Skip to main content

Material Extrusion and Vat Photopolymerization—Principles, Opportunities and Challenges

  • Chapter
  • First Online:
Additive Manufacturing for Chemical Sciences and Engineering

Abstract

The additive manufacture (AM) of plastic components can be accomplished by a variety of methods which are classified according to how material layers are consolidated layer-by-layer to create physical objects from digital data. Two of the most widely used methods include Material Extrusion (MEX) and Vat Photopolymerization (VP). These methods include a range of commercialized AM processes often referred to by various trademarked terms such as Fused Deposition Modelling (FDM) and Stereolithography (SLA). Compared to conventional subtractive or formative manufacturing process, MEX and VP are able to manufacture complex parts with high ability for customization, as they impose few constraints on part geometry, and require low setup effort with no custom tooling. Furthermore, MEX and VP are both well-established additive manufacturing processes and through ongoing refinement have achieved compatibility with a broad range of materials and part geometries, and comparatively low operating costs. Due to their high versatility, MEX and VP have been widely used in a broad range of industries including applications in chemical sciences, biotechnology, aerospace, defense, and automotive engineering. However, despite their high versatility, AM processes such as MEX and VP are subject to unique technological characteristics associated with the manufacturing process, the material properties, part design and suitable application areas. This chapter provides an overview of MEX and VP processes characteristics critical to the effective application of these additive manufacturing technologies to high performance products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AM:

Additive Manufacturing

ABS:

Acrylonitrile Butadiene Styrene

ASTM:

American Society for Testing and Materials

BAAM:

Big Area Additive Manufacturing

CLIP:

Continuous Liquid Interface Production

DIW:

Direct Ink Writing

DLP:

Digital Light Processing

FDM:

Fused Deposition Modelling

ISO:

International Organization for Standardization

MEAM:

Material Extrusion-based Additive Manufacturing

MIM:

Metal Injection Moulding

PBT:

Polybutylene terephthalate

PC:

Polycarbonate

PCL:

Polycaprolactone

PGA:

Polyglycolic acid

PIM:

Powder Injection Moulding

PLA:

Polylactic acid

PS:

Polystyrene

SDS:

Shaping Debinding and Sintering

References

  1. Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of industry 4.0. Proc Manuf 11:545–554. https://doi.org/10.1016/j.promfg.2017.07.148

    Article  Google Scholar 

  2. Shahrubudin N, Lee TC, Ramlan R (2019) An overview on 3D printing technology: technological, materials, and applications. Proc Manuf 35:1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089

    Article  Google Scholar 

  3. Daminabo SC, Goel S, Grammatikos SA, Nezhad HY, Thakur VK (2020) Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater Today Chem 16:100248. https://doi.org/10.1016/j.mtchem.2020.100248

    Article  CAS  Google Scholar 

  4. Astm I (2015) ASTM52900-15 standard terminology for additive manufacturing—general principles—terminology. ASTM International, West Conshohocken, PA 3(4):5

    Google Scholar 

  5. Goh GD, Yap YL, Agarwala S, Yeong WY (2019) Recent progress in additive manufacturing of fiber reinforced polymer composite. Adv Mater Technol 4(1):1800271

    Article  Google Scholar 

  6. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239

    Article  CAS  Google Scholar 

  7. Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Disc Today 21(8):1257–1271

    Article  CAS  Google Scholar 

  8. Tan C, Toh WY, Wong G, Li L (2018) Extrusion-based 3D food printing–materials and machines. Int J Bioprint 4 (2)

    Google Scholar 

  9. Gonzalez-Gutierrez J, Cano S, Schuschnigg S, Kukla C, Sapkota J, Holzer C (2018) Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives. Materials 11(5):840

    Article  Google Scholar 

  10. Sculpteo (2021) The state of 3D printing. Retrieved July 27, 2021, from https://www.sculpteo.com/en/ebooks/state-of-3d-printing-report-2021/

