Skip to main content

Engineered Nanoparticles in EOR: A Quick Overview

  • Conference paper
  • First Online:
Proceedings of the International Field Exploration and Development Conference 2021 (IFEDC 2021)

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Included in the following conference series:

Abstract

Oil entrapment by water and excessive water mobility are two main issues that oil producers face during and after secondary recovery. Consequently, when oil production reaches the tertiary stage, enhanced oil recovery (EOR) is regarded a key option. However, a number of concerns, including low sweep efficiency, high cost, and the risk of formation damage, continue to limit the application of these EOR techniques. Most of the issues linked to classical EOR procedures are considered as potential answers in current nanoparticle research. This change in EOR can be linked to nanomaterial characteristics such as low interfacial tension, wettability control and increased surface to volume ratio. Nanoparticles (NPs) for EOR are in high demand right now. The application of NPs can greatly increase productivity in EOR. This study provides an overview of the most recent research on the use of nanoparticles to improve oil recovery and pave the door for new technologies and more study in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EOR:

– Enhanced oil recovery

SiO2:

– Silicon dioxide

NPs:

– Nanoparticles

IFT:

– Interfacial tension

PAMAM:

– Hyperbranched polyamidoamide

TGA:

– Thermogravimetric analysis

References

  1. Kazemzadeh, Y., Eshraghi, S.E., Kazemi, K., Sourani, S., Mehrabi, M., Ahmadi, Y.: Behavior of asphaltene adsorption onto the metal oxide nanoparticles surface and its effect on the heavy oil recovery. Ind. Eng. Chem. Res. 54(1), 233–239 (2014). https://doi.org/10.1021/ie503797g

    Article  Google Scholar 

  2. Doryani, H., Kazemzadeh, Y., Parsaei, R., Malayeri, M.R., Riazi, M.: Impact of asphaltene and normal paraffins on methane-synthetic oil interfacial tension: an experimental study. J. Nat. Gas Sci. Eng. 26, 538–548 (2015). https://doi.org/10.1016/j.jngse.2015.06.048

    Article  Google Scholar 

  3. Doryani, H., Malayeri, M.R., Riazi, M.: Visualization of asphaltene precipitation and deposition in a uniformly patterned glass micromodel. Fuel 182, 613–622 (2016). https://doi.org/10.1016/j.fuel.2016.06.004

    Article  Google Scholar 

  4. Ragab, A.M.S., El-mahdy, M.: Unlocking reservoir potential using robust hybrid nanoparticles designed for future enhanced oil recovery (April 2016)

    Google Scholar 

  5. Kazemzadeh, Y., Eshraghi, S.E., Sourani, S., Reyhani, M.: An interface-analyzing technique to evaluate the heavy oil swelling in presence of nickel oxide nanoparticles. J. Mol. Liq. 211, 553–559 (2015). https://doi.org/10.1016/j.molliq.2015.07.064

    Article  Google Scholar 

  6. Emadi, S., Shadizadeh, S.R., Manshad, A.K., Rahimi, A.M., Mohammadi, A.H.: Effect of nano silica particles on interfacial tension (IFT) and mobility control of natural surfactant (cedr extraction) solution in enhanced oil recovery process with nano - surfactant flooding samira. J. Mol. Liq. 248, 163–167 (2017). https://doi.org/10.1016/j.molliq.2017.10.031

    Article  Google Scholar 

  7. Thakar, V., Nambiar, S., Shah, M., Sircar, A.: A model on dual string drilling: on the road to deep waters. Model. Earth Syst. Environ. 4(2), 673–684 (2018). https://doi.org/10.1007/s40808-018-0457-6

    Article  Google Scholar 

  8. Shingala, J., Shah, V., Dudhat, K., Shah, M.: Evolution of nanomaterials in petroleum industries: application and the challenges. J. Pet. Explor. Prod. Technol. 10(8), 3993–4006 (2020). https://doi.org/10.1007/s13202-020-00914-4

    Article  Google Scholar 

  9. Liu, X., Li, Y., Zhang, Z., Li, X., Zhao, M., Su, C.: Synthesis of silica/metatitanic acid nanocomposite and evaluation of its catalytic performance for aquathermolysis reaction of extra-heavy crude oil. J. Energy Chem. 24(4), 472–476 (2015). https://doi.org/10.1016/j.jechem.2015.06.005

    Article  Google Scholar 

  10. Hendraningrat, L., Li, S.: Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles: an experimental investigation. In: SPE 165955, January 2015 (2013). https://doi.org/10.2118/165955-MS

  11. Li, S., Torsæter, O., Ntnu, T.: Experimental investigation of the influence of nanoparticles adsorption and transport on wettability alteration for oil wet berea sandstone adsorption and transport of nanoparticles inside porous medium (2015)

    Google Scholar 

  12. Amirsadat, S.A., Moradi, B., Hezave, A.Z., Najimi, S., Farsangi, M.H.: Investigating the effect of nano-silica on efficiency of the foam in enhanced oil recovery. Korean J. Chem. Eng. 34(12), 3119–3124 (2017). https://doi.org/10.1007/s11814-017-0242-7

    Article  Google Scholar 

  13. Bila, A., Torsæter, O.: Article experimental investigation of polymer-coated silica nanoparticles for EOR under harsh reservoir conditions of high temperature and salinity. Nanomaterials 11(3), 1–17 (2021). https://doi.org/10.3390/nano11030765

    Article  Google Scholar 

  14. Ghosh Chaudhuri, R., Paria, S.: The wettability of PTFE and glass surfaces by nanofluids. J. Colloid Interface Sci. 434, 141–151 (2014). https://doi.org/10.1016/j.jcis.2014.07.044

    Article  Google Scholar 

  15. Esfandyari Bayat, A., Junin, R., Shamshirband, S., Tong Chong, W.: Transport and retention of engineered Al2 O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks. Sci. Rep. 5, 1–12 (2015). https://doi.org/10.1038/srep14264

  16. Xue, Z., et al.: Effect of grafted copolymer composition on iron oxide nanoparticle stability and transport in porous media at high salinity. Energy Fuels 28(6), 3655–3665 (2014). https://doi.org/10.1021/ef500340h

    Article  Google Scholar 

  17. Babayekhorasani, F., Dunstan, D.E., Krishnamoorti, R., Conrad, J.C.: Nanoparticle dispersion in disordered porous media with and without polymer additives. Soft Matter 12(26), 5676–5683 (2016). https://doi.org/10.1039/c6sm00502k

    Article  Google Scholar 

  18. Ragab, A.M.S., Hannora, A.E.: An experimental investigation of silica nano particles for enhanced oil recovery applications. In: Soc. Pet. Eng. – 2015 SPE North Africa Technical Conference and Exhibition, NATC 2015, pp. 1150–1165 (2015). https://doi.org/10.2118/175829-ms

  19. Cheraghian, G., Hendraningrat, L.: A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding. Int. Nano Lett. 6(1), 1–10 (2015). https://doi.org/10.1007/s40089-015-0170-7

    Article  Google Scholar 

  20. Khezrnejad, A., James, L.A., Johansen, T.E.: Nanofluid enhanced oil recovery – mobility ratio, surface chemistry, or both?, pp. 1–12 (2015)

    Google Scholar 

  21. Soleimani, H., Yahya, N.: Catalytic effect of zinc oxide nanoparticles on oil-water interfacial tension (March 2016)

    Google Scholar 

  22. El-diasty, A.I., Aly, A.M.: Understanding the mechanism of nanoparticles applications in enhanced applications of nanoparticles in EOR, pp. 1–19 (2015)

    Google Scholar 

  23. Chengara, A., Nikolov, A.D., Wasan, D.T., Trokhymchuk, A.: Spreading of nanofluids driven by the structural disjoining pressure gradient. J. Colloid Interface Sci. 280, 192–201 (2004). https://doi.org/10.1016/j.jcis.2004.07.005

    Article  Google Scholar 

  24. El-Diasty, A.I., Salem Ragab, A.M.: Applications of nanotechnology in the Oil & Gas industry: latest trends worldwide & future challenges in Egypt. In: Soc. Pet. Eng. - 2013 North Africa Technical Conference and Exhibition, NATC 2013, vol. 2, pp. 1036–1048 (2013). https://doi.org/10.2118/164716-ms

  25. Shamsijazeyi, H., Miller, C.A., Wong, M.S., Tour, J.M., Verduzco, R.: Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. 131(15), 1–13 (2014). https://doi.org/10.1002/app.40576

    Article  Google Scholar 

  26. Sun, X., Zhang, Y., Chen, G., Gai, Z.: Application of nanoparticles in enhanced oil recovery: a critical review of recent progress. Energies 10(3), 345 (2017). https://doi.org/10.3390/en10030345

    Article  Google Scholar 

  27. Zamani, A., Maini, B., Pereira-Almao, P.: Experimental study on transport of ultra-dispersed catalyst particles in porous media. Energy Fuels 24(9), 4980–4988 (2010). https://doi.org/10.1021/ef100518r

    Article  Google Scholar 

  28. Maghzi, A., Mohebbi, A., Kharrat, R.: Pore-scale monitoring of wettability alteration by silica nanoparticles during polymer flooding to heavy oil in a five-spot glass micromodel, pp. 653–664 (2011). https://doi.org/10.1007/s11242-010-9696-3

  29. Al-anssari, S., Barifcani, A., Wang, S., Maxim, L., Iglauer, S.: Wettability alteration of oil-wet carbonate by silica nanofluid. J. Colloid Interface Sci. 461, 435–442 (2016). https://doi.org/10.1016/j.jcis.2015.09.051

    Article  Google Scholar 

  30. Eltoum, H., Yang, Y.-L., Hou, J.-R.: The effect of nanoparticles on reservoir wettability alteration: a critical review. Pet. Sci. 18(1), 136–153 (2020). https://doi.org/10.1007/s12182-020-00496-0

    Article  Google Scholar 

  31. Afolabi, R.O.: Enhanced oil recovery for emergent energy demand: challenges and prospects for a nanotechnology paradigm shift. Int. Nano Lett. 9(1), 1–15 (2018). https://doi.org/10.1007/s40089-018-0248-0

    Article  MathSciNet  Google Scholar 

  32. Hendraningrat, L., Li, S., Torsæter, O.: A coreflood investigation of nanofluid enhanced oil recovery. J. Pet. Sci. Eng. 111, 128–138 (2013). https://doi.org/10.1016/j.petrol.2013.07.003

    Article  Google Scholar 

  33. Aziz, H., Tunio, S.Q.: Enhancing oil recovery using nanoparticles - a review. Adv. Nat. Sci. Nanosci. Nanotechnol. 10(3), 033001 (2019). https://doi.org/10.1088/2043-6254/ab3bca

    Article  Google Scholar 

  34. Kamal, M.S., Adewunmi, A.A., Sultan, A.S., Al-hamad, M.F., Mehmood, U.: Recent advances in nanoparticles enhanced oil recovery : rheology, interfacial tension, oil recovery, and wettability alteration. J. Nanomater. 2017, 1–15 (2017)

    Article  Google Scholar 

  35. Rostami, P., Mehraban, M.F., Sharifi, M., Dejam, M., Ayatollahi, S.: Effect of water salinity on oil/brine interfacial behaviour during low salinity waterflooding: a mechanistic study. Petroleum 5(4), 367–374 (2019). https://doi.org/10.1016/j.petlm.2019.03.005

    Article  Google Scholar 

  36. Zhang, H., Ramakrishnan, T. S., Nikolov, A. D., Wasan, D.: Enhanced oil recovery (EOR) driven by nanofilm structural disjoining pressure: flooding experiments and microvisualization enhanced oil recovery (EOR) driven by nanofilm structural disjoining pressure: flooding experiments and microvisualization (2016). https://doi.org/10.1021/acs.energyfuels.6b00035

  37. Shokrlu, Y.H., Babadagli, T.: Transportation and Interaction of nano and micro size metal particles injected to improve thermal recovery of heavy-oil. In: SPE 146661, no. 1982 (2011)

    Google Scholar 

  38. Aliev, F.A., et al.: In-situ heavy oil aquathermolysis in the presence of nanodispersed catalysts based on transition metals. Processes 9(1), 1–22 (2021). https://doi.org/10.3390/pr9010127

    Article  Google Scholar 

  39. Almao, P.P.: In situ upgrading of bitumen and heavy oils via nanocatalysis. Can. J. Chem. Eng. 90(2), 320–329 (2012). https://doi.org/10.1002/cjce.21646

    Article  Google Scholar 

  40. Hashemi, R., Nassar, N.N., Pereira Almao, P.: Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: opportunities and challenges. Appl. Energy 133, 374–387 (2014). https://doi.org/10.1016/j.apenergy.2014.07.069

    Article  Google Scholar 

  41. Mandal, A., Bera, A., Ojha, K., Kumar, T., Scool, I.: Characterization of surfactant stabilized nanoemulsion and its use in enhanced oil recovery. In: SPE 155406, pp. 1–13 (2012)

    Google Scholar 

  42. Binks, B.P., Lumsdon, S.O.: Influence of particle wettability on the type and stability of surfactant-free emulsions †, pp. 8622–8631 (2000)

    Google Scholar 

  43. Binks, B.P., Rodrigues, J.A.: Inversion of emulsions stabilized solely by ionizable nanoparticles. Angew. Chem. Int. Ed. 44, 441–444 (2005). https://doi.org/10.1002/anie.200461846

    Article  Google Scholar 

  44. Binks, B.P., Philip, J., Rodrigues, J.A.: Inversion of silica-stabilized emulsions induced by particle concentration. Langmuir 21(8), 3296–3302 (2005)

    Article  Google Scholar 

  45. Junaid, A.S.M., et al.: On the role of water in natural-zeolite-catalyzed cracking of athabasca oilsands bitumen. Energy fuels 28(5), 3367–3376 (2014)

    Article  Google Scholar 

  46. Rezk, M.Y., Allam, N.K.: Impact of nanotechnology on enhanced oil recovery: a mini-review. Ind. Eng. Chem. Res. 58, 16287–16295 (2019). https://doi.org/10.1021/acs.iecr.9b03693

    Article  Google Scholar 

  47. Hashemi, R., Nassar, N.N., Almao, P.P.: Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles: a study of hot fluid flooding for athabasca bitumen recovery. Energy Fuels 27(4), 2194–2201 (2013)

    Article  Google Scholar 

  48. Montoya, T., Argel, B.L., Nassar, N.N., Franco, C.A., Cortés, F.B.: Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles. Pet. Sci. 13(3), 561–571 (2016). https://doi.org/10.1007/s12182-016-0100-y

    Article  Google Scholar 

  49. Wilson, A.: Nanoparticle catalysts upgrade heavy oil for continuous-steam-injection recovery. J. Pet. Technol. 69(03), 66–67 (2017)

    Article  Google Scholar 

  50. Cheraghian, G., Hendraningrat, L.: A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension. Int. Nano Lett. 6(2), 129–138 (2016). https://doi.org/10.1007/s40089-015-0173-4

    Article  Google Scholar 

  51. Negin, C., Ali, S., Xie, Q.: Application of nanotechnology for enhancing oil recovery - a review. Petroleum 2(4), 324–333 (2016). https://doi.org/10.1016/j.petlm.2016.10.002

    Article  Google Scholar 

  52. Zhao, J., Wen, D.: Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery. RSC Adv. 7(66), 41391–41398 (2017). https://doi.org/10.1039/c7ra07325a

    Article  Google Scholar 

  53. Ahmed, A., Saaid, I.M., Pilus, R.M., Abbas, A., Tunio, A.H., Baig, M.K.: Development of surface treated nanosilica for wettability alteration and interfacial tension reduction. J. Dispers. Sci. Technol. 39(10), 1469–1475 (2018). https://doi.org/10.1080/01932691.2017.1417133

    Article  Google Scholar 

  54. Farzaneh, S.A., Sohrabi, M.: A review of the status of foam applications in enhanced oil recovery. In: SPE 164917 (2013)

    Google Scholar 

  55. Suleimanov, B.A., Ismailov, F.S., Veliyev, E.F.: Nanofluid for enhanced oil recovery. J. Petrol. Sci. Eng. 78(2), 431–437 (2011). https://doi.org/10.1016/j.petrol.2011.06.014

    Article  Google Scholar 

  56. Hendraningrat, L., Li, S., Torsæter, O., Ntnu, T.: Enhancing oil recovery of low-permeability berea sandstone through optimized nanofluids concentration. In: SPE 165283, no. 2012 (2013)

    Google Scholar 

  57. Roustaei, A., Moghadasi, J., Bagherzadeh, H.: An experimental investigation of polysilicon nanoparticles’ recovery efficiencies through changes in interfacial tension and wettability alteration. In: SPE 156976 (2012)

    Google Scholar 

  58. Aminzadeh, B., Chun, D.H., Kianinej, A., Brya, S.L.: Effect of nanoparticles on flow alteration during CO2 injection. In: SPE 1600 (2012)

    Google Scholar 

  59. Espinosa, D., Caldelas, F., Johnston, K., Bryant, S.L., Huh, C.: Nanoparticle-stabilized supercritical CO2 foams for potential mobility control applications. In: SPE 129925, pp. 1–13 (2010)

    Google Scholar 

  60. Mo, D., Yu, J., Liu, N., Lee, R.: Study of the effect of different factors on nanoparticle-stablized CO2 foam for mobility control. In: SPE 159282 (2012)

    Google Scholar 

  61. Yu, J., An, C., Mo, D., Liu, N., Lee, R.: Study of adsorption and transportation behavior of nanoparticles in three different porous media. In: SPE 153337, pp. 1–13 (2012)

    Google Scholar 

  62. Onyekonwu, M.O., Ogolo, N.A.: Investigating the use of nanoparticles in enhancing oil recovery. In: SPE 140744 (2010)

    Google Scholar 

  63. Giraldo, J., Benjumea, P., Lopera, S., Corte, F.B., Ruiz, M.A.: Wettability alteration of sandstone cores by alumina-based nano fluids. Energy Fuels 27(7), 3659–3665 (2013)

    Article  Google Scholar 

  64. Binks, B.P., Whitby, C.P.: Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability. Colloids Surf. A: Physicochem. Eng. Asp. 253, 105–115 (2005). https://doi.org/10.1016/j.colsurfa.2004.10.116

    Article  Google Scholar 

  65. Asumadu-mensah, A., Smith, K.W., Ribeiro, H.S.: Solid Lipid dispersions: potential delivery system for functional ingredients in foods. J. Food Sci. 78(7), 1000–1008 (2013). https://doi.org/10.1111/1750-3841.12162

    Article  Google Scholar 

  66. Pei, H.H., Zhang, G.C., Ge, J.J., Zhang, J., Zhang, Q., Fu, L.P.: Investigation of nanoparticle and surfactant stabilized emulsion to enhance oil recovery in waterflooded heavy oil reservoirs (2015)

    Google Scholar 

Download references

Acknowledgements

The authors will like to thank China University of Petroleum, Beijing for facilitating a positive learning environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinedu Ejike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ejike, C., Deumah, S. (2022). Engineered Nanoparticles in EOR: A Quick Overview. In: Lin, J. (eds) Proceedings of the International Field Exploration and Development Conference 2021. IFEDC 2021. Springer Series in Geomechanics and Geoengineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2149-0_514

Download citation

Publish with us

Policies and ethics