Skip to main content

Biodiesel and Green Diesel Fuels: A Techno-Economic Analysis

  • Chapter
  • First Online:
Green Diesel: An Alternative to Biodiesel and Petrodiesel

Abstract

Climate change represents a major challenge for our world’s equilibrium and society. Therefore, we need to implement an adaptive energy matrix where fuels like fossil diesel are used wisely in coming years, but where sustainable and renewable biofuels increase its contribution to the transport sector or in electric power generation. Among those renewable biofuels, biodiesel and green diesel may play significant roles through circular economy of biomass, with local and regional production into a biorefinery with minima emissions and waste streams. The assessment of a particular scientific development may be approached by the techno-economic analysis (TEA) of the production process, which may serve to identify scientific and technological limitations and challenges that impact economic and financial parameters. In this work, we present and discuss the advantages and challenges of blending biodiesel or green diesel with fossil diesel, the technological, economic and financial issues that must be approached by TEA and its constrains, and the comparison and discussion of several TEA works dealing with biodiesel and green diesel production. Even if green diesel is just recently available with respect to biodiesel, it represents an important opportunity in co-processing plant oils into a petroleum refinery, access to high volume capacity plants and distribution, which may help to decarbonize the petroleum fuel sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal M, Remya N (2021) The State-of-the-Art production of biofuel from microalgae with simultaneous wastewater treatment: influence of process variables on biofuel yield and production cost. BioEnergy Res. https://doi.org/10.1007/s12155-021-10277-1

  2. Al-Sakkari EG, Mohammed MG, Elozeiri AA, Abdeldayem OM, Habashy M, Ong ES, Rene ER, Ismail I, Ashour I (2020) Comparative technoeconomic analysis of using waste and virgin cooking oils for biodiesel production. Front Energy Res 583357

    Google Scholar 

  3. Alsultan AG, Asikin-Mijan N, Ibrahim Z, Yunus R, Razali SZ, Mansir N, Seenivasagam S, Taufiq-Yap YH (2021) A short review on catalyst, feedstock, modernised process, current state and challenges on biodiesel production. Catalysts 1261

    Google Scholar 

  4. Armas O, García-Contreras R, Ramos A, López AF (2015) Impact of animal fat biodiesel, GTL, and HVO fuels on combustion, performance, and pollutant emissions of a light-duty diesel vehicle tested under the NEDC. J Energy Eng C4014009

    Google Scholar 

  5. ASTM (2017) D975–17 Standard specifications for diesel fuel oils

    Google Scholar 

  6. ASTM (2015) Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. D6751–15ce1

    Google Scholar 

  7. ASTM (2020) Standard specificications for fiesel fuel oils. D975

    Google Scholar 

  8. Bezergianni S, Dimitraidis A, Kikhtyanin O, Kubicka D (2018) Refinery co-processing of renewable feeds. Prog Energy Combust Sci 29–64

    Google Scholar 

  9. BS (2017) EN 590:2013+A1:2017 Automotive fuels -diesel requirements and test methods

    Google Scholar 

  10. Bortel I, Vávra J, Takáts M (2019) Effect of HVO fuel mixtures on emissions and performance of a passenger car size diesel engine. Renew Energy 140:680–691

    Google Scholar 

  11. Chanthon N, Ngaosuwan K, Kiatkittipong W, Wongsawaeng D, Appamana W, Assabumrungrat S (2021) A review of catalyst and multifunctional reactor development for sustainable biodiesel production. ScienceAsia 531–541

    Google Scholar 

  12. Chiaramonti D, Buffi M, Rizzo AM, Prussi M, Martelli F (2015) Bio-hydrocarbons through catalytic pyrolysis of used cooking oils: towards sustainable jet and road fuels. Energy Procedia 343–349

    Google Scholar 

  13. Chiaramonti D, Prussi M, Buffi M, Casini D, Rizzo AM (2015) Thermochemical conversion of microalgae: challenges and opportunities. Energy Procedia 819–826

    Google Scholar 

  14. Chiaramonti D, Buffi M, Rizzo AM, Prussi M, Martelli F (2021) Bio-hydrocarbons through catalytic pyrolysis of used cooking oils: towards sustainable jet and road fuels. Energy Procedia 343–349

    Google Scholar 

  15. Conteratto C, Artuzo FD, Santos OIB, Talamini E (2021) Biorefinery: a comprehensive concept for the sociotechnical transition toward bioeconomy. Renew Sustain Energy Rev 111527

    Google Scholar 

  16. Cortes-Peña Y, Kumar D, Singh V, Guest JS (2020) BioSTEAM: a fast and flexible platform for the design, simulation, and techno-economic analysis of biorefineries under uncertainty. ACS Sustain Chem & Eng 3302–3310

    Google Scholar 

  17. CRE (2016) Lineamientos por lo que se establecen las especificaciones de calidad y características. NOM-016-CRE

    Google Scholar 

  18. Cruz-Neves R, Cooling-Klien B, da Silva RJ, Alves-Ferreira-Rezende MC, Funke A, Olivarez-Gómez E, Bonomi A, Maciel-Filho R (2020) A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production. Renew Sustain Energy Rev 109607

    Google Scholar 

  19. Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Environ 50:14–34

    Google Scholar 

  20. Dimian AC, Kiss AA (2019) Eco-efficient processes for biodiesel production from waste lipids. J Clean Prod 118073

    Google Scholar 

  21. DIN (2019) EN 14214 Liquid petroleum products - fatty acid methyl esters (FAME) for use in diesel engines and heating applications -requirements and test methods.

    Google Scholar 

  22. DOF (2016) NOM-016-CRE "Especificaciones de calidad de los petrolíferos

    Google Scholar 

  23. EN (2017) Automotive fuels- diesel requierments and test methods. 590:2013+A1 2017

    Google Scholar 

  24. Eswaran S, Subramaniam S, Geleynse S (2021) Dataset for techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production. Data in Brief 107514

    Google Scholar 

  25. Farobie O, Hartulistiyoso E (2021) Palm oil biodiesel as a renewable energy resource in Indonesia: current status and challenges. BioEnergy Res. https://doi.org/10.1007/s12155-021-10344-7

  26. Fazliakmetov R, Shpiro G (1997) Selection and manufacture technology of antismoke additives for diesel fuel and boiler fuels oils. Izdetal Stvo Neft I Gaz 4:4355

    Google Scholar 

  27. Filip O, Janda K, Kristoufek L, Zilberman D (2019) Food versus fuel: an updated and expanded evidence. Energy Econ 82:152–166

    Google Scholar 

  28. Glisic SB, Pajnik JM, Orlovic AM (2016) Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production. Appl Energy 176–185

    Google Scholar 

  29. Gebremariam SN, Hvoslef-Eide T, Terfa MT, Marchetti JM (2019) Techno-economic performance of different technological based bio-refineries for biofuel production. Energies 3916

    Google Scholar 

  30. Hájek M, Vávra A, Carmona HdP, Kocik J (2021) The catalysed transformation of vegetable oils or animal fats to biofuels and bio-lubricants: a review. Catalysts 1118

    Google Scholar 

  31. Han X, Wang H, Zeng Y, Liu J (2021) Advancing the application of bio-oils by co-processing with petroleum intermediates: a review. Energy Convers Manag: X 100069

    Google Scholar 

  32. Heo H-Y, Heo S, Lee JH (2019) Comparative techno-economic analysis of transesterification technologies for microalgal biodiesel production. Ind & Eng Chem Res 18772–18779

    Google Scholar 

  33. Hoang AT, Tabatabaei M, Aghbashlo M, Carlucci AP, Ölcer AI, Le AT, Ghassemi A (2021) Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: a review. Renew Sustain Energy Rev 135:110204

    Google Scholar 

  34. IMP (2016) Report of project D.61013 “biojet fuel”

    Google Scholar 

  35. International Energy Agency (IEA) (2021) Renewable energy market update. outlook for 2021 and 2022, May 2021. Último acceso: November de 2021. https://www.iea.org/reports/renewable-energy-market-update-2021

  36. International Energy Agency (IEA) (2020) Renewables 2020. Analysis and forecast to 2025, November 2025. Último acceso: November de 2021. https://www.iea.org/reports/renewables-2020

  37. Kargbo H, Harris JS, Phan AN (2021) Drop-in fuel production from biomass: critical review on techno-economic feasibility and sustainability. Renew Sustain Energy Rev 110168

    Google Scholar 

  38. Keskin A, Gürü M, Altiparmak D (2007) Biodiesel production from tall oil with synthesized Mn and Ni based additives: effects of the additives on fuel consumption and emissions. Fuel 11391143

    Google Scholar 

  39. Khan Z, Javed F, Shamair Z, Hafeez A, Fazal T, Aslam A, Zimmerman WB, Rehman F (2021) Current developments in esterification reaction: A review on process and parameters. J Ind Eng Chem 80–101

    Google Scholar 

  40. Khond VW, Kriplani V (2016) Effect on nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: a comprehensive review. Renew Sustain Energy Rev 1338:1348

    Google Scholar 

  41. Khounani Z, Nazemi F, Shafiei M, Aghbashlo M, Tabatabaei M (2019) Techno-economic aspects of a safflower-based biorefinery plant coproducing bioethanol and biodiesel. Energy Convers Manag 112184

    Google Scholar 

  42. Knothe G, van Gerpen J, Krahl J (2016) The biodiesel handbook. AOCS Book Series

    Google Scholar 

  43. Koytsoumpa EI, Magiri-Skouloudi D, Karellas S, Kakaras E (2021) Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy. Renew Sustain Energy Rev 111641

    Google Scholar 

  44. Larnaudie V, Bule M, San KY, Vadlani PV, Mosby J, Elangovan S, Karanjikar M, Spatari S (2020) Life cycle environmental and cost evaluation of renewable diesel production. Fuel 118429

    Google Scholar 

  45. Long F, Liu W, Jiang X, Zhai Q, Cao X, Jiang J, Xu J (2021) State-of-the-art technologies for biofuel production from triglycerides: a review. Renew Sustain Energy Rev 111269

    Google Scholar 

  46. Martínez-Hernández E, Ramírez-Verduzco LF, Amezcua-Allieri MA, Aburto J (2019) Process simulation and techno-economic analysis of bio-jet fuel and green diesel production. Minimum selling prices. Chem Eng Res Des 60–70

    Google Scholar 

  47. Martínez-Hernández E, Amezcua-Allieri MA, Aburto J (2021) Assesing the cost of biomass and bioenergy production in agroindustrial processes. Energies 4181

    Google Scholar 

  48. Nagi J, Ahmed SK, Nagi F (2008) Palm biodiesel an alternative green renewable energy for the energy demands of the future. ICCBT 79–94

    Google Scholar 

  49. NASA (2012) Technology Readines Level (TRL). Último acceso: November de 2021. https://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level

  50. Niño-Villalobos A, Puello-Yarce J, González-Delgado AD, Ojeda KA, Sánchez-Tuirán E (2020) Biodiesel and hydrogen production in a combined palm and Jatropha biomass biorefinery: simulation, techno-economic, and environmental evaluation. ACS Omega 7074–7084

    Google Scholar 

  51. Nisar S, Hanif MA, Rashid U, Hanif A, Akhtar MN, Ngamcharussrivichai C (2021) Trends in widely used catalysts for Fatty Acid Methyl Esters (FAME) production: a review. Catalysts 1085

    Google Scholar 

  52. Niu FX, Liu Q, Bu YF, Liu JZ (2017) Metabolic engineering for the microbial production of isoprenoids: carotenoids and isoprenoid-based biofuels. Synth Syst Biotechnol 167–175

    Google Scholar 

  53. Oke EO, Okolo BI, Adeyi O, Adeyi JA, Ude CJ, Osoh K, Otolorin J, Nzeribe I, Darlinton N, Oladunni S (2021) Process design, techno-economic modelling, and uncertainty analysis of biodiesel production from palm kernel oil. BioEnergy Res. https://doi.org/10.1007/s12155-021-10315-y

  54. Pasha MK, Dai L, Liu D, Du W, Guo M (2021) Biodiesel production with enzymatic technology: progress and perspectives. Biofuels Bioprod & Biorefining 1526–1548

    Google Scholar 

  55. Patel M, Kumar A (2016) Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: a review. Renew Sustain Energy Rev 1293–1307

    Google Scholar 

  56. Ramírez-Verduzco LF, Aburto-Anell JA, Amezcua-Allieri MA, Luna-Ramírez MRS, Díaz-García L, Medellín-Rivera L, Rodríguez-Rodríguez JE (2020) Hydrodeoxigenation process of vegetable oils for obtaining green diesel. USA Patente 10858594, 8 December 2020

    Google Scholar 

  57. Rashed MM, Kalam MA, Masjuki HH, Habibullah M (2016) Improving oxidation stability and NOx reduction of biodiesel blends using aromatic and synthetic antioxidant in a light duty diesel engine. Ind Crops Prod 89:273–284

    Article  Google Scholar 

  58. Ravi Teja KMV, Issac Prasad P, Kumar Reddy K, Banapurmath NR, Soudagar MEM, Hossain N, Afzal A, Ahamed Saleel C (2021) Comparative analysis of performance, emission, and combustion characteristics of a common rail direct injection diesel engine powered with three different biodiesel blends. Energies 14:5597

    Google Scholar 

  59. Ribeiro NM, Pinto AC, Quintella CM, da Rocha GO, Teixeira LSG, Guarieiro LN, do Carmo-Rangel M, Veloso MCC, Rezende MJC, da Cruz RS, de Oliveira AM, Torres EA, de Andrade JB (2007) The role of additives for diesel and diesel blended (ethnaol and biodiesel) fuels: a review. Energy & Fuels 4:2433–2445

    Google Scholar 

  60. Roles J, Yarnold J, Hussey K, Hankamer B (2021) Techno-economic evaluation of microalgae high-density liquid fuel production at 12 international locations. Biotechnol Biofuels 133

    Google Scholar 

  61. Sae-ngae S, Cheirsilp B, Louhasakul Y, Suksaroj TT, Intharapat P (2020) Techno-economic analysis and environmental impact of biovalorization of agro-industrial wastes for biodiesel feedstocks by oleaginous yeasts. Sustain Environ Res 11

    Google Scholar 

  62. Saxena V, Kumar N, Saxena VK (2017) Comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine. Renew Sustain Energy Rev 70–56

    Google Scholar 

  63. Singh CS, Kumar N, Gautam R (2021) Supercritical transesterification route for biodiesel production: Effect of parameters on yield and future perspectives. Environ Prog & Sustain Energy 1–13

    Google Scholar 

  64. Soudagar MEM, Nik-Ghazali NN, Abul-Kalam IA, Badruddin NR, Banapurmath N, Akram N (2018) The effect of nano-additives in diesel-biodiesel fuel blends: a comprehensive review on stability, engine performance and emission characteristics. Energy Convers Manag 146–177

    Google Scholar 

  65. Spatari S, Larnaudie V, Mannoh I, Wheeler MC, Macken NA, Mullen CA, Boateng AA (2020) Environmental, exergetic and economic tradeoffs of catalytic- and fast pyrolysis-to-renewable diesel. Renew Energy 371–380

    Google Scholar 

  66. Stamenkovic OS, Gautam K, Singla-Pareek SL, Dhankher OP, Djalovic IG, Kostic MD, Mitrovic PM, Pareek A, Veljkovic VB (2021) Biodiesel production from camelina oil: present status and future perspectives. Food Energy Secur. https://doi.org/10.1002/fes3.340

  67. Talmadge M, Kinchin C, Chum HL, de Rezande-Pinho A, Biddy M, de Almeida MBB, Casavechia LC (2021) Techno-economic analysis for co-processing fast pyrolysis liquid with vacuum gasoil in FCC units for second-generation biofuel production. Fuel 119960

    Google Scholar 

  68. Tat ME, Celik ON, Er U, Gasan H, Ulutan M (2022) Lubricity assessment of ultra-low sulfur diesel fuel (ULSD), biodiesel, and their blends, in conjunction with pure hydrocarbons and biodiesel based compounds. Int J Engine Res 23:214–231

    Google Scholar 

  69. Tesfa BC, Mishra R, Aliyu AM (2021) Effect of biodiesel blends on the transient performance of compression ignition engines. Energies 14:5416

    Google Scholar 

  70. Thangamani S, Sundaresan SN, Kannappan S, Barawkar VT, Jeyaseelan T (2021) Impacto of biodiesel and diesel blends on the fuel filter: a combined experimental and simulation study. Energy 227:120526

    Google Scholar 

  71. Thoppil Y, Zein SH (2021) Techno-economic analysis and feasibility of industrial-scale biodiesel production from spent coffee grounds. J Clean Prod 127113

    Google Scholar 

  72. van Schalkwyk DL, Mandegari M, Farzad S, Görgens JF (2020) Techno-economic and environmental analysis of bio-oil production from forest residues via non-catalytic and catalytic pyrolysis processes. Energy Convers Manag 112815

    Google Scholar 

  73. Walls LE, Rios-Solis L (2020) Sustainable production of microbial isoprenoid derived advanced biojet fuels using different generation feedstocks: a review. Front Bioeng Biotechnol 599560

    Google Scholar 

  74. Wright MM, Daugaard DE, Satrio JA, Brown RC (2010) Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel S2-S10

    Google Scholar 

  75. Wu L, Yang Y, Yan T, Wang Y, Zheng L, Qian K, Hong F (2020) Sustainable design and optimization of co-processing of bio-oil and vacuum gas oil in an existing refinery. Renew Sustain Energy Rev 109952

    Google Scholar 

  76. Zhang X, Yang R, Anburajan P, Van-Le Q, Alsehli M, Xia Ch, Brindhadevi K (2022) Assessment of hydrogen and nanoparticles blended biodiesel on the diesel engine performance and emission characteristics. Fuel 307:121780

    Google Scholar 

  77. Zambare V, Patankar R, Bhusare B, Christopher L (2021) Recent advances in feedstock and lipase research and development towards commercialization of enzymatic biodiesel. Processes 1743

    Google Scholar 

  78. Zhou Y, Zhao W, Lai Y, Zhang B, Zhang D (2020) Edible plant oil: global status, health issues, and perspectives. Front Plant Sci 1315

    Google Scholar 

  79. Arguelles A, Amezcua-Allieri MA, Ramírez-Verduzco LF (2021) Life cycle assessment of green diesel production by hydrodeoxygenation of palm oil. Front Energ Res 9:690725. https://doi.org/10.3389/fenrg.2019.00025.

Download references

Acknowledgements

The authors acknowledge the financial support from British Council, Newton Fund Impact Scheme through project NFIS-540821111 as well as Instituto Mexicano del Petróleo co-financing through project Y.62001 “A decision support platform for bioenergy technology deployment and policymaking in Mexico”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Aburto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aburto, J., Amezcua-Allieri, M.A. (2022). Biodiesel and Green Diesel Fuels: A Techno-Economic Analysis. In: Aslam, M., Shivaji Maktedar, S., Sarma, A.K. (eds) Green Diesel: An Alternative to Biodiesel and Petrodiesel. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2235-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2235-0_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2234-3

  • Online ISBN: 978-981-19-2235-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics