Skip to main content

Engineered Biochar as Gas Adsorbent

  • Chapter
  • First Online:
Engineered Biochar

Abstract

From the 1100 s B.C to the present, biochar and adsorption technologies have been constantly evolving with a remarkable history. Biochar as a gas adsorbent is a biomass-derived material that has satisfactory properties for gas adsorption application. Since then, the mechanism, kinetics, and thermodynamics of gas adsorption have been investigated with the development of a series of novel models. Gas adsorption models are evaluated based on experimental adsorption isotherm, from which surface parameters of biochar can be derived. The surface and physicochemical characteristics of engineered biochar are ultimately determined by the type of the raw material and methods of char making including carbonization, physical activation, and chemical modification. Morphology, pH, total surface area, pore-volume, porosity, and surface functional groups are decisive factors for the gas adsorption capacity. Until now, biochar for gas adsorption is engineered for universal application to some gases such as CO2, H2S, CH4, and N2O, which are the main components of greenhouse gas emissions. Previous studies have shown the high efficiency of using engineered biochar as a gas adsorbent. However, it is still undeniable that this type of material still has certain limitations related to technical, economical, and environmental problems due to the knowledge gaps of mechanism, large-scale system, or regeneration process. Thus, in response to the current industrialization situation, it is mandatory to develop modern appropriate techniques to actualize the use of biochar as a gas adsorbent in the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Artioli Y (2008) Adsorption. In: Jørgensen SE, Fath BD (eds.) Encyclopedia of ecology. Academic Press, Oxford, pp 60–65

    Google Scholar 

  • Bamdad H, Hawboldt K, MacQuarrie S (2018) A review on common adsorbents for acid gases removal: focus on biochar. Renew Sustain Energy Rev 81:1705–1720

    Article  Google Scholar 

  • Bardestani R, Kaliaguine S (2018) Steam activation and mild air oxidation of vacuum pyrolysis biochar. Biomass Bioenerg 108:101–112

    Article  CAS  Google Scholar 

  • Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380

    Google Scholar 

  • Basta AH, Fierro V, El-Saied H, Celzard A (2009) 2-Steps KOH activation of rice straw: an efficient method for preparing high-performance activated carbons. Biores Technol 100(17):3941–3947

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Article  CAS  Google Scholar 

  • Creamer AE, Gao B, Wang S (2016) Carbon dioxide capture using various metal oxyhydroxide–biochar composites. Chem Eng J 283:826–832

    Article  CAS  Google Scholar 

  • Creamer AE (2017) Carbon dioxide capture with pyrogenic carbon-based materials. https://ufdc.ufl.edu/UFE0050961/00001, Accessed 25 May 2021

  • Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N 2 O emissions? Sci Rep 3(1):1732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agr Ecosyst Environ 191:5–16

    Article  CAS  Google Scholar 

  • Chatterjee R, Sajjadi B, Chen W-Y, Mattern DL, Hammer N, Raman V, Dorris A (2020) Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Front Energy Res 8:85

    Article  Google Scholar 

  • Chatterjee R, Sajjadi B, Mattern D, Chen W-Y, Zubatiuk (Klimenko) T, Leszczynska D, Leszczynski J, Egiebor N, Hammer N (2018) Ultrasound cavitation intensified amine functionalization: a feasible strategy for enhancing CO2 capture capacity of biochar. Fuel 225:287–298

    Google Scholar 

  • Chen W, Meng J, Han X, Lan Y, Zhang W (2019) Past, present, and future of biochar. Biochar 1(1):75–87

    Article  Google Scholar 

  • Choudhury A, Lansing S (2021) Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system. J Environ Chem Eng 9(1):104837

    Article  CAS  Google Scholar 

  • Cui X, Bustin RM, Dipple G (2004) Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data. Fuel 83(3):293–303

    Article  CAS  Google Scholar 

  • Dąbrowski A (2001) Adsorption—from theory to practice. Adv Coll Interface Sci 93(1):135–224

    Article  Google Scholar 

  • Dissanayake PD, You S, Igalavithana AD, Xia Y, Bhatnagar A, Gupta S, Kua HW, Kim S, Kwon J-H, Tsang DCW, Ok YS (2020) Biochar-based adsorbents for carbon dioxide capture: a critical review. Renew Sustain Energy Rev 119:109582

    Article  CAS  Google Scholar 

  • Donohue MD, Aranovich GL (1998) Classification of Gibbs adsorption isotherms. Adv Coll Interface Sci 76–77:137–152

    Article  Google Scholar 

  • Rosales E, Meijide J, Pazos M, Sanromán MA (2017) Challenges and recent advances in biochar as low-cost biosorbent: from batch assays to continuous-flow systems. Bioresour Technol 246:176–192

    Google Scholar 

  • Emrich W (1985) History and fundamentals of the charcoal process. In: Emrich W (ed) Handbook of charcoal making: the traditional and industrial methods. Springer, Netherlands, Dordrecht, pp 1–18

    Chapter  Google Scholar 

  • Genesio L, Vaccari FP, Miglietta F (2016) Black carbon aerosol from biochar threats its negative emission potential. Glob Change Biol 22(7):2313–2314

    Article  Google Scholar 

  • Ghani W, Silva G (2014) Sawdust-derived biochar: characterization and CO2 adsorption/desorption Study. J Appl Sci 14:1450–1454

    Article  CAS  Google Scholar 

  • Giles CH (1962) Gideon’s fleece tests: the earliest recorded vapor phase adsorption experiment? J Chem Educ 39(11):584

    Article  Google Scholar 

  • Giraldo L, Vargas DP, Moreno-Piraján JC (2020) Study of CO2 adsorption on chemically modified activated carbon with nitric acid and ammonium aqueous. Front Chem 8:543452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwenzi W, Chaukura N, Wenga T, Mtisi M (2021) Biochars as media for air pollution control systems: contaminant removal, applications and future research directions. Sci Total Environ 753:142249

    Article  CAS  PubMed  Google Scholar 

  • Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, Shitumbanuma V, O’Toole A, Sundqvist KL, Arp HPH, Cornelissen G (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46(5):2830–2838

    Article  CAS  PubMed  Google Scholar 

  • Halsey G (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16(10):931–937

    Article  CAS  Google Scholar 

  • Harkins WD, Jura G (1944) The decrease (π) of free surface energy (γ) as a basis for the development of equations for adsorption isotherms; and the existence of two condensed phases in films on solids. J Chem Phys 12(3):112–113

    Article  CAS  Google Scholar 

  • Heidari A, Younesi H, Rashidi A, Ghoreyshi AA (2014) Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment. Chem Eng J 254:503–513

    Article  CAS  Google Scholar 

  • Heo Y-J, Park S-J (2015) A role of steam activation on CO2 capture and separation of narrow microporous carbons produced from cellulose fibers. Energy 91:142–150

    Article  CAS  Google Scholar 

  • Hervy M, Pham Minh D, Gérente C, Weiss-Hortala E, Nzihou A, Villot A, Le Coq L (2018) H2S removal from syngas using wastes pyrolysis chars. Chem Eng J 334:2179–2189

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  • Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage 92(1):223–228

    Article  CAS  PubMed  Google Scholar 

  • Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LEK, Ayucitra A (2005) Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization. Biores Technol 96(12):1364–1369

    Article  CAS  Google Scholar 

  • JALON (2017) Zeolite | molecular sieve. https://www.molecular-sieve.cc/faq/molecular-sieve-adsorption-f.html, Accessed 29 May 2021

  • Kecili R, Hussain CM (2018) Chapter 4—mechanism of adsorption on nanomaterials. In: Hussain CM (ed) Nanomaterials in chromatography. Elsevier, pp 89–115

    Google Scholar 

  • Khandaker T, Hossain MS, Dhar PK, Rahman MS, Hossain MA, Ahmed MB (2020) Efficacies of carbon-based adsorbents for carbon dioxide capture. Processes 8(6):654

    Article  CAS  Google Scholar 

  • Khuong DA, Nguyen HN, Tsubota T (2021a) CO 2 activation of bamboo residue after hydrothermal treatment and performance as an EDLC electrode. RSC Adv 11:9682–9692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khuong DA, Nguyen HN, Tsubota T (2021b) Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents. Biomass Bioenerg 148:106039

    Article  CAS  Google Scholar 

  • King R (2013) Biochar: a brief history and developing future. Mongabay Environ News. https://news.mongabay.com/2013/01/biochar-a-brief-history-and-developing-future/, Accessed 9 May 2021

  • Kodama H, Jaakkimainen M, Ducourneau R (1987) A multi-sample holder assembly for the quantasorb® surface analyzer. Canad J Soil Sci 67(3)

    Google Scholar 

  • Lagergren S (1898) Zur Theorie der sogenannten Adsorption gelöster Stoffe Kungliga Svenska Vetenskapsakademiens. Handingar 24(4):1–39

    Google Scholar 

  • Landers J, Gor GY, Neimark AV (2013) Density functional theory methods for characterization of porous materials. Colloids Surf, A 437:3–32

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  • Machida T, Nakazawa T, Fujii Y, Aoki S, Watanabe O (1995) Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophys Res Lett—Geophys Res Lett 22:2921–2924

    Article  CAS  Google Scholar 

  • Madzaki H, KarimGhani WAWAB, Rebitanim NZ, Alias AB (2016) Carbon dioxide adsorption on sawdust biochar. Proc Eng 148:718–725

    Google Scholar 

  • Manyà JJ, González B, Azuara M, Arner G (2018) Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chem Eng J 345:631–639

    Article  CAS  Google Scholar 

  • Marsh H, Rodríguez-Reinoso F (2006) CHAPTER 4—Characterization of activated carbon. In: Marsh H, Rodríguez-Reinoso F (eds) Activated carbon. Elsevier Science Ltd, Oxford, pp 143–242

    Google Scholar 

  • Menéndez-Díaz JA, Martín-Gullón I (2006) Chapter 1 types of carbon adsorbents and their production. In: Bandosz TJ (ed.) Interface science and technology. Elsevier, pp 1–47

    Google Scholar 

  • Nsi E, Akpakpan A, Ukpong E, Akpabio U (2016) Preparation and characterization of activated carbon from hura crepitans linn seed shellspreparation and characterization of activated carbon from hura crepitans linn seed shells. Int J Eng Sci (IJES) 5:38–41

    Article  Google Scholar 

  • Oginni O, Singh K, Oporto G, Dawson-Andoh B, McDonald L, Sabolsky E (2019) Effect of one-step and two-step H3PO4 activation on activated carbon characteristics. Biores Technol Rep 8:100307

    Google Scholar 

  • Freundlich H (1911) Kapillarchemie, Eine Darstellung der Chemie der Kolloide und verwandter Gebiete. Nature 85(2156):534–535

    Google Scholar 

  • Petrovic B, Gorbounov M, Masoudi Soltani S (2021) Influence of surface modification on selective CO2 adsorption: a technical review on mechanisms and methods. Microporous Mesoporous Mater 312:110751

    Article  CAS  Google Scholar 

  • Prauchner MJ, Rodríguez-Reinoso F (2012) Chemical versus physical activation of coconut shell: a comparative study. Microporous Mesoporous Mater 152:163–171

    Article  CAS  Google Scholar 

  • Rittl TF, Oliveira DMS, Canisares LP, Sagrilo E, Butterbach-Bahl K, Dannenmann M, Cerri CEP (2021) High application rates of biochar to mitigate N2O emissions from a N-fertilized tropical soil under warming conditions. Front Environ Sci 8:611873

    Article  Google Scholar 

  • Robens E (1994) Some intriguing items in the history of adsorption. In: Rouquerol J, Rodríguez-Reinoso F, Sing KSW, Unger KK (eds) Studies in surface science and catalysis. Elsevier, pp 109–118

    Google Scholar 

  • Robens E, Jayaweera SAA (2014) Early history of adsorption measurements. Adsorpt Sci Technol 32(6):425–442

    Article  CAS  Google Scholar 

  • Rodríguez-Reinoso F (2001) Activated carbon and adsorption. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 22–34

    Google Scholar 

  • Rouquerol F, Rouquerol J, Sing K (1999a) CHAPTER 1—Introduction. In: Rouquerol F, Rouquerol J, Sing K (eds) Adsorption by powders and porous solids. Academic Press, London, pp 1–26

    Google Scholar 

  • Rouquerol F, Rouquerol J, Sing K (1999b) CHAPTER 2—Thermodynamics of adsorption at the gas–solid interface. In: Rouquerol F, Rouquerol J, Sing K (eds) Adsorption by powders and porous solids. Academic Press, London, pp 27–50

    Google Scholar 

  • Rouquerol F, Rouquerol J, Sing KSW (2014) 2—Thermodynamics of adsorption at the gas/solid interface. In: Rouquerol F, Rouquerol J, Sing KSW, Llewellyn P, Maurin G (eds) Adsorption by powders and porous solids, 2nd edn. Academic Press, Oxford, pp 25–56

    Google Scholar 

  • Sadasivam BY, Reddy KR (2014) Quantifying the effects of moisture content on transport and adsorption of methane through biochar in landfills. 191–200

    Google Scholar 

  • Sadasivam BY, Reddy KR (2015) Adsorption and transport of methane in biochars derived from waste wood. Waste Manage 43:218–229

    Article  CAS  Google Scholar 

  • Sajjadi B, Chen W-Y, Egiebor NO (2019) A comprehensive review on physical activation of biochar for energy and environmental applications. Rev Chem Eng 35(6):735–776

    Article  CAS  Google Scholar 

  • Scholes C, Kentish S, Stevens G (2010) Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Pat Chem Eng 1.

    Google Scholar 

  • Seaton NA, Walton JPRB, Quirke N (1989) A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27(6):853–861

    Google Scholar 

  • Sethupathi S, Zhang M, Rajapaksha AU, Lee SR, Mohamad Nor N, Mohamed AR, Al-Wabel M, Lee SS, Ok YS (2017) Biochars as potential adsorbers of CH4, CO2 and H2S. Sustainability 9(1):121

    Article  CAS  Google Scholar 

  • Shang G, Shen G, Liu L, Chen Q, Xu Z (2013) Kinetics and mechanisms of hydrogen sulfide adsorption by biochars. Biores Technol 133:495–499

    Article  CAS  Google Scholar 

  • Shim T, Yoo J, Ryu C, Park Y-K, Jung J (2015) Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity. Biores Technol 197:85–90

    Article  CAS  Google Scholar 

  • Solaiman Z, Anawar HM (2015) Application of biochars for soil constraints: challenges and solutions. Pedosphere 25(5):631–638

    Article  Google Scholar 

  • Sadasivam BY, Reddy KR (2013) Study of methane adsorption by biochar in landfill cover. Paper presented in 106th annual conference & exhibition, air & watse management assocociation, USA, 1 June 2013

    Google Scholar 

  • Temkin MI (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS 12:327–356

    Google Scholar 

  • Timur S, Ikizoglu E, Yanik J (2006) Preparation of activated carbons from oreganum stalks by chemical activation. Energy Fuels 20(6):2636–2641

    Article  CAS  Google Scholar 

  • Wang L, Wang Z, Li X, Yang Y (2020) Molecular dynamics mechanism of CH4 diffusion inhibition by low temperature in anthracite microcrystallites. ACS Omega 5(36):23420–23428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–59

    Article  Google Scholar 

  • Xiao F, Gámiz B, Pignatello JJ (2018) Adsorption and desorption of nitrous oxide by raw and thermally air-oxidized chars. Sci Total Environ 643:1436–1445

    Article  CAS  PubMed  Google Scholar 

  • Yahia MB, Torkia YB, Knani S, Hachicha MA, Khalfaoui M, Lamine AB (2013) Models for type VI adsorption isotherms from a statistical mechanical formulation. Adsorpt Sci Technol 31(4):341–357

    Article  Google Scholar 

  • Zhdanov VP (2001) Adsorption–desorption kinetics and chemical potential of adsorbed and gas-phase particles. J Chem Phys 114(10):4746–4748

    Article  CAS  Google Scholar 

  • Zhelezova A, Cederlund H, Stenström J (2017) Effect of biochar amendment and ageing on adsorption and degradation of two herbicides. Water Air Soil Pollut 228(6):216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zubbri NA, Mohamed AR, Kamiuchi N, Mohammadi M (2020) Enhancement of CO2 adsorption on biochar sorbent modified by metal incorporation. Environ Sci Pollut Res 27(11):11809–11829

    Article  CAS  Google Scholar 

  • Zulkurnai NZ, Ali UFM, Ibrahim N, Manan NSA (2017) Carbon dioxide (CO2) adsorption by activated carbon functionalized with deep eutectic solvent (DES). IOP Conf Ser: Mater Sci Eng 206:012001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duy Anh Khuong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khuong, D.A., Nguyen, H.N. (2022). Engineered Biochar as Gas Adsorbent. In: Ramola, S., Mohan, D., Masek, O., Méndez, A., Tsubota, T. (eds) Engineered Biochar. Springer, Singapore. https://doi.org/10.1007/978-981-19-2488-0_13

Download citation

Publish with us

Policies and ethics