Skip to main content

Design and Configuration of Microbial Fuel Cells

  • Chapter
  • First Online:
Microbial Fuel Cells for Environmental Remediation

Part of the book series: Sustainable Materials and Technology ((SMT))

Abstract

The use of bacterial metabolism to oxidize organic matter and transfer electrons to the solid surface (electrode) leads to the development of microbial fuel cell (MFC) technology. Although MFCs have been utilized for biosensors, metals ion recovery, nutrient remediations, and synthesis of organic compounds; however, wastewater treatment and bioelectricity generation is the most generic application of MFC technology. The limitation in the commercialization of MFC is the lower power output and lack of efficient scale-ups. The MFC performance has been improved by optimizing the process parameters and various MFC reactor configurations with a focus on optimizing ohmic resistance, mass transport, and reaction kinetics. The vast research carried out on MFCs globally has led to various reactor designs. The vital components of MFC design include a group of separators, electrode materials, and reactor geometry. This chapter gives a detailed overview of conventional MFC configurations and current development in the innovative MFC designs for enhanced MFC performance and novel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AlSayed A, Soliman M, Eldyasti A (2020) Microbial fuel cells for municipal wastewater treatment: from technology fundamentals to full-scale development. Renew Sustain Energy Rev 134:110367

    Google Scholar 

  2. Angosto J, Fernández-López J, Godínez C (2015) Brewery and liquid manure wastewaters as potential feedstocks for microbial fuel cells: a performance study. Environ Technol 36(1):68–78

    Article  CAS  Google Scholar 

  3. Babanova S, Jones J, Phadke S, Lu M, Angulo C, Garcia J, Carpenter K, Cortese R, Chen S, Phan T, Bretschger O (2020) Continuous flow, large-scale, microbial fuel cell system for the sustained treatment of swine waste. Water Environ Res 92(1):60–72. https://doi.org/10.1002/wer.1183

    Article  CAS  Google Scholar 

  4. Chen S, Patil SA, Brown RK, Schröder U (2019) Strategies for optimizing the power output of microbial fuel cells: transitioning from fundamental studies to practical implementation. Appl Energy 233:15–28

    Article  Google Scholar 

  5. Cheng S, Liu H, Logan BE (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8(3):489–494

    Article  CAS  Google Scholar 

  6. Cheng S, Logan BE (2011) Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Biores Technol 102(6):4468–4473. https://doi.org/10.1016/j.biortech.2010.12.104

    Article  CAS  Google Scholar 

  7. Chiao M, Lam KB, Lin L (2006) Micromachined microbial and photosynthetic fuel cells. J Micromech Microeng 16(12):2547

    Article  CAS  Google Scholar 

  8. Choi S, Chae J (2013) Optimal biofilm formation and power generation in a micro-sized microbial fuel cell (MFC). Sens Actuat A 195:206–212

    Article  CAS  Google Scholar 

  9. Choi S, Lee H-S, Yang Y, Parameswaran P, Torres CI, Rittmann BE, Chae J (2011) A μL-scale micromachined microbial fuel cell having high power density. Lab Chip 11(6):1110–1117. https://doi.org/10.1039/C0LC00494D

    Article  CAS  Google Scholar 

  10. Crittenden SR, Sund CJ, Sumner JJ (2006) Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir 22(23):9473–9476

    Article  CAS  Google Scholar 

  11. Dewan A, Beyenal H, Lewandowski Z (2008) Scaling up microbial fuel cells. Environ Sci Technol 42(20):7643–7648

    Article  CAS  Google Scholar 

  12. Di Lorenzo M, Curtis TP, Head IM, Scott K (2009) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43(13):3145–3154

    Article  Google Scholar 

  13. Di Lorenzo M, Scott K, Curtis TP, Head IM (2010) Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chem Eng J 156(1):40–48

    Article  Google Scholar 

  14. Dizhou L, Meiying X, Yonggang Y (2020) Research progress of series and parallel stack of microbial fuel cells. Environ Chem 8:2227–2236

    Google Scholar 

  15. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482

    Article  CAS  Google Scholar 

  16. Fadzli FS, Bhawani SA, Adam Mohammad RE (2021) Microbial fuel cell: recent developments in organic substrate use and bacterial electrode interaction. J Chem 2021

    Google Scholar 

  17. Fan Y, Hu H, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sour 171(2):348–354

    Article  CAS  Google Scholar 

  18. Fan Y, Sharbrough E, Liu H (2008) Quantification of the internal resistance distribution of microbial fuel cells. Environ Sci Technol 42(21):8101–8107

    Article  CAS  Google Scholar 

  19. Feng Y, He W, Liu J, Wang X, Qu Y, Ren N (2014) A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Biores Technol 156:132–138

    Article  CAS  Google Scholar 

  20. Flimban SG, Ismail IM, Kim T, Oh S-E (2019) Overview of recent advancements in the microbial fuel cell from fundamentals to applications: design, major elements, and scalability. Energies 12(17):3390

    Article  CAS  Google Scholar 

  21. Gao Y, Hassett DJ, Choi S (2017) Rapid characterization of bacterial electrogenicity using a single-sheet paper-based electrofluidic array. Front Bioeng Biotechnol 5:44. https://doi.org/10.3389/fbioe.2017.00044

  22. Hiegemann H, Littfinski T, Krimmler S, Lübken M, Klein D, Schmelz K-G, Ooms K, Pant D, Wichern M (2019) Performance and inorganic fouling of a submergible 255 L prototype microbial fuel cell module during continuous long-term operation with real municipal wastewater under practical conditions. Bioresour Technol 294:122227

    Google Scholar 

  23. Hou H, Li L, Cho Y, de Figueiredo P, Han A (2009) Microfabricated microbial fuel cell arrays reveal electrochemically active microbes. PLoS ONE 4(8):e6570–e6570. https://doi.org/10.1371/journal.pone.0006570

    Article  CAS  Google Scholar 

  24. Ieropoulos I, Greenman J, Melhuish C (2008) Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int J Energy Res 32(13):1228–1240. https://doi.org/10.1002/er.1419

    Article  CAS  Google Scholar 

  25. Jadhav D, Mungray AK, Arkatkar A, Kumar S (2021) Recent advancement in scaling-up applications of microbial fuel cells: from reality to practicability. Sustain Energy Technol Assess 45:101226. https://doi.org/10.1016/j.seta.2021.101226

  26. Jadhav DA, Ghangrekar MM (2020) Optimising the proportion of pure and mixed culture in inoculum to enhance the performance of microbial fuel cells. Int J Environ Technol Manag 23(1):50–67

    Article  CAS  Google Scholar 

  27. Jia Q, Wei L, Han H, Shen J (2014) Factors that influence the performance of two-chamber microbial fuel cell. Int J Hydrogen Energy 39(25):13687–13693

    Article  CAS  Google Scholar 

  28. Jiang H, Ali MA, Xu Z, Halverson LJ, Dong L (2017) Integrated microfluidic flow-through microbial fuel cells. Sci Rep 7(1):41208. https://doi.org/10.1038/srep41208

    Article  CAS  Google Scholar 

  29. Kim IS, Chae KJ, Choi MJ, Verstraete W (2008) Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environ Eng Res 13(2):51–65

    Article  Google Scholar 

  30. Kuchi S, Sarkar O, Butti SK, Velvizhi G, Mohan SV (2018) Stacking of microbial fuel cells with continuous mode operation for higher bioelectrogenic activity. Biores Technol 257:210–216

    Article  CAS  Google Scholar 

  31. Li W-W, Yu H-Q, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7(3):911–924

    Article  CAS  Google Scholar 

  32. Liang P, Duan R, Jiang Y, Zhang X, Qiu Y, Huang X (2018) One-year operation of 1000 L modularized microbial fuel cell for municipal wastewater treatment. Water Res 141:1–8

    Article  CAS  Google Scholar 

  33. Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, Ajo-Franklin CM, Portnoy DA (2018) A flavin-based extracellular electron transfer mechanism in diverse gram-positive bacteria. Nature 562(7725):140–144. https://doi.org/10.1038/s41586-018-0498-z

    Article  CAS  Google Scholar 

  34. Linke L (2018) Optimization of electrolytes and electrodes to improve performance of microbial fuel cells (MFC) and microbial desalination cells (MDC). National University of Singapore (Singapore)

    Google Scholar 

  35. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046

    Article  CAS  Google Scholar 

  36. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38(7):2281–2285

    Article  CAS  Google Scholar 

  37. Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3346. https://doi.org/10.1021/es062644y

    Article  CAS  Google Scholar 

  38. Logan BE, Rossi R, Ragab A, Saikaly PE (2019) Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 17(5):307–319. https://doi.org/10.1038/s41579-019-0173-x

    Article  CAS  Google Scholar 

  39. Logan BE, Wallack MJ, Kim K-Y, He W, Feng Y, Saikaly PE (2015) Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett 2(8):206–214

    Article  CAS  Google Scholar 

  40. Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol 19(6):564–571. https://doi.org/10.1016/j.copbio.2008.10.005

    Article  CAS  Google Scholar 

  41. Maktabifard M, Zaborowska E, Makinia J (2018) Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production. Rev Environ Sci Bio/Technol 17(4):655–689. https://doi.org/10.1007/s11157-018-9478-x

    Article  Google Scholar 

  42. Mardanpour MM, Esfahany MN, Behzad T, Sedaqatvand R (2012) Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosens Bioelectron 38(1):264–269

    Article  Google Scholar 

  43. Mateo S, Cantone A, Cañizares P, Fernández-Morales F, Scialdone O, Rodrigo M (2018) On the staking of miniaturized air-breathing microbial fuel cells. Appl Energy 232:1–8

    Article  CAS  Google Scholar 

  44. Miran F, Mumtaz MW, Mukhtar H, Akram S (2021a) Iron oxide-modified carbon electrode and sulfate-reducing bacteria for simultaneous enhanced electricity generation and tannery wastewater treatment. Front Bioeng Biotechnol 9

    Google Scholar 

  45. Miran W, Naradasu D, Okamoto A (2021b) Pathogens electrogenicity as a tool for in-situ metabolic activity monitoring and drug assessment in biofilms. iScience 24(2):102068. https://doi.org/10.1016/j.isci.2021.102068

  46. Mirhosseini A, Salvacion M, Chen S, Babanova S, Bretschger O (2016) Influence of anode configuration on flow distribution and performance in tubular microbial fuel cells. In: ECS Meeting Abstracts, vol 36. IOP Publishing, p 1841

    Google Scholar 

  47. Mohamed A, Ha P, Peyton B, Mueller R, Meagher M, Beyenal H (2019) In situ enrichment of microbial communities on polarized electrodes deployed in alkaline hot springs. J Power Sour 414:547–556. https://doi.org/10.1016/j.jpowsour.2019.01.027

    Article  CAS  Google Scholar 

  48. Molderez T, Prévoteau A, Ceyssens F, Verhelst M, Rabaey K (2020) A chip-based 128-channel potentiostat for high-throughput studies of bioelectrochemical systems: optimal electrode potentials for anodic biofilms. Biosens Bioelectron 174:112813. https://doi.org/10.1016/j.bios.2020.112813

  49. Muttitt G, Kartha S (2020) Equity, climate justice and fossil fuel extraction: principles for a managed phase out. Clim Policy 20(8):1024–1042. https://doi.org/10.1080/14693062.2020.1763900

    Article  Google Scholar 

  50. Naradasu D, Guionet A, Miran W, Okamoto A (2020) Microbial current production from Streptococcus mutans correlates with biofilm metabolic activity. Biosens Bioelectron 162:112236. https://doi.org/10.1016/j.bios.2020.112236

  51. Obileke K, Onyeaka H, Meyer EL, Nwokolo N (2021) Microbial fuel cells, a renewable energy technology for bio-electricity generation: a mini-review. Electrochem Commun 125:107003. https://doi.org/10.1016/j.elecom.2021.107003

  52. Powell E, Evitts R, Hill G, Bolster J (2011) A microbial fuel cell with a photosynthetic microalgae cathodic half cell coupled to a yeast anodic half cell. Energy Sour Part A: Recov Utiliz Environ Effects 33(5):440–448

    Article  CAS  Google Scholar 

  53. Qian F, Baum M, Gu Q, Morse DE (2009) A 1.5 µL microbial fuel cell for on-chip bioelectricity generation. Lab Chip 9(21):3076–3081. https://doi.org/10.1039/B910586G

  54. Qian F, He Z, Thelen M, Li Y (2011) A microfluidic microbial fuel cell fabricated by soft lithography. Biores Technol 102:5836–5840. https://doi.org/10.1016/j.biortech.2011.02.095

    Article  CAS  Google Scholar 

  55. Ren H, Lee HS, Chae J (2012) Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges. Microfluid Nanofluid 13(3):353–381. https://doi.org/10.1007/s10404-012-0986-7

    Article  CAS  Google Scholar 

  56. Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40(8):2629–2634. https://doi.org/10.1021/es052254w

    Article  CAS  Google Scholar 

  57. Shin S-H, Choi Y-j, Na S-H, Jung S-h, Kim S-h (2006) Development of bipolar plate stack type microbial fuel cells. Bull Korean Chem Soc 27(2):281–285

    Article  CAS  Google Scholar 

  58. Sivasankar V, Mylsamy P, Omine K (2018) Microbial fuel cell technology for bioelectricity. Springer

    Book  Google Scholar 

  59. Srikanth S, Kumar M, Singh D, Singh M, Das B (2016) Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation. Biores Technol 221:70–77

    Article  CAS  Google Scholar 

  60. Syzdlowski L, Ehlich J, Shibata N, Goryanin I (2021) High-throughput screening and selection of PCB-bioelectrocholeaching, electrogenic microbial communities using single chamber microbial fuel cells based on 96-well plate array. bioRxiv

    Google Scholar 

  61. Szydlowski L, Ehlich J, Goryanin I, Pasternak G (2022) High-throughput 96-well bioelectrochemical platform for screening of electroactive microbial consortia. Chem Eng J 427:131692

    Google Scholar 

  62. Tahernia M, Mohammadifar M, Gao Y, Panmanee W, Hassett D, Choi S (2020) A 96-well high-throughput, rapid-screening platform of extracellular electron transfer in microbial fuel cells. Biosens Bioelectron 162:112259. https://doi.org/10.1016/j.bios.2020.112259

  63. Tahernia M, Mohammadifar M, Hassett D, Choi S (2019) A fully disposable 64-well papertronic sensing array for screening electroactive microorganisms. Nano Energy 65:104026. https://doi.org/10.1016/j.nanoen.2019.104026

  64. Tan WH, Chong S, Fang H-W, Pan K-L, Mohamad M, Lim JW, Tiong TJ, Chan YJ, Huang C-M, Yang TC-K (2021) Microbial fuel cell technology—A critical review on scale-up issues. Processes 9(6):985

    Article  CAS  Google Scholar 

  65. Tang RCO, Jang J-H, Lan T-H, Wu J-C, Yan W-M, Sangeetha T, Wang C-T, Ong HC, Ong ZC (2020) Review on design factors of microbial fuel cells using Buckingham's Pi Theorem. Renew Sustain Energy Rev 130:109878

    Google Scholar 

  66. Wang X, Feng Y, Lee H (2008) Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci Technol 57(7):1117–1121

    Article  CAS  Google Scholar 

  67. Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106(6):528–536

    Article  CAS  Google Scholar 

  68. Yang Y, Liu T, Tao K, Chang H (2018) Generating electricity on chips: microfluidic biofuel cells in perspective. Ind Eng Chem Res 57(8):2746–2758. https://doi.org/10.1021/acs.iecr.8b00037

    Article  CAS  Google Scholar 

  69. Yang Y, Lu Z, Lin X, Xia C, Sun G, Lian Y, Xu M (2015) Enhancing the bioremediation by harvesting electricity from the heavily contaminated sediments. Biores Technol 179:615–618

    Article  CAS  Google Scholar 

  70. Yano M, Tomita A, Sano M, Hibino T (2007) Recent advances in single-chamber solid oxide fuel cells: a review. Solid State Ionics 177(39–40):3351–3359

    Article  CAS  Google Scholar 

  71. Zhang X, Cheng S, Huang X, Logan BE (2010) Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosens Bioelectron 25(7):1825–1828

    Article  CAS  Google Scholar 

  72. Zhang Y, Min B, Huang L, Angelidaki I (2011) Electricity generation and microbial community response to substrate changes in microbial fuel cell. Biores Technol 102(2):1166–1173

    Article  CAS  Google Scholar 

  73. Zhou S, Wen J, Chen J, Lu Q (2015) Rapid measurement of microbial extracellular respiration ability using a high-throughput colorimetric assay. Environ Sci Technol Lett 2(2):26–30. https://doi.org/10.1021/ez500405t

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Waheed Miran or Muhammad Waseem Mumtaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Touqeer, T., Miran, W., Mumtaz, M.W., Mukhtar, H. (2022). Design and Configuration of Microbial Fuel Cells. In: Ahmad, A., Mohamad Ibrahim, M.N., Yaqoob, A.A., Mohd Setapar, S.H. (eds) Microbial Fuel Cells for Environmental Remediation. Sustainable Materials and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2681-5_3

Download citation

Publish with us

Policies and ethics