Skip to main content

Microcosmic Interaction Between Plasma Jet and Spraying Particles

  • Chapter
  • First Online:
Micro Process and Quality Control of Plasma Spraying

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 355 Accesses

Abstract

Plasma spraying consists of three steps of energy conversion. The first step is the conversion from electric energy to internal energy during ionization of working gas under high voltage; the second step is the form of heating transfer, mass transfer and accelerated process after the spray particles interact with the jet; and the final is the energy collaborative dissipation in the spreading and solidification process of molten particles impacting the substrate at high speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37(9):86–108

    Article  Google Scholar 

  2. Fauchais P, Vardelle A (2000) Heat, mass and momentum transfer in coating formation by plasma spraying. Int J Therm Sci 39(9–11):852–870

    Article  CAS  Google Scholar 

  3. Liu T, Ansar A, Arnold J (2017) A study of the influence of the surrounding gas on the plasma jet and coating quality during plasma spraying. Plasma Chem Plasma Process 2017:1–24

    Google Scholar 

  4. Xu Z, Dong T, Li G et al (2014) Parameters optimizing of NiCr-Cr3C2 coating deposited by supersonic plasma spraying based on uniform design. J Mech Eng 50(18):43–49

    Article  CAS  Google Scholar 

  5. Jan C, Khiamaik K (2012) Role of in-flight temperature and velocity of powder particles on plasma sprayed hydroxyapatite coating characteristics. Surf Coat Technol 206:2181–2191

    Article  Google Scholar 

  6. Dhiman R, Chandra S (2005) Freezing-induced splashing during impact of molten metal droplets with high Weber numbers. Int J Heat Mass Transf 48(25):5625–5638

    Article  CAS  Google Scholar 

  7. Rampon R, Marchand O, Filiatre C et al (2008) Influence of suspension characteristics on coatings microstructure obtained by suspension plasma spraying. Surf Coat Technol 202(18):4337–4342

    Article  CAS  Google Scholar 

  8. Montavon G, Sampath S, Berndt CC et al (1997) Effects of the spray angle on splat morphology during thermal spraying. Surf Coat Technol 91(1–2):107–115

    Article  CAS  Google Scholar 

  9. Ružbarský J, Panda A (2017) Plasma and thermal spraying. Springer International Publishing

    Google Scholar 

  10. Tan C, Wei Z, Wei P et al (2014) In-flight particle behavior in internal powder injection supersonic plasma spray. J Xi’an Jiaotong Univ 48(6):91–97

    Google Scholar 

  11. Zhou L, Luo F, Zhou W et al (2016) Influence of FeCrAl content on microstructure and bonding strength of plasma-sprayed FeCrAl/Al2O3 coatings. J Therm Spray Technol 25(3):509–517

    Article  Google Scholar 

  12. Sudhakar CJ, Bandyopadhyay PP (2017) Plasma sprayed carbon nanotube reinforced splats and coatings. J Eur Ceram Soc 37:2235–2244

    Article  Google Scholar 

  13. Anup KK, Debrupa L, Arvind A (2011) Carbon nanotubes improve the adhesion strength of a ceramic splat to the steel substrate. Carbon 49:4340–4347

    Article  Google Scholar 

  14. Pei W, Wei Z, Zhao G et al (2015) The analysis of melting and refining process for in-flight particles in supersonic plasma spraying. Comput Mater Sci 103(9):8–19

    Google Scholar 

  15. Zhan Q, Yu L, Ye F et al (2012) Quantitative evaluation of the decarburization and microstructure evolution of WC-Co during plasma spraying. Surf Coat Technol 206:4068–4074

    Article  CAS  Google Scholar 

  16. Niranatlumpong P, Sukonkhet C, Ninon K (2015) Loss of Y from NiCrAlY powder during air plasma spraying. Surf Coat Technol 280:277–281

    Article  CAS  Google Scholar 

  17. Bai Y, Zhao L, Wang Y et al (2015) Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying. J Alloy Compd 632:794–799

    Article  CAS  Google Scholar 

  18. Tian J, Yao S, Luo X et al (2016) An effective approach for creating metallurgical self-bonding in plasma-spraying of NiCr-Mo coating by designing shell-core-structured powders. Acta Mater 110:19–30

    Article  CAS  Google Scholar 

  19. Zhang L, Wei Q, Li H et al (2009) Oxidization behavior of thermally sprayed particles and the relevant protective techniques. J Mater Eng 6:78–82

    Google Scholar 

  20. Qi W, Yin Z, Li H (2012) Oxidation control in plasma spraying NiCrCoAlY coating. Appl Surf Sci 258:5094–5099

    Article  Google Scholar 

  21. Syed AA, Denoirjean A, Fauchais P et al (2006) On the oxidation of stainless steel particles in the plasma jet. Surf Coat Technol 200(14–15):4368–4382

