Skip to main content

Microorganisms in Pathogenesis and Management of Graves’ Disease

  • Chapter
  • First Online:
Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases

Abstract

Graves’ disease (GD) is an organ-specific autoimmune disorder associated with serum antithyroid-stimulating hormone receptor autoantibodies, and it is the most frequent cause of hyperthyroidism in Western countries. The not entirely known GD risk factors are comprised of genetic predisposition and interactions between endogenous and environmental factors. Several papers evaluated whether infectious agents may trigger GD development, with discordant results. It is recognized that Helicobacter pylori and hepatitis C virus (HCV) are the most important microorganisms associated with thyroid autoimmunity and those with more reported information. It has been suggested that HCV is able to enter thyroid cells stimulating the release of Th1 chemokines (CXCL10, CXCL11, and CXCL9) and other cytokines (interleukin-8, etc.) that recruit Th1 lymphocytes into the gland, favoring the onset and reiteration of the autoimmune inflammation. This could lead to the appearance of serum thyroid autoantibodies and hypothyroidism. To date, no guidelines exist in this field given that there are still some unanswered questions, with this gap precluding clinicians from the best management of GD patients. Further research is needed to identify new GD risk factors and to reduce its occurrence and improve its management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham-Nordling M, Byström K, Törring O et al (2011) Incidence of hyperthyroidism in Sweden. Eur J Endocrinol 165:899–905

    Article  CAS  PubMed  Google Scholar 

  • Akahane M, Watanabe M, Inoue N et al (2016) Association of the polymorphisms of chemokine genes (IL8, RANTES, MIG, IP10, MCP1 and IL16) with the pathogenesis of autoimmune thyroid diseases. Autoimmunity 49:312–319

    Article  CAS  PubMed  Google Scholar 

  • Akamizu T, Satoh T, Isozaki O et al (2012) Diagnostic criteria, clinical features, and incidence of thyroid storm based on nationwide surveys. Thyroid 22:661–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonelli A, Elia G, Ferrari SM et al (2020c) The Covid-19, epidemiology, clinic and prevention. Curr Genomics 21:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonelli A, Elia G, Ragusa F et al (2021b) The stability of TSH, and thyroid hormones, in patients treated with tablet, or liquid levo-thyroxine. Front Endocrinol (Lausanne) 12:633587

    Article  Google Scholar 

  • Antonelli A, Fallahi P, DelleSedie A et al (2008d) High values of alpha (CXCL10) and beta (CCL2) circulating chemokines in patients with psoriatic arthritis, in presence or absence of autoimmune thyroiditis. Autoimmunity 41:537–542

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Fallahi P, DelleSedie A et al (2009a) High values of Th1 (CXCL10) and Th2 (CCL2) chemokines in patients with psoriatic arthritis. Clin Exp Rheumatol 27:22–27

    CAS  PubMed  Google Scholar 

  • Antonelli A, Fallahi P, Elia G et al (2020a) Graves' disease: clinical manifestations, immune pathogenesis (cytokines and chemokines) and therapy. Best Pract Res Clin Endocrinol Metab 34:101388

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Fallahi P, Elia G et al (2021a) Effect of the COVID-19 pandemic on patients with systemic rheumatic diseases. Lancet Rheumatol 3:e675–e676. 2021 Jul 22

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonelli A, Ferrari SM, Corrado A et al (2013) Increase of interferon-γ inducible CXCL9 and CXCL11 serum levels in patients with active Graves' disease and modulation by methimazole therapy. Thyroid 23:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferrari SM, Corrado A et al (2014b) CXCR3, CXCL10 and type 1 diabetes. Cytokine Growth Factor Rev 25:57–65

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferrari SM, Corrado A et al (2015) Autoimmune thyroid disorders. Autoimmun Rev 14:74–180

    Article  CAS  Google Scholar 

  • Antonelli A, Ferrari SM, Fallahi P et al (2008a) Primary cell cultures from anaplastic thyroid cancer obtained by fine-needle aspiration used for chemosensitivity tests. Clin Endocrinol 69:148–152

    Article  Google Scholar 

  • Antonelli A, Ferrari SM, Fallahi P et al (2009b) Dysregulation of secretion of CXC alpha-chemokine CXCL10 in papillary thyroid cancer: modulation by peroxisome proliferator-activated receptor-gamma agonists. Endocr Relat Cancer 16:1299–1311

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferrari SM, Fallahi P et al (2009c) Monokine induced by interferon gamma (IFNgamma) (CXCL9) and IFNgamma inducible T-cell alpha-chemoattractant (CXCL11) involvement in Graves' disease and ophthalmopathy: modulation by peroxisome proliferator-activated receptor-gamma agonists. J Clin Endocrinol Metab 94:1803–1809

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferrari SM, Fallahi P et al (2010a) Interferon-alpha, -beta and -gamma induce CXCL9 and CXCL10 secretion by human thyrocytes: modulation by peroxisome proliferator-activated receptor-gamma agonists. Cytokine 50:260–267

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferrari SM, Fallahi P et al (2011c) Cytokines (interferon-γ- and tumor necrosis factor-α)-induced nuclear factor-κB activation and chemokine (C-X-C motif) ligand 10 release in Grave’s disease and ophthalmopathy are modulated by pioglitazone. Metabolism 60:277–283

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferrari SM, Frascerra S et al (2010b) CXCL9 and CXCL11 chemokines modulation by peroxisome proliferator-activated receptor-alpha agonists in Graves’ and normal thyrocytes. J Clin Endocrinol Metab 95:E413–E420

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferrari SM, Frascerra S et al (2011a) Circulating chemokine (CXC motif) ligand (CXCL)9 is increased in aggressive chronic autoimmune thyroiditis, in association with CXCL10. Cytokine 55:288–293

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferrari SM, Frascerra S et al (2011b) Increase of circulating CXCL9 and CXCL11 associated with euthyroid or subclinically hypothyroid autoimmune thyroiditis. J Clin Endocrinol Metab 96:1859–1863

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferrari SM, Frascerra S et al (2011d) Peroxisome proliferator-activated receptor α agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease. Exp Cell Res 317:1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferrari SM, Giuggioli D et al (2014a) Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev 13:272–280

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferrari SM, Ragusa F et al (2020b) Graves' disease: epidemiology, genetic and environmental risk factors and viruses. Best Pract Res Clin Endocrinol Metab 34:101387

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferri C, Fallahi P et al (2008b) High values of CXCL10 serum levels in patients with hepatitis C associated mixed cryo-globulinemia in presence or absence of autoimmune thyroiditis. Cytokine 42:137–143

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferri C, Fallahi P et al (2008c) Th1 and Th2 chemokine serum levels in systemic sclerosis in the presence or absence of autoimmune thyroiditis. J Rheumatol 35:1809–1811

    CAS  PubMed  Google Scholar 

  • Antonelli A, Ferri C, Fallahi P et al (2008e) High values of CXCL10 serum levels in mixed cryoglobulinemia associated with hepatitis C infection. Am J Gastroenterol 103:2488–2494

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferri C, Fallahi P (2009d) Hepatitis C: thyroid dysfunction in patients with hepatitis C on IFN-alpha therapy. Nat Rev Gastroenterol Hepatol 6:633–635

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Ferri C, Pampana A et al (2004) Thyroid disorders in chronic hepatitis C. Am J Med 117:10–13

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Rotondi M, Fallahi P et al (2006a) Increase of interferon-gamma-inducible CXC chemokine CXCL10 serum levels in patients with active Graves’ disease, and modulation by methimazole therapy. Clin Endocrinol (Oxf) 64:189–195

    Article  CAS  Google Scholar 

  • Antonelli A, Rotondi M, Ferrari SM et al (2006b) Interferon-gamma-inducible alpha-chemokine CXCL10 involvement in Graves' ophthalmopathy: modulation by peroxisome proliferator-activated receptor-gamma agonists. J Clin Endocrinol Metab 91:614–620

    Article  CAS  PubMed  Google Scholar 

  • Bagnasco M, Minciullo PL, Saraceno GS et al (2010) Urticaria and thyroid autoimmunity. Thyroid 21:401–410

    Article  Google Scholar 

  • Baldridge MT, Nice TJ, McCune BT et al (2015) Commensal microbes and interferon-lambda determine persistence of enteric murine norovirus infection. Science 347:266–269

    Article  CAS  PubMed  Google Scholar 

  • Bednarczuk T, Schomburg L (2020) Challenges and perspectives of selenium supplementation in Graves' disease and orbitopathy. Hormones (Athens) 19:31–39

    Article  Google Scholar 

  • Benvenga S, Ferrari SM, Elia G et al (2020) Nutraceuticals in thyroidology: a review of in vitro, and in vivo animal studies. Nutrients 12(5):1337

    Article  CAS  PubMed Central  Google Scholar 

  • Benvenga S, Guarneri F (2016) Molecular mimicry and autoimmune thyroid disease. Rev Endocr Metab Disord 17:485–498

    Article  CAS  PubMed  Google Scholar 

  • Boelaert K, Torlinska B, Holder RL et al (2010) Older subjects with hyperthyroidism present with a paucity of symptoms and signs: a large cross-sectional study. J Clin Endocrinol Metab 95:2715–2726

    Article  CAS  PubMed  Google Scholar 

  • Brix TH, Hegedüs L (2011) Twins as a tool for evaluating the influence of genetic susceptibility in thyroid autoimmunity. Ann Endocrinol (Paris) 72:103–107

    Article  CAS  Google Scholar 

  • Brix TH, Hegedüs L (2012) Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. Clin Endocrinol (Oxf) 76:457–464

    Article  CAS  Google Scholar 

  • Brix TH, Knudsen GP, Kristiansen M et al (2005) High frequency of skewed X-chromosome inactivation in females with autoimmune thyroid disease: a possible explanation for the female predisposition to thyroid autoimmunity. J Clin Endocrinol Metab 90:5949–5953

    Article  CAS  PubMed  Google Scholar 

  • Brooks WH (2010) X chromosome inactivation and autoimmunity. Clin Rev Allergy Immunol 39:20–29

    Article  PubMed  Google Scholar 

  • Burch HB, Cooper DS (2015) Management of Graves disease: a review. JAMA 314:2544–2554

    Article  CAS  PubMed  Google Scholar 

  • Burucoa C, Axon A (2017) Epidemiology of helicobacter pylori infection. Helicobacter 22(Suppl. 1):e12403

    Article  Google Scholar 

  • Cantón A, de Fàbregas O, Tintoré M et al (2000) Encephalopathy associated to autoimmune thyroid disease: a more appropriate term for an underestimated condition? J Neurol Sci 176:65–69

    Article  PubMed  Google Scholar 

  • Cao SS (2018) Cellular stress responses and gut microbiota in inflammatory bowel disease. Gastroenterol Res Pract 2018:7192646

    PubMed  Google Scholar 

  • Caron P (2021) Thyroiditis and SARS-CoV-2 pandemic: a review. Endocrine 72:326–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cellini M, Santaguida MG, Virili C et al (2017) Hashimoto’s thyroiditis and autoimmune gastritis. Front Endocrinol 8:92

    Article  Google Scholar 

  • Chang CC, Cheng CJ, Sung CC et al (2013) A 10-year analysis of thyrotoxic periodic paralysis in 135 patients: focus on symptomatology and precipitants. Eur J Endocrinol 169:529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costelloe SJ, Wassef N, Schulz J et al (2010) Thyroid dysfunction in a UK hepatitis C population treated with interferon-alpha and ribavirin combination therapy. Clin Endocrinol (Oxf) 73:249–256

    CAS  Google Scholar 

  • Covelli D, Ludgate M (2017) The thyroid, the eyes and the gut: a possible connection. J Endocrinol Invest 40:567–576

    Article  CAS  PubMed  Google Scholar 

  • Cuan-Baltazar Y, Soto-Vega E (2020) Microorganisms associated to thyroid autoimmunity. Autoimmun Rev 19:102614

    Article  CAS  PubMed  Google Scholar 

  • Cury SS, Oliveira M, Síbio MT et al (2015) Gene expression of estrogen receptor-alpha in orbital fibroblasts in Graves’ ophthalmopathy. Arch Endocrinol Metab 59:273–276

    Article  PubMed  Google Scholar 

  • Dachao L, Ross Ka-Kit L, Wenda G et al (2018) Involvement of gut microbiome in human health and disease, brief overview, knowledge gaps and research opportunities. Gut Pathog 10:3

    Article  CAS  Google Scholar 

  • Davies TF, Burch HB (2019) Clinical features and diagnosis of Graves' orbitopathy (ophthalmopathy). https://www.uptodate.com/home/editorial-policy

  • Diana T, Krause J, Olivo PD et al (2017) Prevalence and clinical relevance of thyroid stimulating hormone receptor-blocking antibodies in autoimmune thyroid disease. Clin Exp Immunol 189:304–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diana T, Olivo PD, Kahaly GJ (2018) Thyrotropin receptor blocking antibodies. Horm Metab Res 50:853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Docimo G, Cangiano A, Romano RM et al (2020) The human microbiota in endocrinology: implications for pathophysiology, treatment, and prognosis in thyroid diseases. Front Endocrinol (Lausanne) 11:586529

    Article  Google Scholar 

  • Drutel A, Archambeaud F, Caron P (2013) Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol (Oxf) 78:155–164

    Article  CAS  Google Scholar 

  • Duntas LH, Benvenga S (2015) Selenium: an element for life. Endocrine 3:756–775

    Article  CAS  Google Scholar 

  • Effraimidis G, Tijssen JGP, Strieder TGA et al (2011) No causal relationship between yersinia enterocolitica infection and autoimmune thyroid disease: evidence from a prospective study. Clin Exp Immunol 165:38–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallahi P, Ferrari SM, Elia G et al (2018) Myo-inositol in autoimmune thyroiditis, and hypothyroidism. Rev Endocr Metab Disord 19:349–354

    Article  CAS  PubMed  Google Scholar 

  • Fallahi P, Ferrari SM, Elia G et al (2021) L-T4 therapy in enteric malabsorptive disorders. Front Endocrinol (Lausanne) 12:626371

    Article  Google Scholar 

  • Fallahi P, Ferrari SM, Politti U et al (2014) Autoimmune and neoplastic thyroid diseases associated with hepatitis C chronic infection. Int J Endocrinol 2014:935131

    Article  PubMed  PubMed Central  Google Scholar 

  • Fallahi P, Ferrari SM, Ragusa F et al (2020) Th1 chemokines in autoimmune endocrine disorders. J Clin Endocrinol Metab 105:dgz289

    Article  PubMed  Google Scholar 

  • Fallahi P, Ferrari SM, Ruffilli I et al (2016a) The association of other autoimmune diseases in patients with autoimmune thyroiditis: review of the literature and report of a large series of patients. Autoimmun Rev 15:1125–1128

    Article  CAS  PubMed  Google Scholar 

  • Fallahi P, Ferrari SM, Vita R et al (2016b) The role of human parvovirus B19 and hepatitis C virus in the development of thyroid disorders. Rev Endocr Metab Disord 17:529–535

    Article  CAS  PubMed  Google Scholar 

  • Fallahi P, Ferri C, Ferrari SM et al (2012) Cytokines and HCV-related disorders. Clin Dev Immunol 2012:468107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrari SM, Elia G, Ragusa F et al (2018) The protective effect of myo-inositol on human thyrocytes. Rev Endocr Metab Disord 19:355–362

    Article  CAS  PubMed  Google Scholar 

  • Ferrari SM, Fallahi P, Antonelli A et al (2017) Environmental issues in thyroid diseases. Front Endocrinol (Lausanne) 8:50

    Google Scholar 

  • Ferrari SM, Fallahi P, Mancusi C et al (2013) HCV-related autoimmune disorders in HCV chronic infection. Clin Ter 164:e305–e312

    CAS  PubMed  Google Scholar 

  • Ferrari SM, Fallahi P, Ruffilli I et al (2019a) The association of other autoimmune diseases in patients with Graves' disease (with or without ophthalmopathy): review of the literature and report of a large series. Autoimmun Rev 18:287–292

    Article  PubMed  Google Scholar 

  • Ferrari SM, Ruffilli I, Elia G et al (2019b) Chemokines in hyperthyroidism. J Clin Transl Endocrinol 16:100196

    PubMed  PubMed Central  Google Scholar 

  • Ferri C, Giuggioli D, Raimondo V et al (2020) COVID-19 and rheumatic autoimmune systemic diseases: report of a large Italian patients series. Clin Rheumatol 39:3195–3204

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferri C, Giuggioli D, Raimondo V et al (2021) COVID-19 and systemic sclerosis: clinicopathological implications from Italian nationwide survey study. Lancet Rheumatol 3:e166–e168

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferri C, Sebastiani M, Giuggioli D et al (2015) Hepatitis C virus syndrome: a constellation of organ- and non-organ specific autoimmune disorders, B-cell non-Hodgkin’s lymphoma, and cancer. World J Hepatol 7:327–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Furszyfer J, Kurland LT, McConahey WM et al (1972) Epidemiologic aspects of Hashimoto's thyroiditis and Graves' disease in Rochester, Minnesota (1935–1967), with special reference to temporal trends. Metabolism 21:197–204

    Article  CAS  PubMed  Google Scholar 

  • Gautam KP, Lijesh KU, Jude J et al (2020) An uncommon cause of fever in a patient with hyperthyroidism. J Family Med Prim Care 9:432–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Giuggioli D, Sebastiani M, Colaci M et al (2017) Treatment of HCV-related mixed cryoglobulinemia. Curr Drug Targets 18:794–802

    Article  CAS  PubMed  Google Scholar 

  • Goichot B, Caron P, Landron F et al (2016) Clinical presentation of hyperthyroidism in a large representative sample of outpatients in France: relationships with age, aetiology and hormonal parameters. Clin Endocrinol 84:445–451

    Article  CAS  Google Scholar 

  • Grove-Laugesen D, Cramon PK, Malmstroem S et al (2020) Effects of supplemental vitamin D on muscle performance and quality of life in Graves' disease: a randomized clinical trial. Thyroid 30:661–671

    Article  CAS  PubMed  Google Scholar 

  • Guan LJ, Wang X, Meng S et al (2015) Increased IL-21/IL-21R expression and its proinflammatory effects in autoimmune thyroid disease. Cytokine 72:160–165

    Article  CAS  PubMed  Google Scholar 

  • Guarneri F, Benvenga S (2007) Environmental factors and genetic background that interact to cause autoimmune thyroid disease. Curr Opin Endocrinol Diabetes Obes 14:398–409

    Article  CAS  PubMed  Google Scholar 

  • Haiying G (2017) Role of flagella in the pathogenesis of helicobacter pylori. Curr Microbiol 74:863–869

    Article  CAS  Google Scholar 

  • Hammerstad SS, Villanueva R, Tomer Y (2015) Infection and autoimmune thyroid diseases. In: Shoenfeld Y, Agmon-Levin N, Rose N (eds) Infection and autoimmunity, II edn. Elsevier, pp 891–909

    Chapter  Google Scholar 

  • Hansen PS, Wenzel BE, Brix TH et al (2006) Yersinia enterocolitica infection does not confer an increased risk of thyroid antibodies: evidence from a Danish twin study. Clin Exp Immunol 146:32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara S, Nagata K, Kumata K et al (2018) Estradiol affects Epstein-Barr virus reactivation-induced thyrotropin receptor antibody and immunoglobulin production in Graves' disease patients and healthy controls. Viral Immunol 31:486–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargreaves C, Grasso M, Hampe CS et al (2013) Yersinia enterocolitica provides the link between thyroid-stimulating antibodies and their germline counterparts in Grave’s disease. J Immunol 190:5373–5381

    Article  CAS  PubMed  Google Scholar 

  • Harris A, Al Mushref M (2021) Graves' thyrotoxicosis following SARS-CoV-2 infection. AACE Clin Case Rep 7:14–16

    Article  PubMed  Google Scholar 

  • Hirai N, Watanabe M, Inoue N et al (2019) Association of IL6 gene methylation in peripheral blood cells with the development and prognosis of autoimmune thyroid diseases. Autoimmunity 52:251–255

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Sun W, Zhang et al (2017) Meta-analysis of the correlation between helicobacter pylori infection and autoimmune thyroid diseases. Oncotarget 8:115691–115700

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang MJ, Tsai SL, Huang BY et al (1999) Prevalence and significance of thyroid autoantibodies in patients with chronic hepatitis C virus infection: a prospective controlled study. Clin Endocrinol 50:503–509

    Article  CAS  Google Scholar 

  • Imani D, Rezaei R, Razi B et al (2017) Association between IL6-174 G/C polymorphism and Graves' disease: a systematic review and meta-analysis. Acta Med Iran 55:665–671

    PubMed  Google Scholar 

  • Jacobson EM, Huber A, Tomer Y (2008) The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun 30:58–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Tao F, Liu C et al (2015) Both interleukin-23A polymorphism and serum interlukin-23 expression are associated with Graves' disease risk. Cell Immunol 294:39–43

    Article  CAS  PubMed  Google Scholar 

  • Jie Z, Xia H, Zhong SL et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiménez-Blanco S, Pla-Peris B, Marazuela M (2021) COVID-19: a cause of recurrent Graves' hyperthyroidism? J Endocrinol Investig 44:387–388

    Article  CAS  Google Scholar 

  • Kahaly GJ, Diana T, Kanitz M et al (2020) Prospective trial of functional thyrotropin receptor antibodies in Graves' disease. J Clin Endocronol Metab 105:e1006–e1014

    Article  Google Scholar 

  • Kau HC, Wu SB, Tsai CC et al (2016) Cigarette smoke extract-induced oxidative stress and fibrosis-related genes expression in orbital fibroblasts from patients with Graves' Ophthalmopathy. Oxidative Med Cell Longev 2016:4676289

    Article  CAS  Google Scholar 

  • Kerr JR (2019) Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. J Clin Pathol 72:651–658

    Article  CAS  PubMed  Google Scholar 

  • Kisiel B, Bednarczuk T, Kostrzewa G et al (2008) Polymorphism of the oestrogen receptor beta gene (ESR2) is associated with susceptibility to Graves’ disease. Clin Endocrinol 68:429–434

    Article  CAS  Google Scholar 

  • Kotwal A, Stan M (2018) Thyrotropin receptor antibodies-an overview. Ophthalmic Plastreconstr Surg 34:S20–S27

    Article  Google Scholar 

  • Kumata K, Nagata K, Matsushita M et al (2016) Thyrotropin receptor antibody (TRAb)-IgM levels are markedly higher than TRAb-IgG levels in Graves' disease patients and controls, and TRAb-IgM production is related to Epstein-Barr virus reactivation. Viral Immunol 29:459–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacotte S, Brun S, Muller S et al (2009) CXCR3, inflammation, and autoimmune diseases. Ann N Y Acad Sci 1173:310–317

    Article  CAS  PubMed  Google Scholar 

  • Lagaye S, Vexiau P, Morozov V et al (1992) Human spumaretrovirus-related sequences in the DNA of leukocytes from patients with Graves disease. Proc Natl Acad Sci U S A 89:10070–10074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasagni L, Francalanci M, Annunziato F et al (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197:1537–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Kim S, Kang M et al (1998) Prevalence of human foamy virus-related sequences in the Korean population. J Biomed Sci 5:267–273

    Article  CAS  PubMed  Google Scholar 

  • Lee EY, Lee ZH, Song YW (2013) The interaction between CXCL10 and cytokines in chronic inflammatory arthritis. Autoimmun Rev 12:554–557

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Li CW, Hammerstad SS et al (2015) Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J Autoimmun 64:82–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leri O, Sinopoli MT, Di Prima MA et al (1995) Hepatitis C virus antibodies and Graves' disease. BMJ 310:128–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang Z, Yu T et al (2014) Increased expression of IL-37 in patients with Graves' disease and its contribution to suppression of proinflammatory cytokines production in peripheral blood mononuclear cells. PLoS One 9:e107183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu C, Papewalis C, Domberg J et al (2008) Chemokines and auto- immune thyroid diseases. Horm Metab Res 40:361–368

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Wu D, Li C et al (2015) Lower serum 25-hydroxyvitamin D level is associated with 3 types of autoimmune thyroid diseases. Medicine (Baltimore) 94:e1639

    Article  CAS  Google Scholar 

  • MacFarland SP, Bauer AJ, Adzick NS et al (2018) Disease burden and outcome in children and young adults with concurrent Graves disease and differentiated thyroid carcinoma. J Clin Endocrinol Metab 103:2918–2925

    Article  PubMed  PubMed Central  Google Scholar 

  • Mankaï A, Thabet Y, Manoubi W et al (2013) Anti-saccharomyces cerevisiae antibodies are elevated in Graves' disease but not in Hashimoto's thyroiditis. Endocr Res 38:98–104

    Article  PubMed  CAS  Google Scholar 

  • Marangou A, Guarneri F, Benvenga S (2015) Graves' disease precipitated by rickettsial infection. Endocrine 50(3):828–829

    Article  CAS  PubMed  Google Scholar 

  • Masetti G, Moshkelgosha S, Köhling HL et al (2018) Gut microbiota in experimental murine model of Graves' orbitopathy established in different environments may modulate clinical presentation of disease. Microbiome 6:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Mateu-Salat M, Urgell E, Chico A (2020) SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves' disease after COVID-19. J Endocrinol Invest 43:1527–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrogan A, Seaman HE, Wright JW et al (2008) The incidence of autoimmune thyroid disease: a systematic review of the literature. Clin Endocrinol 69:687–696

    Article  Google Scholar 

  • McLachlan SM, Rapoport B (2014) Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocr Rev 35:59–105

    Article  CAS  PubMed  Google Scholar 

  • McLeod DS, Cooper DS, Ladenson PW et al (2015) Race/ethnicity and the prevalence of thyrotoxicosis in young Americans. Thyroid 25:621–628

    Article  CAS  PubMed  Google Scholar 

  • Meiering CD, Linial ML (2001) Historical perspective of foamy virus epidemiology and infection. Clin Microbiol Rev 14:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menconi F, Marcocci C, Marinò M (2014) Diagnosis and classification of Graves' disease. Autoimmune Rev 13:398–402

    Article  Google Scholar 

  • Minelli R, Spagnoli F, Marchesi E et al (2013) Course of graves disease in interferon-treated patients with chronic hepatitis C virus infection and in uninfected patients. J Investig Med 61:1173–1177

    Article  CAS  PubMed  Google Scholar 

  • Montebello A (2021) Recurrent Graves' disease post SARS-CoV-2 infection. BMJ Case Rep 14:e244714

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagata K, Hara S, Nakayama Y et al (2018) Epstein-Barr virus lytic reactivation induces IgG4 production by host B lymphocytes in Graves' disease patients and controls: a subset of Graves' disease is an IgG4-related disease-like condition. Viral Immunol 31:540–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata K, Hayashi K (2020) Epstein-Barr virus reactivation-induced immunoglobulin production: significance on autoimmunity. Microorganisms 8:1875

    Article  CAS  PubMed Central  Google Scholar 

  • Nagata K, Higaki K, Nakayama Y et al (2014) Presence of Epstein-Barr virus-infected B lymphocytes with thyrotropin receptor antibodies on their surface in Graves' disease patients and in healthy individuals. Autoimmunity 47:193–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata K, Nakayama Y, Higaki K et al (2015) Reactivation of persistent Epstein-Barr virus (EBV) causes secretion of thyrotropin receptor antibodies (TRAbs) in EBV-infected B lymphocytes with TRAbs on their surface. Autoimmunity 48:328–335

    Article  CAS  PubMed  Google Scholar 

  • Nduwayo L, Bacq Y, Valat C et al (1998) Thyroid function and autoimmunity in 215 patients seropositive for the hepatitis C virus. Ann Endocrinol (Paris) 59:9–13

    CAS  Google Scholar 

  • Nishino K, Nishida A, Inoue R et al (2018) Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J Gastroenterol 53:95–106

    Article  PubMed  Google Scholar 

  • Page C, Duverlie G, Sevestre H et al (2015b) Erythrovirus B19 and autoimmune thyroid diseases. Review of the literature and pathophysiological hypotheses. J Med Virol 87:162–169

    Article  CAS  PubMed  Google Scholar 

  • Page C, Hoffmann TW, Benzerdjeb N et al (2013) Detection of erythrovirus B19 in thyroidectomy specimens from Graves' disease patients: a case-control study. J Med Virol 85:1414–1419

    Article  CAS  PubMed  Google Scholar 

  • Page C, Hoffmann TW, Benzerdjeb N et al (2015a) Immunohistochemical- and PCR-based assay for the reproducible, routine detection of erythrovirus B19 in thyroid tissues. J Med Virol 87:1054–1059

    Article  CAS  PubMed  Google Scholar 

  • Pateron D, Hartmann DJ, Duclos-Vallee JC et al (1992) Latent autoimmune thyroid disease in patients with chronic HCV hepatitis. J Hepatol 16:244–245

    Article  CAS  PubMed  Google Scholar 

  • Perricone C, Versini M, Ben-Ami D et al (2016) Smoke and autoimmunity: the fire behind the disease. Autoimmun Rev 15:354–374

    Article  CAS  PubMed  Google Scholar 

  • Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16:1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyzik A, Grywalska E, Matyjaszek-Matuszek B et al (2019) Does the Epstein-Barr virus play a role in the pathogenesis of Graves' disease? Int J Mol Sci 20:3145

    Article  CAS  PubMed Central  Google Scholar 

  • Qi Y, Li X, Zhang Q et al (2015) Increased chemokine (C-C motif) ligand 21 expression and its correlation with osteopontin in Graves' disease. Endocrine 50:123–129

    Article  CAS  PubMed  Google Scholar 

  • Rapoport B, McLachlan SM (2014) Graves' hyperthyroidism is antibody-mediated but is predominantly a Th1-type cytokine disease. J Clin Endocrinol Metab 99:4060–4061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapoport B, McLachlan SM (2018) Reflections on thyroid autoimmunity: a personal overview from the past into the future. Horm Metab Res 50:840–852

    Article  CAS  PubMed  Google Scholar 

  • Romagnani S (1998) The Th1/Th2 paradigm and allergic disorders. Allergy 53:12–15

    Article  CAS  PubMed  Google Scholar 

  • Romagnani P, Rotondi M, Lazzeri E et al (2002) Expression of IP-10/CXCL10 and MIG/CXCL9 in the thyroid and increased levels of IP-10/CXCL10 in the serum of patients with recent-onset Graves' disease. Am J Pathol 161:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roti E, Uberti ED (2001) Iodine excess and hyperthyroidism. Thyroid 11:493–500

    Article  CAS  PubMed  Google Scholar 

  • Salvi M, Colucci G, Masetti G et al (2019) The randomised probiotic trial of indigo study (investigation of novel biomarkers and definition of role of the microbiome in Graves’ orbitopathy). Endocr Abstracts 63:GP71

    Google Scholar 

  • Selmer C, Olesen JB, Hansen ML et al (2012) The spectrum of thyroid disease and risk of new onset atrial fibrillation: a large population cohort study. BMJ 345:e7895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shapira Y, Agmon-Levin N, Shoenfeld Y (2010) Defining and analyzing geoepidemiology and human autoimmunity. J Autoimmun 34:J168–J177

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Wang XL, Xie JP et al (2016) Thyroid disturbance in patients with chronic hepatitis C infection: a systematic review and meta-analysis. J Gastrointestin Liver Dis 25:227–234

    Article  PubMed  Google Scholar 

  • Shi WJ, Liu W, Zhou XY et al (2013) Associations of helicobacter pylori infection and cytotoxin-associated gene a status with autoimmune thyroid diseases: a meta-analysis. Thyroid 23:1294–1300

    Article  CAS  PubMed  Google Scholar 

  • Shor DB, Orbach H, Boaz M et al (2012) Gastrointestinal-associated autoantibodies in different autoimmune diseases. Am J Clin Exp Immunol 1:49–55

    PubMed  PubMed Central  Google Scholar 

  • Simmonds MJ, Howson JM, Heward JM et al (2005) Regression mapping of association between the human leukocyte antigen region and Graves disease. Am J Hum Genet 76:157–163

    Article  CAS  PubMed  Google Scholar 

  • Simmonds MJ, Kavvoura FK, Brand OJ et al (2014) Skewed X chromosome inactivation and female preponderance in autoimmune thyroid disease: an association study and meta-analysis. J Clin Endocrinol Metab 99:E127–E131

    Article  PubMed  Google Scholar 

  • Smith TJ, Hegedüs L (2016) Graves' disease. N Engl J Med 375:552–1565

    Google Scholar 

  • Smyk D, Koutsoumpas A, Mytilinaiou M et al (2014) Helicobacter pylori and autoimmune disease: cause or bystander. World J Gastroenterol 20:613–629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spaulding SW (2011) The possible roles of environmental factors and the aryl hydrocarbon receptor in the prevalence of thyroid diseases in Vietnam era veterans. Curr Opin Endocrinol Diabetes Obes 18:315–320

    Article  CAS  PubMed  Google Scholar 

  • Spinelli C, Bertocchini A, Antonelli A et al (2004) Surgical therapy of the thyroid papillary carcinoma in children: experience with 56 patients < or =16 years old. J Pedriat Surg 39:1500–1505

    Article  Google Scholar 

  • Su R, Nguyen ML, Agarwal MR et al (2013) Interferon- inducible chemokines reflect severity and progression in sarcoidosis. Respir Res 14:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamoto N, Nagata K, Hara S et al (2019) Subclinical Epstein-Barr virus primary infection and lytic reactivation induce thyrotropin receptor autoantibodies. Viral Immunol 32:362–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Chen W, Liu C et al (2019) Effect of IL-21 on the balance of Th17 cells/Treg cells in the pathogenesis of Graves' disease. Endocr Res 44:138–147

    Article  CAS  PubMed  Google Scholar 

  • Toft AD, Blackwell CC, Saadi AT et al (1990) Secretor status and infection in patients with Graves' disease. Autoimmunity 7:279–289

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga R, Zhang W, Naseem M et al (2018) CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation – a target for novel cancer therapy. Cancer Treat Rev 63:40–477

    Article  CAS  PubMed  Google Scholar 

  • Tran HA, Attia JR, Jones TL et al (2007) Pegylated interferon-alpha2beta in combination with ribavirin does not aggravate thyroid dysfunction in comparison to regular interferon-alpha2beta in a hepatitis C population: meta-analysis. J Gastroenterol Hepat 22:472–476

    Article  CAS  Google Scholar 

  • Tran A, Quaranta JF, Benzaken S et al (1993) High prevalence of thyroid autoantibodies in a prospective series of patients with chronic hepatitis C before interferon therapy. Hepatology 18:253–257

    Article  CAS  PubMed  Google Scholar 

  • Tu Y, Fan G, Zeng T et al (2018) Association of TNF-α promoter polymorphism and Graves' disease: an updated systematic review and meta-analysis. Biosci Rep 38:BSR20180143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587:4153–41588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidya B, Pearce SH (2014) Diagnosis and management of thyrotoxicosis. BMJ 349:g5128

    Article  PubMed  CAS  Google Scholar 

  • Valtonen VV, Ruutu P, Varis K et al (1986) Serological evidence for the role of bacterial infections in the pathogenesis of thyroid diseases. Acta Med Scand 219:105–111

    Article  CAS  PubMed  Google Scholar 

  • Velavan TP, Meyer CG (2020) The COVID-19 epidemic. Tropical Med Int Health 25:278–280

    Article  CAS  Google Scholar 

  • Virili C, Centanni M (2015) Does microbiota composition affect thyroid homeostasis? Endocrine 49:583–587

    Article  CAS  PubMed  Google Scholar 

  • Vita R, Lapa D, Trimarchi F et al (2015) Stress triggers the onset and the recurrences of hyperthyroidism in patients with Graves' disease. Endocrine 48:254–263

    Article  CAS  PubMed  Google Scholar 

  • Vita R, Lapa D, Trimarchi F et al (2017) Certain HLA alleles are associated with stress-triggered Graves' disease and influence its course. Endocrine 55:93–100

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang Q, Lu J et al (2010) Identification of outer membrane porin f protein of Yersinia enterocolitica recognized by antithyrotopin receptor antibodies in Graves' disease and determination of its epitope using mass spectrometry and bioinformatics tools. J Clin Endocrinol Metab 95:4012–4020

    Article  CAS  PubMed  Google Scholar 

  • Wémeau JL, Klein M, Sadoul JL et al (2018) Graves' disease: introduction, epidemiology, endogenous and environmental pathogenic factors. Ann Endocrinol (Paris) 79:599–607

    Article  Google Scholar 

  • Yazıcı D, Aydın SZ, Yavuz D et al (2010) Anti-saccharomyces cerevisiae antibodies (ASCA) are elevated in autoimmune thyroid disease ASCA in autoimmune thyroid disease. Endocrine 38:194–198

    Article  PubMed  CAS  Google Scholar 

  • Yi SW, Hong JS, Ohrr H et al (2014) Agent Orange exposure and disease prevalence in Korean Vietnam veterans: the Korean veterans health study. Environ Res 133:56–65

    Article  CAS  PubMed  Google Scholar 

  • Zangiabadian M, Mirsaeidi M, Pooyafar MH et al (2021) Associations of Yersinia Enterocolitica infection with autoimmune thyroid diseases: a systematic review and meta-analysis. Endocr Metab Immune Disord Drug Targets 21:682–687

    Article  CAS  PubMed  Google Scholar 

  • Zignego AL, Giannini C, Gragnani L (2012) HCV and lymphoproliferation. Clin Dev Immunol 2012:980942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zignego AL, Gragnani L, Piluso A et al (2015) Virus- driven autoimmunity and lymphoproliferation: the example of HCV infection. Expert Rev Clin Immunol 11:15–31

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu N, Zhang D, Wang W et al (2019) China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China. N Engl J Med 382:727–733

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Martina Ferrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferrari, S.M., Guarneri, F., Fallahi, P., Antonelli, A., Benvenga, S. (2022). Microorganisms in Pathogenesis and Management of Graves’ Disease. In: Dwivedi, M.K., Amaresan, N., Kemp, E.H., Shoenfeld, Y. (eds) Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-19-1946-6_14

Download citation

Publish with us

Policies and ethics