Skip to main content

Fracture Toughness Characterization of TBCs

  • Chapter
  • First Online:
Thermal Barrier Coatings: Failure Theory and Evaluation Technology

Abstract

Fracture is an issue worthy of attention during the design and use of all engineering materials. Based on the test results for different materials, the fracture can be approximately categorized into three types, namely, brittle fracture, quasibrittle fracture, and ductile fracture. The inherent brittleness of ceramic materials is their most essential mechanical property, and their fracture process is basically a brittle one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith AA. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond. 1921;A221:163.

    ADS  MATH  Google Scholar 

  2. Irwin GR. Fracture. In Handbuck der Physik 6. Edited by Fluegge S (Springer, Berlin), 1958, 551.

    Google Scholar 

  3. Gong J. Fracture mechanics of ceramic materials. Beijing: Tsinghua University Press, 2001.

    Google Scholar 

  4. Gong J, Guan Z. Advancements in techniques for measuring fracture toughness of ceramics in China. Bullet Chin Ceramic Soc. 1996;1:53–7.

    Google Scholar 

  5. Xu S, Shen G, Tyson WR. Effect of crack-tip plasticity on crack length estimation methods for SENB sample. Eng Fract Mech. 2005;72(9):1454–9.

    Article  Google Scholar 

  6. Xu J, Zhang ZL, Nyhus B, Sun DB. Effects of crack depth and specimen size on ductile crack growth of SENT and SENB specimens for fracture mechanics evaluation of pipeline steels. Int J Press Vessels Pip. 2009;86(12):787–97.

    Article  Google Scholar 

  7. Wan J, Zhou M, Yang XS, Dai CY, Zhang Y, Mao WG, Lu C. Fracture characteristics of freestanding 8wt% Y2O3–ZrO2 coatings by single edge notched beam and Vickers indentation tests. Mater Sci Eng A. 2013;581:140–4.

    Article  Google Scholar 

  8. Wan J. A study on the fracture toughness of and residual stress in thermal barrier coating systems based on indentation tests. Xiangtan University, 2012.

    Google Scholar 

  9. Peng LM, Cao JW, Noda K, Han KS. Mechanical properties of ceramic–metal composites by pressure infiltration of metal into porous ceramics. Mater Sci Eng A. 2004;374(1–2):1–9.

    Article  Google Scholar 

  10. Roberts RJ, Rowe RC, York P. The measurement of the critical stress intensity factor (KIC) of pharmaceutical powders using three point single edge notched beam (SENB) testing. Int J Pharm. 1993;91(2–3):173–82.

    Article  Google Scholar 

  11. Choi SR, Zhu DM, Miller RA. Effect of sintering on mechanical properties of plasma-sprayed zirconia-based thermal barrier coatings. J Am Ceram Soc. 2005;88(10):2859–67.

    Article  Google Scholar 

  12. Ray AK, Steinbrech RW. Crack propagation studies of thermal barrier coatings under bending. J Eur Ceram Soc. 1999;19:2097–109.

    Article  Google Scholar 

  13. Mao W. Interfacial failure analysis of thermal barrier coatings under combined thermal and mechanical loadings. Xiangtan University, 2006.

    Google Scholar 

  14. Florando JN, LeBlanc MM, Lassila DH. Multiple slip in copper single crystals deformed in compression under uniaxial stress. Scripta Mater. 2007;57(6):537–40.

    Article  Google Scholar 

  15. Kang J, Wilkinson DS, Jain M, Embury JD, Beaudoin AJ, Kim S, Mishira R, Sachdev AK. On the sequence of inhomogeneous deformation processes occurring during tensile deformation of strip cast AA5754. Acta Mater. 2006;54(1):209–19.

    Article  ADS  Google Scholar 

  16. Zhou Q. Plasma spray techniques. Jiangsu Science Press (Jiangsu), 1982.

    Google Scholar 

  17. Wu D. Real-time testing, analysis, and experimental simulation system development for the interfacial failure of thermal barrier coatings. Xiangtan University, 2011.