  11. Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Mater Today 7(7–8):32–39

    Article  CAS  Google Scholar 

  12. Rocha VG, Saiz E, Tirichenko IS, García-Tuñón E (2020) Direct ink writing advances in multi-material structures for a sustainable future. J Mater Chem A 8(31):15646–15657

    Article  CAS  Google Scholar 

  13. Gonzalez-Gutierrez J, Godec D, Kukla C, Schlauf T, Burkhardt C, Holzer C (2017) Shaping, debinding and sintering of steel components via fused filament fabrication. In: Proceedings of the 16th International scientific conference on production engineering, pp 99–104

    Google Scholar 

  14. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  15. Rane K, Strano M (2019) A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts. Adv Manuf 7(2):155–173

    Article  CAS  Google Scholar 

  16. Dhinakaran V, Manoj Kumar KP, Bupathi Ram PM, Ravichandran M, Vinayagamoorthy M (2020) A review on recent advancements in fused deposition modeling. Mater Today: Proc 27(Part_2):752–756. https://doi.org/10.1016/j.matpr.2019.12.036

  17. Spoerk M, Holzer C, Gonzalez-Gutierrez J (2020) Material extrusion-based additive manufacturing of polypropylene: a review on how to improve dimensional inaccuracy and warpage. J Appl Polym Sci 137(12):48545

    Article  CAS  Google Scholar 

  18. Rafiee M, Farahani RD, Therriault D (2020) Multi-material 3D and 4D printing: a survey. Adv Sci 7(12):1902307. https://doi.org/10.1002/advs.201902307

    Article  CAS  Google Scholar 

  19. Garg H, Singh R (2016) Investigations for melt flow index of Nylon6-Fe composite based hybrid FDM filament. Rapid Prototyping J

    Google Scholar 

  20. Son J, Choi S (2015) Orientation selection for printing 3D models. In: 2015 International Conference on 3D Imaging (IC3D). IEEE, pp 1–6

    Google Scholar 

  21. Chynybekova K, Kim D-H, Choi S-M (2016) Weight dependency of 3D prints from their interior structure. In: Proceedings of HCI Korea. pp 151–156

    Google Scholar 

  22. Baich L, Manogharan G, Marie H (2015) Study of infill print design on production cost-time of 3D printed ABS parts. Int J Rapid Manuf 5(3–4):308–319

    Article  Google Scholar 

  23. Webbe Kerekes T, Lim H, Joe WY, Yun GJ (2019) Characterization of process–deformation/damage property relationship of fused deposition modeling (FDM) 3D-printed specimens. Addit Manuf 25:532–544. https://doi.org/10.1016/j.addma.2018.11.008

    Article  Google Scholar 

  24. Rahim TNAT, Abdullah AM, Md Akil H (2019) Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polym Rev 59(4):589–624

    Article  CAS  Google Scholar 

  25. Chacón JM, Caminero MA, García-Plaza E, Núñez PJ (2017) Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143–157. https://doi.org/10.1016/j.matdes.2017.03.065

    Article  CAS  Google Scholar 

  26. Ziemian C, Sharma M, Ziemian S (2012) Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. Mech Eng 23(10.5772):2397

    Google Scholar 

  27. Shanmugam V, Das O, Babu K, Marimuthu U, Veerasimman A, Johnson DJ, Neisiany RE, Hedenqvist MS, Ramakrishna S, Berto F (2021) Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int J Fatigue 143:106007

    Article  CAS  Google Scholar 

  28. Kuipers T, Doubrovski EL, Wu J, Wang CC (2020) A framework for adaptive width control of dense contour-parallel toolpaths in fused deposition modeling. arXiv preprint arXiv:200413497

    Google Scholar 

  29. Gopsill JA, Shindler J, Hicks BJ (2018) Using finite element analysis to influence the infill design of fused deposition modelled parts. Prog Addit Manuf 3(3):145–163

    Article  Google Scholar 

  30. Go J, Hart AJ (2017) Fast desktop-scale extrusion additive manufacturing. Addit Manuf 18:276–284

    Google Scholar 

  31. Duty CE, Kunc V, Compton B, Post B, Erdman D, Smith R, Lind R, Lloyd P, Love L (2017) Structure and mechanical behavior of Big Area Additive Manufacturing (BAAM) materials. Rapid Prototyping J

    Google Scholar 

  32. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3(1):42–53

    Article  CAS  Google Scholar 

  33. Jiang J, Ma Y (2020) Path planning strategies to optimize accuracy, quality, build time and material use in additive manufacturing: a review. Micromachines 11(7):633

    Article  Google Scholar 

  34. Ahlers D, Wasserfall F, Hendrich N, Zhang J (2019) 3D printing of nonplanar layers for smooth surface generation. In: 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). IEEE, pp 1737–1743

    Google Scholar 

  35. Nisja GA, Cao A, Gao C (2021) Short review of nonplanar fused deposition modeling printing. Mater Design Proc Commun 3(4):e221

    Google Scholar 

  36. Garg A, Bhattacharya A, Batish A (2017) Chemical vapor treatment of ABS parts built by FDM: analysis of surface finish and mechanical strength. Int J Adv Manuf Technol 89(5–8):2175–2191

    Article  Google Scholar 

  37. Nguyen TK, Lee B-K (2018) Post-processing of FDM parts to improve surface and thermal properties. Rapid Prototyping J

    Google Scholar 

  38. Harding MJ, Brady S, O’Connor H, Lopez-Rodriguez R, Edwards MD, Tracy S, Dowling D, Gibson G, Girard KP, Ferguson S (2020) 3D printing of PEEK reactors for flow chemistry and continuous chemical processing. React Chem Eng 5(4):728–735. https://doi.org/10.1039/C9RE00408D

    Article  CAS  Google Scholar 

  39. Zalesskiy SS, Shlapakov NS, Ananikov VP (2016) Visible light mediated metal-free thiol–yne click reaction. Chem Sci 7(11):6740–6745. https://doi.org/10.1039/C6SC02132H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kitson PJ, Symes MD, Dragone V, Cronin L (2013) Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem Sci 4(8):3099–3103. https://doi.org/10.1039/C3SC51253C

    Article  CAS  Google Scholar 

  41. Scotti G, Nilsson SME, Haapala M, Pöhö P, Boije af Gennäs G, Yli-Kauhaluoma J, Kotiaho T, (2017) A miniaturised 3D printed polypropylene reactor for online reaction analysis by mass spectrometry. React Chem Eng 2(3):299–303. https://doi.org/10.1039/C7RE00015D

    Article  CAS  Google Scholar 

  42. Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I (2020) Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines. J Control Release. https://doi.org/10.1016/j.jconrel.2020.10.056

    Article  PubMed  Google Scholar 

  43. Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. 4575330

    Google Scholar 

  44. Goncalves FAMM, Fonseca AC, Domingos M, Gloria A, Serra AC, Coelho JFJ (2017) The potential of unsaturated polyesters in biomedicine and tissue engineering: synthesis, structure-properties relationships and additive manufacturing. Prog Polym Sci 68:1–34. https://doi.org/10.1016/j.progpolymsci.2016.12.008

    Article  CAS  Google Scholar 

  45. Li J, Fejes P, Lorenser D, Quirk BC, Noble PB, Kirk RW, Orth A, Wood FM, Gibson BC, Sampson DD, McLaughlin RA (2018) Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-018-32407-0

    Article  CAS  Google Scholar 

  46. Miwa M, Juodkazis S, Kawakami T, Matsuo S, Misawa H (2001) Femtosecond two-photon stereolithography. Appl Phys A: Mater Sci Proc 73(5):561–566. https://doi.org/10.1007/s003390100934

    Article  CAS  Google Scholar 

  47. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S, Guan J, Sun B, Zhu W, Chen S (2020) Photopolymerizable biomaterials and light-based 3D printing strategies for biomedical applications. Chem Rev 120(19):10695–10743. https://doi.org/10.1021/acs.chemrev.9b00810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zanchetta E, Cattaldo M, Franchin G, Schwentenwein M, Homa J, Brusatin G, Colombo P (2016) Stereolithography of SiOC ceramic microcomponents. Adv Mater 28(2):370–376. https://doi.org/10.1002/adma.201503470

    Article  CAS  PubMed  Google Scholar 

  50. Manapat JZ, Chen Q, Ye P, Advincula RC (2017) 3D printing of polymer nanocomposites via stereolithography. Macromol Mater Eng 302(9):1600553. https://doi.org/10.1002/mame.201600553

    Article  CAS  Google Scholar 

  51. Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45(10):2740–2755. https://doi.org/10.1039/C5CS00714C

    Article  CAS  PubMed  Google Scholar 

  52. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Continuous liquid interface production of 3D objects. Science 347(6228):1349. https://doi.org/10.1126/science.aaa2397

    Article  CAS  PubMed  Google Scholar 

  53. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253. https://doi.org/10.1021/ac403397r

    Article  CAS  PubMed  Google Scholar 

  54. Jakubiak J, Rabek JF (2000) Three-dimensional (3D) photopolymerization in stereolithography. Part I: fundamentals of 3D photopolymerization. Polimery 45(11–12)

    Google Scholar 

  55. Jakubiak J, Rabek JF (2001) Three-dimensional (3D) photopolymerization in the stereolithography. Part II: technologies of the 3D photopolymerization. Polimery 46(3)

    Google Scholar 

  56. Bernhard P, Hofmann M, Schulthess A, Steinmann B (1994) Taking lithography to the third dimension. CHIMIA Int J Chem 48(9):427–430

    Article  CAS  Google Scholar 

  57. Bernhard P, Hofmann M, Schulthess A, Steinmann B (1994) Taking lithography to the third dimension. Chimia 48(9):427–430

    Article  CAS  Google Scholar 

  58. Guo Y, Ji Z, Zhang Y, Wang X, Zhou F (2017) Solvent-free and photocurable polyimide inks for 3D printing. J Mater Chem A 5(31):16307–16314

    Article  CAS  Google Scholar 

  59. Oesterreicher A, Wiener J, Roth M, Moser A, Gmeiner R, Edler M, Pinter G, Griesser T (2016) Tough and degradable photopolymers derived from alkyne monomers for 3D printing of biomedical materials. Polym Chem 7(32):5169–5180. https://doi.org/10.1039/C6PY01132B

    Article  CAS  Google Scholar 

  60. Kotz F, Arnold K, Bauer W, Schild D, Keller N, Sachsenheimer K, Nargang T, Richter C, Helmer D, Rapp B (2017) Three-dimensional printing of transparent fused silica glass. Nature 544:337–339. https://doi.org/10.1038/nature22061

    Article  CAS  PubMed  Google Scholar 

  61. Bhargava KC, Thompson B, Malmstadt N (2014) Discrete elements for 3D microfluidics. Proc Natl Acad Sci 111(42):15013–15018

    Article  CAS  Google Scholar 

  62. Ji Q, Zhang JM, Liu Y, Li X, Lv P, Jin D, Duan H (2018) A modular microfluidic device via multimaterial 3D printing for emulsion generation. Sci Rep 8(1):4791. https://doi.org/10.1038/s41598-018-22756-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin D, Jin S, Zhang F, Wang C, Wang Y, Zhou C, Cheng G (2015) 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26(43):434003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PR. Selvakannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selvakannan, P., Mazur, M., Sun, X. (2022). Material Extrusion and Vat Photopolymerization—Principles, Opportunities and Challenges. In: Bhargava, S.K., Ramakrishna, S., Brandt, M., Selvakannan, P. (eds) Additive Manufacturing for Chemical Sciences and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2293-0_3

Download citation

Publish with us

Policies and ethics