    Article  CAS  Google Scholar 

  22. Cizek J, Khor KA, Dlouhy I (2013) In-flight temperature and velocity of powder particles of plasma-sprayed TiO2. J Therm Spray Technol 22(8):1320–1327

    Article  CAS  Google Scholar 

  23. Matthews S (2014) Development of high carbide dissolution/low carbon loss Cr3C2-NiCr coatings by shrouded plasma spraying. Surf Coat Technol 258:886–900

    Article  CAS  Google Scholar 

  24. Matthews S (2015) Carbide dissolution/carbon loss as a function of spray distance in unshrouded/shrouded plasma sprayed Cr3C2-NiCr coatings. J Therm Spray Technol 24(3):1–18

    Google Scholar 

  25. Shahien M, Yamada M, Fukumoto M (2016) Challenges upon reactive plasma spray nitriding: Al powders and fabrication of AlN coatings as a case study. J Therm Spray Technol 25(5):1–23

    Article  Google Scholar 

  26. Shahien M, Yamada M, Yasui T et al (2013) N2 and H2 plasma gasses’ effects in reactive plasma spraying of Al2O3, powder. Surf Coat Technol 216:308–317

    Article  CAS  Google Scholar 

  27. Shahien M, Yamada M, Fukumoto M et al (2015) Reactive plasma-sprayed aluminum nitride-based coating thermal conductivity. J Therm Spray Technol 24(8):1385–1398

    Article  CAS  Google Scholar 

  28. Xia M, Wang Z, Zhou Z et al (2016) Research on microstructure and properties of reactive plasma spraying TiN composite coatings. Powder Metall Indus 26(3):38–43

    CAS  Google Scholar 

  29. Yao Y, Wang Z, Zhou Z et al (2013) Study on reactive atmospheric plasma-sprayed in situ titanium compound composite coating. J Therm Spray Technol 22(4):509–517

    Article  CAS  Google Scholar 

  30. Gardon M, Guilemany JM (2014) Milestones in functional titanium dioxide thermal spray coatings: a review. J Therm Spray Technol 23(4):577–595

    Article  CAS  Google Scholar 

  31. Gardon M, Dosta S, Guilemany JM et al (2013) Improved, high conductivity titanium sub-oxide coated electrodes obtained by atmospheric plasma spray. J Power Sources 238(238):430–434

    Article  CAS  Google Scholar 

  32. Lee H, Su JH, Seshadri RC et al (2016) Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO2-x. Sci Rep 6:1–11

    Article  Google Scholar 

  33. Yuan J, Zhan Q, Huanng J et al (2013) Decarburization mechanisms of WC-Co during thermal spraying: Insights from controlled carbon loss and microstructure characterization. Mater Chem Phys 142(1):165–171

    Article  CAS  Google Scholar 

  34. Wang H, Jianlong MA, Guolong LI, et al (2014) The dependency of microstructure and mechanical properties of nanostructured alumina-titania coatings on critical plasma spraying parameter. Appl Surf Sci 314(10):468–475

    Google Scholar 

  35. Cizek J, Dlouhy I, Siska F et al (2014) Modification of plasma-sprayed TiO2 coatings characteristics via controlling the in-flight temperature and velocity of the powder particles. J Therm Spray Technol 23(8):1339–1349

    Article  CAS  Google Scholar 

  36. Xu J, Zou B, Tao S et al (2016) Fabrication and properties of Al2O3-TiB2-TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders. J Alloy Compd 672:251–259

    Article  CAS  Google Scholar 

  37. Zou B, Tao S, Huang W et al (2013) Synthesis and characterization of in situ TiC-TiB2 composite coatings by reactive plasma spraying on a magnesium alloy. Appl Surf Sci 264:879–885

    Article  CAS  Google Scholar 

  38. Wang L, Yan D, Yang Y et al (2014) Structure and properties of nanostructured ceramic matrix composite coatings prepared in-situ by reactive plasma spraying micro-sized Al-Fe2O3-Cr2O3 powders. Ceram Int 40:6481–6486

    Article  CAS  Google Scholar 

  39. Jining H, Fanyong Z, Pengbo M et al (2016) Microstructure and wear behavior of nano C-rich TiCN coatings fabricated by reactive plasma spraying with Ti-graphite powders. Surf Coat Technol 305:215–222

    Article  Google Scholar 

  40. Mi P, He J, Qin Y, et al (2016) Nanostructure reactive plasma sprayed TiCN coating. Surf Coat Technol 309–314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, G., Chen, S., Wang, H. (2022). Microcosmic Interaction Between Plasma Jet and Spraying Particles. In: Micro Process and Quality Control of Plasma Spraying. Springer Series in Advanced Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-19-2742-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2742-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2741-6

  • Online ISBN: 978-981-19-2742-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics