan, J. Liu, Printed conformable liquid metal e-skin-enabled spatiotemporally controlled bioelectromagnetics for wireless multisite tumor therapy. Adv. Funct. Mater. 51, 1907063 (2019)

    Article  Google Scholar 

  64. F. Scharmann, G. Cherkashinin, V. Breternitz, C. Knedlik, G. Hartung, T. Weber, J.A. Schaefer, Viscosity effect on GaInSn studied by XPS. Surf. Interface Anal. 36, 981–985 (2004)

    Article  Google Scholar 

  65. M. Shafiei, F. Hoshyargar, N. Motta, A.P. O’Mullane, Utilizing p-type native oxide on liquid metal microdroplets for low temperature gas sensing. Mater. Des. 122, 288–295 (2017)

    Article  Google Scholar 

  66. M. Jia, J.T. Newberg, Liquid-gas interfacial chemistry of gallium-indium eutectic in the presence of oxygen and water vapor. J. Phys. Chem. C 123, 28688–28694 (2019)

    Article  Google Scholar 

  67. K.A. Messalea, A. Zavabeti, M. Mohiuddin, N. Syed, A. Jannat, P. Atkin, T. Ahmed, S. Walia, C.F. McConville, K. Kalantar-Zadeh, N. Mahmood, K. Khoshmanesh, T. Daeneke, Two-step synthesis of large-area 2D Bi2S3 nanosheets featuring high in-plane anisotropy. Adv. Mater. Interfaces 22, 2001131 (2020)

    Article  Google Scholar 

  68. M. Wurdack, T. Yun, E. Estrecho, N. Syed, S. Bhattacharyya, M. Pieczarka, A. Zavabeti, S.Y. Chen, B. Haas, J. Müller, M.N. Lockrey, Q.L. Bao, C. Schneider, Y.R. Lu, M.S. Fuhrer, A.G. Truscott, T. Daeneke, E.A. Ostrovskaya, Ultrathin Ga2O3 glass: a large-scale passivation and protection material for monolayer WS2. Adv. Mater. 33, 2005732 (2021)

    Article  Google Scholar 

  69. N. Syed, A. Zavabeti, K.A. Messalea, E.D. Gaspera, A. Elbourne, A. Jannat, M. Mohiuddin, B.Y. Zhang, G.L. Zheng, L. Wang, S.P. Russo, D. Esrafilzadeh, C.F. McConville, K. Kalantar-Zadeh, T. Daeneke, Wafer-sized ultrathin gallium and indium nitride nanosheets through the ammonolysis of liquid metal derived oxides. J. Am. Chem. Soc. 141, 104–108 (2019)

    Article  PubMed  Google Scholar 

  70. N. Syed, A. Zavabeti, J.Z. Ou, M. Mohiuddin, N. Pillai, B.J. Carey, B.Y. Zhang, R.S. Datta, A. Jannat, F. Haque, K.A. Messalea, C.L. Xu, S.P. Russo, C.F. McConville, T. Daeneke, K. Kalantar-Zadeh, Printing two-dimensional gallium phosphate out of liquid metal. Nat. Commun. 09, 3618 (2018)

    Article  Google Scholar 

  71. P.B. Zhang, X.F. Liu, X.H. Fang, X.Y. Chen, Synthesis of single-layer graphene film by chemical vapor deposition with molten gallium catalyst on silicon dioxide. J. Mater. Sci. 55, 2787–2795 (2020)

    Article  Google Scholar 

  72. M.Y.A. Alsaif, N. Pillai, S. Kuriakose, S. Walia, A. Jannat, K. Xu, T. Alkathiri, M. Mohiuddin, T. Daeneke, K. Kalantar-Zadeh, J.Z. Ou, A. Zavabeti, Atomically thin Ga2S3 from skin of liquid metals for electrical, optical, and sensing applications. ACS Appl. Nano Mater. 07, 4665–4672 (2019)

    Article  Google Scholar 

  73. L. Fu, Y.Y. Sun, N. Wu, R.G. Mendes, L.F. Chen, Z. Xu, T. Zhang, M.H. Rümmeli, B. Rellinghaus, D. Pohl, L. Zhuang, L. Fu, Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 10, 2063–2070 (2016)

    Article  PubMed  Google Scholar 

  74. M.Q. Zeng, Y.X. Chen, J.X. Li, H.F. Xue, R.G. Mendes, J.X. Liu, T. Zhang, M.H. Rümmeli, L. Fu, 2D WC single crystal embedded in graphene for enhancing hydrogen evolution reaction. Nano Energy 33, 356–362 (2017)

    Article  Google Scholar 

  75. Y.B. Zhou, B. Deng, Y. Zhou, X.B. Ren, J.B. Yin, C.H. Jin, Z.F. Liu, H.L. Peng, Low-temperature growth of two-dimensional layered chalcogenide crystals on liquid. Nano Lett. 16, 2103–2107 (2016)

    Article  PubMed  Google Scholar 

  76. S. Kinoshita, S. Yoshioka, J. Miyazaki, Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008)

    Article  Google Scholar 

  77. X.L. Wang, W.H. Yao, R. Guo, X.H. Yang, J.B. Tang, J. Zhang, W.P. Gao, V. Timchenko, J. Liu, Soft and moldable mg-doped liquid metal for conformable skin tumor photothermal therapy. Adv. Healthc. Mater. 14, 1800318 (2018)

    Article  Google Scholar 

  78. A.S. Falchevskaya, N.K. Kulachenkov, S.V. Bachinin, V.A. Milichko, V.V. Vinogradov, Single particle color switching by laser-induced deformation of liquid metal-derived microcapsules. J. Phys. Chem. Lett. 12, 7738–7744 (2021)

    Article  PubMed  Google Scholar 

  79. L. Hu, X. Zhao, J.R. Guo, J. Liu, Electrical control of liquid metal amoeba with directional extension formation. RSC Adv. 09, 2353–2359 (2019)

    Article  Google Scholar 

  80. Y. Hou, H. Chang, K. Song, C.N. Lu, P.J. Zhang, Y.S. Wang, Q. Wang, W. Rao, J. Liu, Coloration of liquid-metal soft robots: from silver-white to iridescent. ACS Appl. Mater. Interfaces 48, 41627–41636 (2018)

    Article  Google Scholar 

  81. A.R. Jacob, D.P. Parekh, M.D. Dickey, L.C. Hsiao, Interfacial rheology of gallium-based liquid metals. Langmuir 35, 11774–11783 (2019)

    Article  PubMed  Google Scholar 

  82. L.L. Wang, D.D. Johnson, Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles. J. Am. Chem. Soc. 131, 14023–14029 (2009)

    Article  PubMed  Google Scholar 

  83. L. Cademartiri, M.M. Thuo, C.A. Nijhuis, W.F. Reus, S. Tricard, J.R. Barber, R.N.S. Sodhi, P. Brodersen, C. Kim, R.C. Chiechi, G.M. Whitesides, Electrical resistance of AgTS-S(CH2)n-1CH3//Ga2O3/EGaIn tunneling junctions. J. Phys. Chem. C 116, 10848–10860 (2012)

    Article  Google Scholar 

  84. R.N.S. Sodhi, P. Brodersen, L. Cademartiri, M.M. Thuo, C.A. Nijhuis, Surface and buried interface layer studies on challenging structures as studied by ARXPS. Surf. Interface Anal. 49, 1309–1315 (2017)

    Article  Google Scholar 

  85. Y. Yamaguchi, Y. Taniyama, H. Takatsu, A. Kitamoto, M. Imade, M. Yoshimura, M. Isemura, Y. Mori, Improvement of crystallinity of GaN layers grown using Ga2O vapor synthesized from liquid Ga and H2O vapor. Jpn. J. Appl. Phys. 55, 05FB04 (2016)

    Article  Google Scholar 

  86. A. Martin, W. Kiarie, B. Chang, M. Thuo, Chameleon metals: Autonomous Nano-texturing and composition inversion on liquid metals surfaces. Angew. Chem. Int. Ed. 59, 352–357 (2020)

    Article  Google Scholar 

  87. J. Cutinho, B.S. Chang, S. Oyola-Reynoso, J.H. Chen, S.S. Akhter, I.D. Tevis, N.J. Bello, A. Martin, M.C. Foster, M.M. Thuo, Autonomous thermal-oxidative composition inversion and texture tuning of liquid metal surfaces. ACS Nano 12, 4744–4753 (2018)

    Article  PubMed  Google Scholar 

  88. Y. Yu, Q. Wang, L.T. Yi, J. Liu, Preparation and mechanical properties of graphene nanosheet reinforced alumina composites. Adv. Eng. Mater. 16, 255 (2014)

    Article  Google Scholar 

  89. Y. Yu, Q. Wang, X.L. Wang, Y.H. Wu, J. Liu, Liquid metal soft electrode triggered discharge plasma in aqueous solution. RSC Adv. 06, 114773–114778 (2016)

    Article  Google Scholar 

  90. P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P.C. Wu, T.H. Kim, A. Brown, Y. Yang, H.O. Everitt, G. Videen, Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate. Nano Lett. 11, 3531–3537 (2011)

    Article  PubMed  Google Scholar 

  91. J.Q. Wang, S.C. Liu, Z.V. Vardeny, A. Nahata, Liquid metal-based plasmonics. Opt. Express 20, 2346–2353 (2012)

    Article  PubMed  Google Scholar 

  92. Y. Lu, Y.L. Lin, Z.W. Chen, Q.Y. Hu, Y. Liu, S.J. Yu, W. Gao, M.D. Dickey, Z. Gu, Enhanced endosomal escape by light-fueled liquid-metal transformer. Nano Lett. 17, 2138–2145 (2017)

    Article  PubMed  Google Scholar 

  93. L. Ren, X. Xu, Y. Du, K. Kalantar-Zadeh, S.X. Dou, Liquid metals and their hybrids as stimulus–responsive smart materials. Mater. Today 34, 92–114 (2020)

    Article  Google Scholar 

  94. S.A. Chechetka, Y. Yu, X. Zhen, M. Pramanik, K. Pu, E. Miyako, Light-driven liquid metal nanotransformers for biomedical theranostics. Nat. Commun. 08, 15432 (2017)

    Article  Google Scholar 

  95. J. Xiang, J.D. Chen, S. Jiang, M.C. Panmai, P.L. Li, Y. Xu, Q.F. Dai, S.L. Tie, S. Lan, Liquid gallium nanospheres emitting white light. Laser Photonics Rev. 13, 1800214 (2019)

    Article  Google Scholar 

  96. J. Xiang, S.L. Li, Z.B. Sun, J.D. Chen, L. Chen, M.C. Pangmai, G.C. Li, S. Lan, Efficient white light emission from Ga/Ga2O3 hybrid nanoparticles. Adv. Opt. Mater. 21, 2100675 (2021)

    Article  Google Scholar 

  97. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 09, 707–715 (2010)

    Article  Google Scholar 

  98. H.D. Deng, G.C. Li, Q.F. Dai, M. Ouyang, S. Lan, V.A. Trofimov, T.M. Lysak, Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles. Nanotechnology 24, 075201 (2013)

    Article  PubMed  Google Scholar 

  99. S.J. Pearton, J.C. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, T. Tsuchiya, H. Yusa, J. Tsuchiya, A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 05, 011301 (2008)

    Article  Google Scholar 

  100. N.K. Gunasekar, H. MacIntyre, S. Subashchandran, P.R. Edwards, R.W. Martin, K. Daivasigamani, K. Sasaki, A. Kuramata, Origin of red emission in β-Ga2O3 analyzed by cathodoluminescence and photoluminescence spectroscopy. Phys Status Solidi B 258, 2000465 (2021)

    Article  Google Scholar 

  101. S. Ohira, N. Suzuki, N. Arai, M. Tanaka, T. Sugawara, K. Nakajima, T. Shishido, Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing. Thin Solid Films 516, 5763–5767 (2008)

    Article  Google Scholar 

  102. L.F. Duan, Y.M. Zhang, J.H. Zhao, J. Zhang, Q. Li, Q.J. Lu, F. Li, J. Liu, Q.J. Liu, Unique surface fluorescence induced from core-shell structure of gallium - based liquid metals prepared by thermal oxidation processing. ACS Appl. Mater. Interfaces 14, 23951–23963 (2022)

    Article  Google Scholar 

  103. M.Z. Li, Z.G. Xia, Recent progress of zero-dimensional luminescent metal halides. Chem. Soc. Rev. 50, 2626–2662 (2021)

    Article  PubMed  Google Scholar 

  104. Q. Liu, L.X. Wang, L. Zhang, H. Yang, M.X. Yu, Q.T. Zhang, Enhanced luminescence and structure evolution of double perovskite (K, Na)LaMgWO6:Eu3+ phosphor for white LEDs. J. Mater. Sci. Mater. Electron. 26, 8083–8088 (2015)

    Article  Google Scholar 

  105. T. Chang, H.Y. Wang, Y.L. Gao, S. Cao, J.L. Zhao, B.S. Zou, R.S. Zeng, Component engineering to tailor the structure and optical properties of Sb-doped indium-based halides. Inorg. Chem. 61, 1486–1494 (2022)

    Article  PubMed  Google Scholar 

  106. A.M. Abakumov, G. King, V.K. Laurinavichute, M.G. Rozova, P.M. Woodward, E.V. Antipov, The crystal structure of α-K3AlF6: elpasolites and double perovskites with broken corner-sharing connectivity of the octahedral framework. Inorg. Chem. 48, 9336 (2009)

    Article  PubMed  Google Scholar 

  107. G. King, A.M. Abakumov, P.M. Woodward, A. Llobet, A.A. Tsirlin, D. Batuk, E.V. Antipov, The high-temperature polymorphs of K3AlF6. Inorg. Chem. 50, 7792–7801 (2011)

    Article  PubMed  Google Scholar 

  108. L.F. Duan, Y.M. Zhang, J.H. Zhao, J. Zhang, Q. Li, Q.J. Lu, F. Li, J. Liu, Q.J. Liu, New strategy and excellent fluorescence property of unique core-shell structure based on liquid metals/metal halides. Small 14, 23951–23963 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangfei Duan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Duan, L. (2024). Chemical Processing of Liquid Metal. In: Liu, J., Rao, W. (eds) Handbook of Liquid Metals. Springer, Singapore. https://doi.org/10.1007/978-981-19-2797-3_49-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2797-3_49-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2797-3

  • Online ISBN: 978-981-19-2797-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics