Skip to main content

Terahertz Surface-Plasmon-Polaritons Gradient Index Lens

  • Conference paper
  • First Online:
3D Imaging—Multidimensional Signal Processing and Deep Learning

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 298))

Abstract

Terahertz electromagnetic waves bounded on the microstructures of some metal surfaces are called spoof surface plasmon polaritons (SPPs). Spoof SPPs with high confinement and field enhancement characteristics have significant application prospects. However, it is difficult to guide and control terahertz surface waves due to the lack of effective practical devices. In this paper, the propagation of spoof SPPs is controlled by using a simple structure consisting of metal pillars placed on a metal plate, and the effective index of the unit structure is changed by fine-tuning the size of the pillars. The gradient index (GRIN) lens with variable index is constructed, which realizes the regulation of terahertz wave and lays the foundation for complex integrated devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pendry, J.B., Martín-Moreno, L., Garcia-Vidal, F.J.: Mimicking surface plasmons with structured surfaces. Science 305(5685), 847–848 (2004)

    Article  Google Scholar 

  2. Shen, X., Cui, T.J., Martin-Cano, D., Garcia-Vidal, F.J.: Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. USA 110(1), 40–45 (2013)

    Article  Google Scholar 

  3. Ng, B., Wu, J., Hanham, S.M., Fernandez-Domínguez, A.I., Klein, N., Liew, N.F., Breese, M.B.H., Hong, M., Maier, S.A.: Spoof plasmon surfaces: a novel platform for THz sensing. Adv. Opt. Mater 1(8), 543–548 (2013)

    Article  Google Scholar 

  4. Kitano, I., Koizumi, K., Matsumura, H., et al.: A light-focusing fiber guide prepared by ion-exchange techniques. Jpn. J. Appl. Phys. 39(83), 63–70 (1969)

    Google Scholar 

  5. Kao, K.C., Hockham, G.A.: Dielectric-fibre surface waveguides for optical frequencies. Proc. Inst. Electr. Eng. 113(7), 1151–1158 (1966)

    Article  Google Scholar 

  6. Von Bally, G., Brune, E., Mette, W.: Holographic endoscopy with gradient-index optical imaging systems and optical fibers. Appl. Opt. 25(19), 3425–3429 (1986)

    Article  Google Scholar 

  7. Von Bally, G., Schmidthaus, W., et al.: Gradient-index optical systems in holographic endoscopy. Appl. Opt. 23(11), 1728–1729 (1984)

    Google Scholar 

  8. Tomlinson, W.J.: Applications of grin-rod lenses in optical fiber communication systems. Appl. Opt. 19(7), 1127–1138 (1980)

    Article  Google Scholar 

  9. Murphy, P.J., Coursolle, T.P.: Fiber optic displacement sensor employing a graded index lens. Appl. Opt. 29(4), 544–547 (1990)

    Article  Google Scholar 

  10. Nishi, H., Ichikawa, H., Toyama, M., Kitano, I.: Gradient-index objective lens for the compact disk system. Appl. Opt. 25(19), 3340 (1986)

    Article  Google Scholar 

  11. Illes, P., Csorba.: Image enhancement for light-focusing gradient-index optical fibers. Appl. Opt. 19(7), 1139–1142 (1980)

    Google Scholar 

  12. Motamedi, M.E., Wu, M.C., Pister, K.S.: Micro-opto-electro-mechanical devices on-chip optical processing. Opt. Eng. 36(5), 1282–1297 (1997)

    Article  Google Scholar 

  13. Mahan, A.I.: Astronomical refraction—some history and theories. Appl. Opt. 1(4), 497–511 (1962)

    Article  Google Scholar 

  14. D’Auria, L., Huignard, J.P., Roy, A.M., Spitz, E.: Photolithographic fabrication of thin film lenses. Opt. Commun. 5(4), 232–235 (1972)

    Google Scholar 

  15. Renger, J., Kadic, M., Dupont, G., Aimovi, S.S., Enoch, S.: Hidden progress: broadband plasmonic invisibility. Opt. Express 18(15), 15757–15768 (2010)

    Article  Google Scholar 

  16. Zhang, Y., Xu, Y., Tian, C., Quan, X., Zhang, W.: Terahertz spoof surface-plasmon-polariton subwavelength waveguide. Photon. Res. 6(1), 18–23 (2018)

    Article  Google Scholar 

  17. Su, X., Xu, Q., Lu, Y., Zhang, Z., Zhang, W.: Gradient index devices for terahertz spoof surface plasmon polaritons. ACS Photon. 7(12), 3305–3312 (2020)

    Article  Google Scholar 

  18. Wan, X., Shen, X.P., Luo, Y., Cui, T.J.: Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface. Laser Photonics Rev. 8(5), 757–765 (2014)

    Article  Google Scholar 

  19. Danner, A.J., Leonhardt, U.: Lossless design of an Eaton lens and invisible sphere by transformation optics with no bandwidth limitation. In: 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, p. JThC4. IEEE, Baltimore, MD, USA (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, S., Sun, M., Zhang, Y. (2022). Terahertz Surface-Plasmon-Polaritons Gradient Index Lens. In: Jain, L.C., Kountchev, R., Tai, Y., Kountcheva, R. (eds) 3D Imaging—Multidimensional Signal Processing and Deep Learning. Smart Innovation, Systems and Technologies, vol 298. Springer, Singapore. https://doi.org/10.1007/978-981-19-2452-1_13

Download citation

Publish with us

Policies and ethics