Skip to main content

Artificial Seed Technology

  • Chapter
  • First Online:
Sugar Beet Cultivation, Management and Processing

Abstract

Artificial seeds are produced by encapsulating somatic embryos, shoot tips, or any other micropropagule which have the ability to convert into a plant in vitro or ex vitro. The need of artificial seed production was felt due to failed seed propagation in some crop species due to very small seed size, seed heterozygosity, reduced endosperm, no germination in the absence of seed–mycorrhizal association as in case of orchids and also time-consuming vegetative means of propagation in some seedless varieties of crops such as Citrullus lanatus and vitis vinifera, etc. Effective seed coating of micropropagules is done using different gelling agents such as alginate, agar, carrageenan, gellan gum, sodium pectate and carboxy methyl cellulose. However, sodium alginate has been documented as most frequently used gelling agent. The absence of seed coat and endosperm in somatic embryos necessitates the encapsulation matrix to be supplemented with nutrients and growth regulators such as 0.5 mg/L indoleacetic acid (IAA), 0.5 mg/L naphthalene acetic acid (NAA), 2 mg/L 6-benzyl aminopurine (BA), 2 mg/L Fe-EDTA and 30 g/L sucrose. In many plant species such as Allium sativum, Ananas comosus, Dioscorea bulbifera, Cineraria maritima, Cucumis sativus, etc. genetic stability of the plants derived from artificial seeds has also been examined with the help of biochemical and molecular markers and found them genetically consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BA:

Benzyl Aminopurine

IAA:

Indoleacetic Acid

NAA:

Naphthalene Acetic Acid

References

  • Aida AR, Badr-Elden AA, Ottai AM, El-Sayed M, Nasr MI, Esmail MNM (2012) Development of artificial seed technology and preservation in sugar beet. Sugar Tech 14(3):312–320

    Article  CAS  Google Scholar 

  • Antonietta GM, Emanuele P, Alvaro S (1999) Effects of encapsulation on Citrus reticulata Blanco somatic embryo conversion. Plant Cell Tissue Organ Cult 55:235–237

    Article  Google Scholar 

  • Ara H, Jaiswal U, Jaiswal VS (1999) Germination and plantlet regeneration from encapsulated somatic embryos of mango (Mangifera indica L.). Plant Cell Rep 19:166–170

    Article  CAS  PubMed  Google Scholar 

  • Ara H, Jaiswal U, Jaiswal V (2000) Synthetic seed: prospects and limitation. Curr Sci 78:1438–1444

    Google Scholar 

  • Banu LA, M-Or-Rashid H, Bari Miah MA (2014) Development of artificial seed and preservation in Mimosa pudica L. an important medicinal plant in Bangladesh. J Biosci 22:89–99

    Google Scholar 

  • Bapat VA, Mhatre M (2005) Bioencapsulation of somatic embryos in woody plants. In: Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 539–552

    Chapter  Google Scholar 

  • Bapat VA, Mhatre M, Rao PS (1987) Propagation of Morus indica L. (Mulberry) by encapsulated shoot buds. Plant Cell Rep 6:393–395

    Article  CAS  PubMed  Google Scholar 

  • Bekheet SA (2006) A synthetic seed method through encapsulation of in vitro proliferated bulblets of garlic (Allium sativum L.). Arab J Biotech 9:415–426

    Google Scholar 

  • Bukhari N, Siddique I, Perveen K, Siddiqui I, Alwahibi M (2014) Synthetic seed production and physio-biochemical studies in Cassia angustifolia Vahl-a medicinal plant. Acta Biol Hung 65(3):355–367

    Article  CAS  PubMed  Google Scholar 

  • Capuano G, Piccioni E, Standardi A (1998) Effect of different treatments on the conversion of M.26 apple rootstock synthetic seeds obtained from encapsulated apical and axillary micropropagated buds. J Hortic Sci Biotechnol 73:299–305

    Article  Google Scholar 

  • Chee RP, Cantliffe DJ (1992) Improved Procedures for production of sweet potato somatic Embryos for a synthetic seed system. Hort Sci 27:1314–1316

    Google Scholar 

  • Daud M, Taha MZ, Hasbullah AZ (2008) Artificial seed production from encapsulated micro shoots of Sainpaulia ionantha Wendl. (African Violet). J Appl 8:4662–4667

    Article  Google Scholar 

  • Desai BB, Kotecha PM, Salukhe DK (1997) Seeds handbook - biology. In: Production, processing and storage, pp 91–113

    Google Scholar 

  • Elliott MC, Chen DF, Fowler MR, Kirkby MJ, Kubalakova M, Scott NW, Zhang CL, Slater A (1996) Towards the perfect sugar beet via gene manipulation. Sugar Crops China 1:23–30

    Google Scholar 

  • Gangopadhyay G, Bandyopadhyay T, Poddar R, Gangopadhyay SB, Mukherjee KK (2005) Encapsulation of pineapple micro shoots in alginate beads for temporary storage. Curr Sci JSTOR 88:972–977

    CAS  Google Scholar 

  • Ghosh B, Sen S (1994) Plant-regeneration from alginate encapsulated somatic embryos of Asparaguscooperi-baker. Plant Cell Rep 13:381–385

    Article  CAS  PubMed  Google Scholar 

  • Gray DJ, Purohit A, Triglano RN (1991) Somatic embryogenesis and development of synthetic seed technology. Crit Rev Plant Sci 10:33–61

    Article  Google Scholar 

  • Grey DJ (2003) Artificial seed. In: Seed development/artificial seed. Elsevier Ltd.

    Chapter  Google Scholar 

  • Grieve TM, Gartland KMA, Elliott MC (1997) Micropropagation of commercially important sugar beet cultivars. Plant Growth Regul 21:5–18

    Article  Google Scholar 

  • Gupta PK, Durzan DJ (1987) Somatic embryos from protoplasts of Loblolly-pine proembryonal cells. Nat Biotechnol 5:710–712

    Article  Google Scholar 

  • Hegde V, Makeshkumar T, Sheela MN, Visalakshi CC, Koundinya AVV, Anil SR, Muthuraj R, Darshan S (2016) Production of synthetic seed in cassava (Manihot esculenta Crantz). J Root Crops 42(2):5–9

    Google Scholar 

  • Islam MS, Bari MA (2012) In vitro regeneration protocol for artificial seed production in an important medicinal plant Menthaarvensis L. J Bio-Sci 20:99–108

    Article  Google Scholar 

  • Ismail RM, Raslan WM, Hussein GMH (2016) In Vitro propagation of sugar beet cultivar Frida, through encapsulated different explants. Am J Agric Sci 3(3):27–34

    Google Scholar 

  • Ivic SD, Sicher RC, Smigocki AC (2001) Growth habit and sugar accumulation in sugarbeet (Beta vulgaris L.) transformed with a cytokinin biosynthesis gene. Plant Cell Rep 20:770–773

    Article  CAS  Google Scholar 

  • Jain P, Danwra K, Sharma HP, Mahato D (2018) In vitro tissue culture studies and synthetic seed production from Plumbago zeylanica L. Indian J Exp Biol 56:769–773

    CAS  Google Scholar 

  • Khor E, Loh CS (2005) Artificial seeds. In: Nedovic V, Willaert R (eds) Applications of cell immobilization biotechnology. Springer, pp 527–537

    Chapter  Google Scholar 

  • Kikowska M, Thiem B (2011) Alginate-encapsulated shoot tips and nodal segments in micropropagation of medicinal plants. A review. Herba Polonic 57(4):45–57

    CAS  Google Scholar 

  • Kitto SK, Janick J (1982) Polyox as an artificial seed coat for asexual embryos. Hort Sci 17:488–490

    Google Scholar 

  • Kotvi P, Vashist E, Sharma S, Sood H (2016) Optimization of culture conditions for the production and germination of artificial seed in an important medicinal plant, Gentiana kurroo. Innovare J Agric Sci 4(4):13–16

    Google Scholar 

  • Krens FA, Trifonova A, Keizer LCP, Hall RD (1996) The effect of exogenously-applied phytohormones on gene transfer efficiency in sugar beet (Beta vulgaris L.). Plant Sci 116:97–106

    Article  CAS  Google Scholar 

  • Kumar MBA, Vakeswaran V, Krishnasamy V (2005) Enhancement of synthetic seed conversion to seedlings in hybrid rice. Plant Cell Tissue Organ Cult 81:97–100

    Article  CAS  Google Scholar 

  • Lambardi M, Benelli C, Ozudogru EA (2006) Synthetic seed technology in ornamental plants. In: Teixeira da silva JA (ed) Floriculture, ornamental and plant biotechnology, vol 2. Global Science Books, pp 347–354

    Google Scholar 

  • Latif Z, Nasir IA, Riazuddin S (2007) Indigenous production of synthetic seeds in Daucus carota. Pak J Bot 39:849–855

    Google Scholar 

  • Leroy XJ, Leon K, Charles G, Branchard M (2000) Cauliflower somatic embryogenesis and analysis of regenerant stability by ISSRs. Plant Cell Rep 19:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Magray MM, Wani KP, Chatto MA, Ummyiah HM (2017) Synthetic Seed Technology. Int J Curr Microbiol App Sci 6(11):662–674

    Article  CAS  Google Scholar 

  • Makowczynska J, Andrzejewska-Golec E (2006) Somatic seeds of Plantago asiatica L. Acta Soc Bot Pol 75:17–21

    Google Scholar 

  • Masri MI, Ismail RM, Rslan WM, Abdallah (2019) In vitro synthetic seed and herbicide resistant sugar beet varieties (Beta vulgaris L.). Biosci Res 16(2):1913–1924

    Google Scholar 

  • Murashige T (1977) Plant cell and organ cultures as horticultural practices. In: Proceedings of the symposium on tissue culture for horticultural purposes, Ghent, Belgium, 6–9 September

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Narula A, Kumar S, Srivastava PS (2007) Genetic fidelity of in vitro regenerants, encapsulation of shoot tips and high diosgenin content in Dioscorea bulbifera L., a potential alternative source of diosgenin. Biotechnol Lett Springer 29(4):623–629

    Article  CAS  Google Scholar 

  • Nieves N, Zambrano Y, Tapia R, Cid M, Pina D, Castillo R (2003) Field performance of artificial seed derived sugarcane plants. Plant Cell Tissue Organ Cult 75:279–282

    Article  Google Scholar 

  • Pond S, Cameron S (2003) Artificial seeds. In: Tissue Culture, Elsevier Ltd, pp 1379–1388

    Google Scholar 

  • Quiroz-Figueroa FR, Monforte-González M, Galaz-Ávalos RM, Loyola-Vargas VM (2006) Direct somatic embryogenesis in Coffea canephora. In: Loyola-Vargas VM, Vázquez-Flota FA (eds) Plant cell culture protocols. Humana Press, Totowa, NJ, pp 111–117

    Google Scholar 

  • Reddy MC, Murthy KSR, Pullaiah T (2012) Synthetic seeds: a review in agriculture and forestry. Afr J Biotechnol 11:14254–14275

    Google Scholar 

  • Redenbaugh K (1993) Synthetic seeds. In: Application of synthetic seeds to crop improvement. CRC Press, Boca Raton. FL, p 481

    Google Scholar 

  • Redenbaugh K, Nichol J, Kossler ME, Paasch B (1984) Encapsulation of somatic embryos for artificial seed production. In Vitro Cell Dev Biol Plant 20:256–257

    Google Scholar 

  • Redenbaugh K, Paasch BD, Nichol JW, Kossler ME, Viss PR, Walker KA (1986) Somatic seeds: encapsulation of asexual plant embryos. Biotechnology 4:797–801

    Google Scholar 

  • Redenbaugh K, Slade D, Viss PR, Fujii J (1987) Encapsulation of somatic embryos in synthetic seed coats. Hort Sci 22:803–809

    Google Scholar 

  • Rihan HZ, Al-Issawi M, Burchett S, Fuller MP (2011) Encapsulation of cauliflower (Brassica oleracea var. botrytis) microshoots as artificial seeds and their conversion and growth in commercial substrates. Plant Cell Tissue Organ Cult 107:243–250

    Article  CAS  Google Scholar 

  • Rihan HZ, Kareem F, El-Mahrouk ME, Fuller MP (2017) Artificial seeds (principle, aspects and applications). Agronomy 7(4):71

    Article  CAS  Google Scholar 

  • Roy B, Mandal AB (2008) Development of synthetic seeds involving androgenic and pro-embryos in elite indica rice. Indian J Biotechnol 7:515–519

    CAS  Google Scholar 

  • Rslan WM (2018) Sugar beet artificial seeds an overview. Highlights BioSci 1:1–5

    Google Scholar 

  • Saiprasad G (2001) Artificial seeds and their applications. Resonance 6:39–47

    Article  Google Scholar 

  • Saunders JW, Tsai CJ (1999) Production of somatic embryos and shoots from sugar beet callus: Effects of abscisic acid, other growth regulators, nitrogen source, sucrose concentration and genotype. In Vitro Cell Dev Biol Plant 35:18–24

    Article  CAS  Google Scholar 

  • Shallal HH, Stanica F, Peticila AG, Butcaru AC, Nicolae CI (2020) The use of artificial seed technology in the production of horticultural plants. Sci Papers Ser B Hortic 64(1):701–711

    Google Scholar 

  • Sharma S, Shahzad A, da Silva JAT (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31:186–207

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Pal S, Swapnil SA (2020) Artificial seed/synthetic seed production – brief procedure – advantages and limitations. Res Today 2(6):422–424

    Google Scholar 

  • Siong PK, Mohajer S, Taha RM (2012) Production of artificial seeds derived from encapsulated in vitro micro shoots of cauliflower. Brassica oleracea var botrytis Romanian Biotechnol Lett 17(4):7549–7556

    CAS  Google Scholar 

  • Srivastava V, Khan SA, Banerjee S (2009) An evaluation of genetic fidelity of encapsulated microshoots of the medicinal plant: Cineraria maritima following six months of storage. Plant Cell Tissue Organ Cult 99(2):193–198

    Article  CAS  Google Scholar 

  • Sundararaj SG, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125:761–766

    Article  CAS  Google Scholar 

  • Tabassum B, Nasir IA, Farooq AM, Rehman Z, Latif Z, Husnain T (2010) Viability assessment of in vitro produced synthetic seeds of cucumber. Afr J Biotechnol Acad J Kenya 9(42):7026–7032

    CAS  Google Scholar 

  • Tian I, Brown DC (2000) Improvement of soybean somatic embryo development and Maturation by abscisic acid steam treatment. Can J Plant Sci 80:721–726

    Article  Google Scholar 

  • Towill LE (1988) Genetic Considerations for clonal germplasm preservation of materials. Hort Sci 23:91–93

    Google Scholar 

  • Tsai CJ, Saunders JW (1999) Encapsulation, germination, and conversion of somatic embryos in sugarbeet. J Sugar Beet Res 36(4):11–32

    Article  Google Scholar 

  • Zhong Z, Smith HG, Thomas TH (1993) In vitro culture of petioles and intact leaves of sugar beet (Beta vulgaris L.). Plant Growth Regul 12:59–66

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siraree, A. (2022). Artificial Seed Technology. In: Misra, V., Srivastava, S., Mall, A.K. (eds) Sugar Beet Cultivation, Management and Processing. Springer, Singapore. https://doi.org/10.1007/978-981-19-2730-0_8

Download citation

Publish with us

Policies and ethics