    Google Scholar 

  18. Chen Q. Testing and analysis of the residual stress in and fracture toughness of thermal barrier coatings under thermal cycling. Xiangtan University, 2010.

    Google Scholar 

  19. Choi SR. High-temperature slow crack growth, fracture toughness and room-temperature deformation behavior of plasma-sprayed ZrO2–8 wt.% Y2O3. Ceramic Eng Sci Proc.1998;19:293–301.

    Google Scholar 

  20. Yamazaki Y, Schmidt A, Scholz A. The determination of the delamination resistance in thermal barrier coating system by four-point bending tests. Surf Coat Technol. 2006;201:744–54.

    Article  Google Scholar 

  21. Guo SQ, Kagawa Y. Young’s moduli of zirconia top-coat and thermally gorwn oxide in a plasma-sprayed thermal barrier coating system. Scripta Mater. 2004;50:1401–6.

    Article  Google Scholar 

  22. Freborg AM, Ferguson BL, Brindley WJ. Modeling oxidation induced stresses in thermal barrier coatings. Mater Sci Eng A. 1998;245(2):182–90.

    Article  Google Scholar 

  23. Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS. Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci. 2001;46:505–53.

    Article  Google Scholar 

  24. Suo Z, Hutchinson JW. Interface crack between two elastic layers. Int J Fract. 1990;43:1–19.

    Article  Google Scholar 

  25. Hutchinson JW, He MY, Evans AG. The influence of imperfections on the nucleation and propagation of bucking driven delaminations. J Mech Phys Solids. 2000;48:709–43.

    Article  ADS  MATH  Google Scholar 

  26. Chen ZB, Wang ZG, Zhu SJ. Tensile fracture behavior of thermal barrier coatings on superalloy. Surf Coat Technol. 2011;205:3931–9.

    Article  Google Scholar 

  27. Zhou YC, Hashida T, Jian CY. Determination of interface fracture toughness in thermal barrier coating system by blister tests. J Eng Mater Technol. 2003;125:176–83.

    Article  Google Scholar 

  28. Choi SR, Zhu D, Miller RA. Fracture behavior under mixed-mode loading of ceramic plasma-sprayed thermal barrier coatings at ambient and elevated temperatures. Eng Fract Mech. 2005;72:2144–59.

    Article  Google Scholar 

  29. Thurn G, Schneider GA, Bahr HA, Aldinger F. Toughness anisotropy and damage behavior of plasma sprayed ZrO2 thermal barrier coatings. Surf Coat Technol. 2000;123:147–59.

    Article  Google Scholar 

  30. Kim SS, Chae YH, Choi SY. Characteristics evaluation of plasma sprayed ceramic coatings by nano/micro-indentation test. Tribol Lett. 2004;17(3):663–9.

    Article  Google Scholar 

  31. Marshall DB, Lawn BR. Residual stress effects in sharp contact cracking: I, Indentation fracture mechanics. J Mater Sci. 1979;14:2001–11.

    Article  ADS  Google Scholar 

  32. Evans AG, Charles AE. Fracture toughness determination by indentation. J Amer Ceramic Soc. 1976;59:371–2.

    Article  Google Scholar 

  33. Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurement. J Amer Ceramic Soc. 1981;64:533–9.

    Article  Google Scholar 

  34. Chantikul P, Anstis GR, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method. J Amer Ceramic Soc. 1981;64:539–43.

    Article  Google Scholar 

  35. Qian G, Nakamura T, Berndt CC, Leigh SH. Tensile toughness test and high temperature fracture analysis of thermal barrier coatings. Acta Mater. 1997;45(4):1767–84.

    Article  ADS  Google Scholar 

  36. Lawn BR, Fuller ER. Measurement of thin-layer surface stresses by indentation fracture. J Mater Sci. 1984;19:4061–7.

    Article  ADS  Google Scholar 

  37. Hutchinson JW, Suo Z. Mixed mode cracking in layered materials. Adv Appl Mech. 1991;29:63–191.

    Article  Google Scholar 

  38. He MY, Bartlett A, Evans AG. Kinking of a crack out of an interface: role of in-plane stress. J Am Ceram Soc. 1991;74(4):767–71.

    Article  Google Scholar 

  39. Kim HJ, Moon MW, Kim DI, Lee KR, Oh KH. Observation of the failure mechanism for diamond-like carbon film on stainless steel under tensile loading. Scripta Mater. 2007;57(11):1016–9.

    Article  Google Scholar 

  40. Yang L, Zhong ZC, You J, Zhang QM, Zhou YC, Tang WZ. Acoustic emission evaluation of fracture characteristics in thermal barrier coatings under bending. Surf Coat Technol. 2013;232:710–9.

    Article  Google Scholar 

  41. Jiang LM, Zhou YC, Hao HX, Liao YG, Lu C. Characterization of the interface adhesion of elastic-plastic thin film/rigid substrate systems using a pressurized blister test numerical model. Mech Mater. 2010;42(10):909.915.

    Google Scholar 

  42. Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids. 1992;40(6):1377–97.

    Article  ADS  MATH  Google Scholar 

  43. Needleman A. An analysis of decohesion along an imperfect interface. Int J Fract. 1990;42(1):21–40.

    Article  Google Scholar 

  44. Chandra N, Li H, Shet C, Ghonem H. Some issues in the application of cohesive zone models for metal-ceramic interfaces. Int J Solids Struct. 2002;39(10):2827–55.

    Article  MATH  Google Scholar 

  45. Camanho PP, Davila CG, De Moura MF. Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater. 2003;37(16):1415–39.

    Article  Google Scholar 

  46. Xu W, Wei YG. Strength analysis of metallic bonded joints containing defects. Comput Mater Sci. 2012;53(1):444–50.

    Article  Google Scholar 

  47. Mi Y, Crisfield MA, Davies GAO, Hellweg HB. Progressive delamination using interface elements. J Compos Mater. 1998;32(14):1246–72.

    Article  Google Scholar 

  48. Zhao PF, Sun CA, Zhu XY, Shang FL, Li CJ. Fracture toughness measurements of plasma-sprayed thermal barrier coatings using a modified four-point bending method. Surf Coat Technol. 2010;204(24):4066–74.

    Article  Google Scholar 

  49. Zhou YC, Tonomori T, Yoshida A, Liu L, Bignall G, Hashida T. Fracture characteristics of thermal barrier coatings after tensile and bending tests. Surface Coatings Technol. 2002;157(2):119.127.

    Google Scholar 

  50. Wu DJ, Mao WG, Zhou YC, Lu C. Digital image correlation approach to cracking and decohesion in a brittle coating/ductile substrate system. Appl Surf Sci. 2011;257(14):6040–3.

    Article  ADS  Google Scholar 

  51. Zhu W, Yang L, Guo JW, Zhou YC, Lu C. Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model. Int J Plast. 2015;64:76–87.

    Article  Google Scholar 

  52. Faou JY, Parry G, Grachev S, Barthel E. How does adhesion induce the formation of telephone cord buckles?. Phys Rev Lett. 2012;108(11): 116102.

    Article  ADS  Google Scholar 

  53. Gao YF, Bower AF. A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces. Modell Simul Mater Sci Eng. 2004;12(3):453.

    Article  ADS  Google Scholar 

  54. Soulignac R, Maurel V, Rémy L, Köster A. Cohesive zone modelling of thermal barrier coatings interfacial properties based on three-dimensional observations and mechanical testing. Surf Coat Technol. 2013;237:95–104.

    Article  Google Scholar 

  55. Moon MW, Jensen HM, Hutchinson JW, Oh KH, Evans AG. The characterization of telephone cord buckling of compressed thin films on substrates. J Mech Phys Solids. 2002;50(11):2355–77.

    Article  ADS  Google Scholar 

  56. Xu ZH, Yang Y, Huang P, Li X. Determination of interfacial properties of thermal barrier coatings by shear test and inverse finite element method. Acta Mater. 2010;58(18):5972–9.

    Article  ADS  Google Scholar 

  57. Vasinonta A, Beuth JL. Measurement of interfacial toughness in thermal barrier coating systems by indentation. Eng Fract Mech. 2001;68(7):843–60.

    Article  Google Scholar 

  58. Guo SQ, Mumm DR, Karlsson AM, Kagawa Y. Measurement of interfacial shear mechanical properties in thermal barrier coating systems by a barb pullout method. Scripta Mater. 2005;53(9):1043–9.

    Article  Google Scholar 

  59. Kim SS, Liu YF, Kagawa Y. Evaluation of interfacial mechanical properties under shear loading in EB-PVD TBCs by the pushout method. Acta Mater. 2007;55(11):3771–81.

    Article  ADS  Google Scholar 

  60. Mumm DR, Evans AG. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition. Acta Mater. 2000;48(8):1815–27.

    Article  ADS  Google Scholar 

  61. Théry PY, Poulain M, Dupeux M, Braccini M. Spallation of two thermal barrier coating systems: experimental study of adhesion and energetic approach to lifetime during cyclic oxidation. J Mater Sci. 2009;44(7):1726–33.

    Article  ADS  Google Scholar 

  62. Zhou YC, Hashida T, Jian CY. Determination of interface fracture toughness in thermal barrier coating system by blister tests. J Eng Mater Technol. 2003;125(2):176–82.

    Article  Google Scholar 

  63. Dundurs J. Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J Appl Mech. 1996;36:650–2.

    Article  Google Scholar 

  64. International society for rock mechanics. Suggested methods for determining the fracture toughness of rock. Int J Rock Mech Min Sci. 1988;25:71–96.

    Article  Google Scholar 

  65. Jensen HM, Thouless MD. Effects of residual stresses in the blister test. Int J Solids Struct. 1993;30:779–95.

    Article  Google Scholar 

  66. Evans AG, Hutchinson JW. Effects of non-planarity on the mixed mode fracture resistance of biomaterial interfaces. Acta Metall. 1989;37:909–16.

    Article  Google Scholar 

  67. Qu ZL, Wei K, He Q, He RJ, Pei YM, Wang SX, Fang DN. High temperature fracture toughness and residual stress in thermal barrier coatings evaluated by an in-situ indentation method. Ceramics Int. 2018;44:7926–7929.

    Google Scholar 

  68. He RJ, Qu ZL, Pei YM, Fang DN. High temperature indentation tests of YSZ coatings in air up to 1200 °C. Mater Lett. 2017;209:5–7.

    Google Scholar 

  69. Taskonak B, Mecholsky JJ, Anusavice KJ. Residual stresses in bilayer dental ceramics. Biomaterials. 2005;26:3235–41.

    Article  Google Scholar 

  70. Ewart L, Suresh S. Crack propagation in ceramics under cyclic loads. J Mater Sci Technol. 1987;22:1173–92.

    ADS  Google Scholar 

  71. Hibbeler RC, Bending, Mech. Mater, seventh ed., Prentice Hall, New Jersey, 2008, pp. 254–361.

    Google Scholar 

  72. Zhu W, Wu Q, Yang L, Zhou YC. In situ characterization of high temperature elastic modulus and fracture toughness in air plasma sprayed thermal barrier coatings under bending by using digital image correlation. Ceramics Int. 2020;46:18526–18533.

    Google Scholar 

  73. Okajima Y, Sakaguchi M, Inoue H. A finite element assessment of influential factors in evaluating interfacial fracture toughness of thermal barrier coating. Surf Coat Technol. 2017;313:184–90.

    Google Scholar 

  74. Essa SK, Liu R, Yao MX. Temperature and exposure-dependent interfacial fracture toughness model for thermal barrier coatings. Surf Coat Technol. 2019;358:505–10.

    Google Scholar 

  75. Ray AK, Das DK, Venkataraman B, Roy PK, Goswami B, Roy N, Das SK, Parida N, Tarafder S, Chaudhuri S, Sahay SK, Ghosh RN. Characterization of rupture and fatigue resistance of TBC superalloy for combustion liners. Mater Sci Eng A. 2005;405:194–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, Y., Yang, L., Zhu, W. (2022). Fracture Toughness Characterization of TBCs. In: Thermal Barrier Coatings: Failure Theory and Evaluation Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2723-2_9

Download citation

Publish with us

Policies and ethics