Skip to main content

Overview of Climate Change in Water Resources Management Studies

  • Chapter
  • First Online:
Climate Change in Sustainable Water Resources Management

Part of the book series: Springer Water ((SPWA))

  • 361 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Unit Hydrograph.

  2. 2.

    Identification of Unit Hydrographs and Component Flows from Rainfall, Evaporation and Streamflow Data.

  3. 3.

    Hydrological Ensemble Streamflow Prediction.

  4. 4.

    Stochastic Optimization Model.

  5. 5.

    Artificial Neural Network.

  6. 6.

    Water Balance Model.

  7. 7.

    Regional Climate Model.

  8. 8.

    Atmospheric General Circulation Model.

  9. 9.

    American Geophysical Fluid Dynamics Laboratory.

  10. 10.

    average monthly temperature.

  11. 11.

    Greenhouse Gas Emission Scenarios.

  12. 12.

    System Dynamics Model.

References

  • Ahmadi M, Bozorg-Haddad O, Loáiciga HA (2015) Adaptive reservoir operation rules under climatic change. Water Resour Manage 29(4):1247–1266

    Article  Google Scholar 

  • Alvarez UFH, Trudel M, Leconte R (2014) Impacts and adaptation to climate change using a reservoir management tool to a northern watershed: application to Lièvre river watershed, Quebec, Canada. Water Resour Manage 28(11):3667–3680

    Article  Google Scholar 

  • Ashofteh P-S (2014) Climate change and water: tools and approaches. Javedankherad, No. 1, Tehran, Iran

    Google Scholar 

  • Ashofteh P-S, Bozorg-Haddad O, Loáiciga HA (2015) Evaluation of climatic-change impacts on multiobjective reservoir operation with multiobjective genetic programming. J Water Resour Plan Manag 141(11):04015030

    Article  Google Scholar 

  • Ashofteh P-S, Bozorg-Haddad O, Loáiciga HA (2017) Impacts of climate change on the conflict between water resources and agricultural water use. J Irrig Drain Eng 143(4):02516002

    Article  Google Scholar 

  • Ashofteh P-S, Bozorg-Haddad O, Mariño MA (2012) Climate change impact on reservoir performance indexes in agricultural water supply. J Irrig Drain Eng 139(2):85–97

    Article  Google Scholar 

  • Ashofteh PS, Bozorg-Haddad O, Mariño MA (2013) Climate change impact on reservoir performance indexes in agricultural water supply. J Irrig Drain Eng 139(2):85–97

    Article  Google Scholar 

  • Azadi F, Ashofteh P-S, Loáiciga HA (2018) Reservoir water-quality projections under climate-change conditions. Water Resour Manag 3(1 33):401–421

    Google Scholar 

  • Azadi F, Ashofteh P-S, Loáiciga HA (2019) Reservoir water-quality projections under climate-change conditions. Water Resour Manage 33(1):401–421

    Article  Google Scholar 

  • Bates B, kundzewicz Z W, Wu S, Palutikof J (2008) Climate change and water technical paper of the intergovernmental panel on climate change. IPCC Secretariat Geneva 210

    Google Scholar 

  • Beven KJ (2011) Rainfall-runoff modelling: the primer. John Wiley and Sons Publication, West Sussex, UK

    Google Scholar 

  • Bradley RS, Kelly PM, Jones PD, Goodess CM, Diaz HF (1985) A climatic data bank for northern hemisphere land areas, 1851–1980. Technical Report TRO17, U.S. Dept. of Energy, Carbon Dioxide Research Division, pp 335

    Google Scholar 

  • Buchdahl JM (1999) Global climate change student information guide. Manchester Metropolitan University, Atmospheric Research and Information Center, p 98

    Google Scholar 

  • Carter TAK, Alfsen E, Barrow B, Bass X, Dai P, Desanker SR, Gaffin F, Giorgi M, Hulme M, Lal LJ, Mata LO, Mearns JFB, Mitchell T, Morita R, Moss D, Murdiyarso JD, Pabon-Caicedo J, Palutikof ML, Parry C, Rosenweig B, Seguin RJ, Scholes, Whetton PH (2007) Guidelines on the use of scenario data for climate impact and adaptation assessment. Version 2. Intergovernmental Panel on Climate Change, Task Group on Scenarios for Climate Impact Assessment, p 71

    Google Scholar 

  • Clarke L, Jiang K, Akimoto K, Babiker M, Blanford G, Fisher-Vanden K, Hourcade JC, Krey V, Kriegler E, Löschel A, McCollum D (2014) Assessing transformation pathways

    Google Scholar 

  • Diaz-Nieto J, Wibly RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames United Kingdom. Climatic Change 63(2–3):245–268

    Article  ADS  Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modeling. Int J Climatol 27(12):1547–1578

    Article  Google Scholar 

  • Georgakakos AP, Yao H, Kistenmacher M, Georgakakos KP, Graham NE, Cheng FY, Spencer C, Shamir E (2012) Value of adaptive water resources management in Northern California under climatic variability and change: reservoir management. J Hydrol 412:34–46

    Article  Google Scholar 

  • Hay LE, Wibly RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J Am Water Resour Assoc 36(2):387–397

    Article  Google Scholar 

  • IPCC-DDC (1988) Data distribution centre. http://ipcc-ddc.cru.uea.ac.uk/ (Oct. 1, 2016)

  • IPCC (2000) Intergovernmental panel on climate change. In: Nakicenovic N, Swart R (eds) Special report on emissions scenarios. Cambridge University Press, UK. p 570

    Google Scholar 

  • IPCC (2001) Climate change, the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, U.K

    Google Scholar 

  • IPCC (2007) Summary for policy makers, Climate change 2007a: The physical science basis. Contribution of the working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • IPCC (2007a) Climate change: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • IPCC (2007b) Climate change 2007b: the scientific basis. Houghton JT, Ding YDJG, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of working groups I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, US

    Google Scholar 

  • IPCC (2007c) Climate change 2007c: mitigation. Davidson O, Swart R (eds) Contribution of working groups I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA, 881

    Google Scholar 

  • IPCC (2011) IPCC intergovernmental panel on climate change web site: organization page. http://www.ipcc.ch/organization/organization.shtml

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working Group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY

    Google Scholar 

  • Jones P, Palutikof P (2006) Global temperature record. Climate research unit, University of East Anglia. http://www.cru.uea.ac.uk/. Accessed 22 October 2020

  • Karamouz M, Araghinejad S (2005) Advanced hydrology. Industrial University of Amir Kabir (Poly Technics), No. 1, Tehran, Iran

    Google Scholar 

  • Khare D, Mondal A, Kundu S, Mishra PK (2017) Climate change impact on soil erosion in the Mandakini River Basin, North India. Appl Water Sci 7(5):2373–2383

    Article  ADS  Google Scholar 

  • Lane ME, Kirshen PH, Vogel RM (1999) Indicators of impacts of global climate change on U.S. water resources. J Water Resour Plan Manag 125(4):194–204

    Article  Google Scholar 

  • Lettenmaier DP, Gan TY (1990) Hydrologic sensitivities of the Sacramento-San Joaquin River basin, California, to global warming. Water Resour Res 26(1):69–86

    Article  ADS  CAS  Google Scholar 

  • Mandal S, Arunkumar R, Breach PA, Simonovic SP (2019a) Reservoir operations under changing climate conditions: hydropower-production perspective. J Water Resour Plan Manag 145(5):04019016

    Article  Google Scholar 

  • Martin J (2007) The meaning of the 21th century: A vital blueprint for ensuring our future. Penguin Group publication, New York, U.S.

    Google Scholar 

  • Mearns LO, Giorgi F, Whetton P, Pabon D, Hulme M, Lal M (2010) Guidelines for use of climate scenarios developed from regional climate model experiments, DDC of IPCC TGCIA, final version, p 38

    Google Scholar 

  • Mandal S (2017) Uncertainty modeling in the assessment of climate change impacts on water resources management

    Google Scholar 

  • Mandal S, Arunkumar R, Breach PA, Simonovic SP (2019b) Reservoir operations under changing climate conditions: hydropower-production perspective. J Water Resour Plan Manag 145:04019016

    Article  Google Scholar 

  • Mendoza-Ponce A, Corona-Núñez RO, Nava LF, Estrada F, Calderón-Bustamante O, Martínez-Meyer E, Carabias J, Larralde-Corona AH, Barrios M, Pardo-Villegas PD (2021) Impacts of land management and climate change in a developing and socioenvironmental challenging transboundary region. J Environ Manag 300, 113748

    Google Scholar 

  • Mirza MMQ, Warrick RA, Ericksen NJ (2003) The implications of climate change on floods of the Ganges, Brahmaputra and Meghna rivers in Bangladesh. Clim Change 57(3):287–318

    Article  Google Scholar 

  • Mitchell TD (2003) Pattern scaling: an examination of the accuracy of the technique for describing future climates. Clim Change 60(3):217–242

    Article  CAS  Google Scholar 

  • Moursi H, Kim D, Kaluarachchi JJ (2017) A probabilistic assessment of agricultural water scarcity in a semi-arid and snowmelt-dominated river basin under climate change. Agric Water Manag 193:142–152

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Grubler A, Riahi K, Roehrl RA, Rogner HH, Victor N (2000) Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  • Nouri-Tirtashi M, Sharifi M-B, Zarghami M (2015) The effect of climate change on the inflow to the reservoirs of dams in conditions of uncertainty (case study: Bustan and Golestan dams in the Wood catchment). Irrigation Drain Iran 9:367–380 (In Persian)

    Google Scholar 

  • Peston R (2006) Report's stark warning on climate. BBC News, 29

    Google Scholar 

  • Qian BD, Hayhoe H, Gameda S (2005) Evaluation of the stochastic weather generators LARS-WG and AAFC-WG for climate change impact studies. Climate Res 29(1):3–21

    Article  ADS  Google Scholar 

  • Rosenzweig C, Strzepek KM, Major DC, Iglesias A, Yates DN, McCluskey A, Hillel D (2004) Water resources for agriculture in a changing climate: international case studies. Glob Environ Chang 14(4):345–360

    Article  Google Scholar 

  • Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26(23):3469–3472

    Article  ADS  Google Scholar 

  • Seaby LP, Refsgaard JC, Sonnenborg TO, Stisen S, Christensen JH, Jensen KH (2013) Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections. J Hydrol 486:479–493

    Article  Google Scholar 

  • Solomon S, Manning M, Marquis M, Qin D (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. (4). Cambridge university press

    Google Scholar 

  • Tabari H, Somee BS, Zadeh MR (2011) Testing for long-term trends in climatic variables in Iran. Atmos Res 100(1):132–140

    Article  Google Scholar 

  • Traynham L, Palmer R, Polebitski A (2010) Impacts of future climate conditions and forecasted population growth on water supply system in the Puget Sound region. J Water Resour Plan Manag 137(4):318–326

    Article  Google Scholar 

  • Viner D, Hulme M (1997) The climate impacts LINK project: applying results from the hadley centre's climate change experiments for climate change impacts assessment. Climatic Research Unit, Norwich, UK, pp 17

    Google Scholar 

  • Wilby RL, Dettinger MD (2000) Streamflow changes in the Sierra Nevada, California, simulated using a statistically downscaled general circulation model scenario of climate change. Link Clim Change Land Surface Change 6(12):99–121

    Article  Google Scholar 

  • Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low‐flow scenarios for the River Thames, UK. Water Resour Res 42(2)

    Google Scholar 

  • Xu CY (1999) From GCMs to river flow: a review of downscaling methods and hydrologic modeling approaches. Prog Phys Geogr 23(2):229–249

    Google Scholar 

  • Zareian MJ, Eslamian S, Hosseinpour EZ (2014) Climate change impacts on reservoir inflow using various weighted approaches. World Environmental and Water Resources Congress, Portland, Oregon, USA, June 1–5, pp 2136–2145

    Google Scholar 

  • Zhao Y, Camberlin P, Richard Y (2005) Validation of a coupled GCM and projection of summer rainfall change over South Africa, using a statistical downscaling method. Climate Res 28(2):109–122

    Article  ADS  Google Scholar 

  • Zhenmei M, Kang S, Zhang L, Tong L, Su X (2008) Analysis of impact of climate variability and human activity on streamflow for a river basin in arid region of northwest China. J Hydrol 3523–4:239–249

    Google Scholar 

  • Zolghadr-Asli B (2017) Discussion of “Multiscale assessment of the impacts of climate change on water resources in Tanzania” by Adhikari U, Nejadhashemi AP, Herman MR, Messina JP. J Hydrol Eng. In Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Bozorg-Haddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bozorg-Haddad, O., Jafari, S., Chu, X. (2022). Overview of Climate Change in Water Resources Management Studies. In: Bozorg-Haddad, O. (eds) Climate Change in Sustainable Water Resources Management. Springer Water. Springer, Singapore. https://doi.org/10.1007/978-981-19-1898-8_1

Download citation

Publish with us

Policies and ethics