Skip to main content

Challenges of Species Identification for Parasitic Helminths

  • Chapter
  • First Online:
Molecular Systematics of Parasitic Helminths

Abstract

Species are the fundamental units of systematics, biodiversity, and ecological and evolutionary studies, but their delimitation has been neglected methodologically. Species are not discrete but ever-evolving groups of populations that are more or less connected by gene flow. As mentioned in Chap. 4, natural selection and genetic drift act on heritable variations over time, eventually causing reproductively isolated entities in geographical isolation. In systematics, we generally have two major goals: (1) to discover and describe species and (2) to resolve the phylogenetic relationships of the species studied. Almost all articles published on systematics have been focused on reconstructing phylogenies. Species delimitation is how species boundaries are determined and new species are discovered. Species delimitation has emerged as a critical topic in modern systematics. Recently, DNA methods have been used to study the systematics and population genetics of parasitic helminths, leading to the chance discovery of many genetically distinct but morphologically very similar species. In this chapter, we provided essential knowledge to deal with the challenges of species delimitation. Species concepts, which are the criteria tied to species delimitation and the principle of speciation, particularly parasitic speciation, were mentioned. Additionally, we discussed the pitfalls and problematic issues for species identification based on morphological characteristics, focusing on cryptic species, species hybridization, homoplasy under convergent evolution, and phenotypic plasticity under adaptive evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldhebiani, A. Y. (2018). Species concept and speciation. Saudi Journal of Biological Sciences, 25(3), 437–440. https://doi.org/10.1016/j.sjbs.2017.04.013

    Article  PubMed  Google Scholar 

  • Arnold, M. L. (2004). Natural hybridization and the evolution of domesticated, pest and disease organisms. Molecular Ecology, 13(5), 997–1007. https://doi.org/10.1111/j.1365-294X.2004.02145.x

    Article  CAS  PubMed  Google Scholar 

  • Baack, E. J., & Rieseberg, L. H. (2007). A genomic view of introgression and hybrid speciation. Current Opinion in Genetics & Development, 17(6), 513–518. https://doi.org/10.1016/j.gde.2007.09.001

    Article  CAS  Google Scholar 

  • Barton, N. H. (2001). The role of hybridization in evolution. Molecular Ecology, 10(3), 551–568.

    Article  CAS  PubMed  Google Scholar 

  • Bello, E., Palomba, M., Webb, S. C., Paoletti, M., Cipriani, P., Nascetti, G., & Mattiucci, S. (2021). Investigating the genetic structure of the parasites Anisakis pegreffii and A. berlandi (Nematoda: Anisakidae) in a sympatric area of the southern Pacific Ocean waters using a multilocus genotyping approach: First evidence of their interspecific hybridization. Infection, Genetics and Evolution, 92, 104887. https://doi.org/10.1016/j.meegid.2021.104887

    Article  CAS  PubMed  Google Scholar 

  • Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., Ingram, K. K., & Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3), 148–155.

    Article  Google Scholar 

  • Bik, H. M., Fournier, D., Sung, W., Bergeron, R. D., & Thomas, W. K. (2013). Intra-genomic variation in the ribosomal repeats of nematodes. PLoS One, 8(10), e78230. https://doi.org/10.1371/journal.pone.0078230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisby, F., & Coddington, J. A. (1995). Biodiversity from a taxonomic and evolutionary perspective. In Global biodiversity assessment (pp. 27–57).

    Google Scholar 

  • Blasco-Costa, I., Cutmore, S. C., Miller, T. L., & Nolan, M. J. (2016). Molecular approaches to trematode systematics:‘best practice’and implications for future study. Systematic Parasitology, 93(3), 295–306.

    Article  PubMed  Google Scholar 

  • Blouin, M. S. (2002). Molecular prospecting for cryptic species of nematodes: Mitochondrial DNA versus internal transcribed spacer. International Journal for Parasitology, 32(5), 527–531.

    Article  CAS  PubMed  Google Scholar 

  • Boon, N. A. M., Fannes, W., Rombouts, S., Polman, K., Volckaert, F. A. M., & Huyse, T. (2017). Detecting hybridization in African schistosome species: Does egg morphology complement molecular species identification? Parasitology, 144(7), 954–964. https://doi.org/10.1017/s0031182017000087

    Article  CAS  PubMed  Google Scholar 

  • Brooks, D. R., McLennan, D. A., & McLennan, D. A. (1991). Phylogeny, ecology, and behavior: A research program in comparative biology. University of Chicago Press.

    Google Scholar 

  • Bruce, J. I., Llewellyn, L. M., & Sadun, E. H. (1961). Susceptibility of wild mammals to infection by Schistosoma mansoni. The Journal of Parasitology, 47(5), 752–756.

    Article  CAS  PubMed  Google Scholar 

  • Brunner, F. S., & Eizaguirre, C. (2016). Can environmental change affect host/parasite-mediated speciation? Zoology, 119(4), 384–394.

    Article  PubMed  Google Scholar 

  • Calvani, N. E. D., & Slapeta, J. (2021). Fasciola species introgression: Just a fluke or something more? Trends in Parasitology, 37(1), 25–34. https://doi.org/10.1016/j.pt.2020.09.008

    Article  CAS  PubMed  Google Scholar 

  • Carlson, C. J., Dallas, T., Alexander, L., Phelan, A., & Phillips, A. (2020). What would it take to describe the global diversity of parasites? Proceedings of the Royal Society B, 287(1939), 2020.1841.

    Article  Google Scholar 

  • Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology, 22(17), 4369–4383.

    Article  PubMed  Google Scholar 

  • Chan, A. H. E., Chaisiri, K., Morand, S., Saralamba, N., & Thaenkham, U. (2020). Evaluation and utility of mitochondrial ribosomal genes for molecular systematics of parasitic nematodes. Parasites & Vectors, 13(1), 364. https://doi.org/10.1186/s13071-020-04242-8

    Article  CAS  Google Scholar 

  • Chan, A. H. E., Chaisiri, K., Saralamba, S., Morand, S., & Thaenkham, U. (2021). Assessing the suitability of mitochondrial and nuclear DNA genetic markers for molecular systematics and species identification of helminths. Parasites & Vectors, 14(1), 233. https://doi.org/10.1186/s13071-021-04737-y

    Article  CAS  Google Scholar 

  • Clayton, D. H., Bush, S. E., & Johnson, K. P. (2004). Ecology of congruence: Past meets present. Systematic Biology, 53(1), 165–173.

    Article  PubMed  Google Scholar 

  • Colinvaux P. (1986) Ecology. John Wiley and Sons, New York, p. 152

    Google Scholar 

  • Coyne, J. A. (2007). Sympatric speciation. Current Biology, 17(18), R787–R788. https://doi.org/10.1016/j.cub.2007.06.056

    Article  CAS  PubMed  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation (Vol. 37). Sinauer Associates.

    Google Scholar 

  • Coyne, J. A., & Price, T. D. (2000). Little evidence for sympatric speciation in island birds. Evolution, 54(6), 2166–2171.

    CAS  PubMed  Google Scholar 

  • Cracraft, J. (1983). Species concepts and speciation analysis. In Current ornithology (pp. 159–187). Springer.

    Chapter  Google Scholar 

  • Cracraft, J. (1987). Species concepts and the ontology of evolution. Biology and Philosophy, 2(3), 329–346.

    Article  Google Scholar 

  • Criscione, C. D., & Blouin, M. S. (2004). Life cycles shape parasite evolution: Comparative population genetics of salmon trematodes. Evolution, 58(1), 198–202.

    Article  PubMed  Google Scholar 

  • Criscione, C. D., & Font, W. F. (2001). The guest playing host: Colonization of the introduced Mediterranean gecko, Hemidactylus turcicus, by helminth parasites in southeastern Louisiana. The Journal of Parasitology, 87, 1273–1278.

    Article  CAS  PubMed  Google Scholar 

  • Criscione, C. D., Anderson, J. D., Sudimack, D., Peng, W., Jha, B., Williams-Blangero, S., & Anderson, T. J. (2007). Disentangling hybridization and host colonization in parasitic roundworms of humans and pigs. Proceedings of the Biological Sciences, 274(1626), 2669–2677. https://doi.org/10.1098/rspb.2007.0877

    Article  CAS  Google Scholar 

  • Cronquist, A. (1978). Once again, what is a species? Biosystematics in agriculture. Beltsville Symposia in Agricultural Research, 2, 3–20.

    Google Scholar 

  • Davis, J. I., & Nixon, K. C. (1992). Populations, genetic variation, and the delimitation of phylogenetic species. Systematic Biology., 41(4), 421–435. https://doi.org/10.2307/2992584

    Article  Google Scholar 

  • de León, G. P.-P., & Poulin, R. (2018). An updated look at the uneven distribution of cryptic diversity among parasitic helminths. Journal of Helminthology, 92(2), 197–202.

    Article  Google Scholar 

  • De Meeûs, T., Michalakis, Y., & Renaud, F. (1998). Santa Rosalia revisited: Or why are there so many kinds of parasites in ‘The garden of earthly Delights’? Parasitology Today, 14(1), 10–13.

    Article  PubMed  Google Scholar 

  • De Vienne, D., Giraud, T., & Shykoff, J. (2007). When can host shifts produce congruent host and parasite phylogenies? A simulation approach. Journal of Evolutionary Biology, 20(4), 1428–1438.

    Article  PubMed  Google Scholar 

  • Demarais, B. D., Dowling, T. E., Douglas, M. E., Minckley, W., & Marsh, P. C. (1992). Origin of Gila seminuda (Teleostei: Cyprinidae) through introgressive hybridization: Implications for evolution and conservation. Proceedings of the National Academy of Sciences, 89(7), 2747–2751.

    Article  CAS  Google Scholar 

  • Desdevises, Y., Morand, S., Jousson, O., & Legendre, P. (2002). Coevolution between Lamellodiscus (Monogenea: Diplectanidae) and Sparidae (Teleostei): The study of a complex host-parasite system. Evolution, 56(12), 2459–2471.

    Article  CAS  PubMed  Google Scholar 

  • Detwiler, J. T., & Criscione, C. D. (2010). An infectious topic in reticulate evolution: Introgression and hybridization in animal parasites. Genes (Basel), 1(1), 102–123. https://doi.org/10.3390/genes1010102

    Article  CAS  Google Scholar 

  • Dieckmann, U., Doebeli, M., Metz, J. A., & Tautz, D. (2004). Adaptive speciation. Cambridge University Press.

    Book  Google Scholar 

  • Dobzhansky, T. (1937). Genetic nature of species differences. The American Naturalist, 71(735), 404–420. https://doi.org/10.1086/280726

    Article  Google Scholar 

  • Dowling, T. E., & Secor, C. L. (1997). The role of hybridization and introgression in the diversification of animals. Annual Review of Ecology and Systematics, 28(1), 593–619.

    Article  Google Scholar 

  • Du Rietz, G. E. (1930). The fundamental units of biological taxonomy. Svensk Botaniska Foreningen Uppsala.

    Google Scholar 

  • Dunams-Morel, D. B., Reichard, M. V., Torretti, L., Zarlenga, D. S., & Rosenthal, B. M. (2012). Discernible but limited introgression has occurred where Trichinella nativa and the T6 genotype occur in sympatry. Infection, Genetics and Evolution, 12(3), 530–538. https://doi.org/10.1016/j.meegid.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  • Dusitsittipon, S., Criscione, C. D., Morand, S., Komalamisra, C., & Thaenkham, U. (2017). Cryptic lineage diversity in the zoonotic pathogen Angiostrongylus cantonensis. Molecular Phylogenetics and Evolution, 107, 404–414. https://doi.org/10.1016/j.ympev.2016.12.002

    Article  PubMed  Google Scholar 

  • Easton, A., Gao, S., Lawton, S. P., Bennuru, S., Khan, A., Dahlstrom, E., Oliveira, R. G., Kepha, S., Porcella, S. F., & Webster, J. (2020). Molecular evidence of hybridization between pig and human Ascaris indicates an interbred species complex infecting humans. eLife, 9, e61562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmands, S. (2002). Does parental divergence predict reproductive compatibility. Trends in Ecology & Evolution, 17, 520–527.

    Article  Google Scholar 

  • Endler, J. (1977). Geographic variation, speciation, and clines. Princeton University Press.

    Google Scholar 

  • Endler, J. A. (1989). In D. Otte & J. Endler (Eds.), Conceptual and other problems in speciation. Sinauer Associates.

    Google Scholar 

  • Evans, N., & Paulay, G. (2012). DNA barcoding methods for invertebrates. In DNA barcodes (pp. 47–77). Springer.

    Chapter  Google Scholar 

  • Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T., & Gaitan-Espitia, J. D. (2019). Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 374(1768), 20180174. https://doi.org/10.1098/rstb.2018.0174

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgieva, S., Faltýnková, A., Brown, R., Blasco-Costa, I., Soldánová, M., Sitko, J., Scholz, T., & Kostadinova, A. (2014). Echinostoma'revolutum'(Digenea: Echinostomatidae) species complex revisited: Species delimitation based on novel molecular and morphological data gathered in Europe. Parasites & Vectors, 7(1), 1–18.

    CAS  Google Scholar 

  • Ghiselin, M. T. (1974). A radical solution to the species problem. Systematic Biology, 23(4), 536–544.

    Article  Google Scholar 

  • Gibson, G., & Reed, L. K. (2008). Cryptic genetic variation. Current Biology, 18(21), R989–R990. https://doi.org/10.1016/j.cub.2008.08.011

    Article  CAS  PubMed  Google Scholar 

  • Gourbiere, S. (2004). How do natural and sexual selection contribute to sympatric speciation? Journal of Evolutionary Biology, 17(6), 1297–1309.

    Article  CAS  PubMed  Google Scholar 

  • Grant, P. R., & Grant, B. R. (2019). Hybridization increases population variation during adaptive radiation. Proceedings of the National Academy of Sciences, 116(46), 23216–23224.

    Article  CAS  Google Scholar 

  • Hall, B. K. (2012). Parallelism, deep homology, and evo-devo. Evolution & Development, 14(1), 29–33.

    Article  Google Scholar 

  • Hamilton, J. A., & Miller, J. M. (2016). Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conservation Biology, 30(1), 33–41.

    Article  PubMed  Google Scholar 

  • Harrison, R. G., & Larson, E. L. (2014). Hybridization, introgression, and the nature of species boundaries. The Journal of Heredity, 105(Suppl 1), 795–809. https://doi.org/10.1093/jhered/esu033

    Article  PubMed  Google Scholar 

  • Hasegawa, H., & Dewi, K. (2017). Two new species of Trichuris (Nematoda: Trichuridae) collected from endemic murines of Indonesia. Zootaxa, 4254(1), 127–135.

    Article  PubMed  Google Scholar 

  • Huang, W. Y., He, B., Wang, C. R., & Zhu, X. Q. (2004). Characterisation of Fasciola species from mainland China by ITS-2 ribosomal DNA sequence. Veterinary Parasitology, 120(1–2), 75–83. https://doi.org/10.1016/j.vetpar.2003.12.006

    Article  CAS  PubMed  Google Scholar 

  • Hull, D. L. (1968). The operational imperative: Sense and nonsense in operationism. Systematic Biology, 17(4), 438–457.

    Article  Google Scholar 

  • Huyse, T., & Volckaert, F. A. (2005). Comparing host and parasite phylogenies: Gyrodactylus flatworms jumping from goby to goby. Systematic Biology, 54(5), 710–718.

    Article  PubMed  Google Scholar 

  • Huyse, T., Poulin, R., & Theron, A. (2005). Speciation in parasites: A population genetics approach. Trends in Parasitology, 21(10), 469–475.

    Article  PubMed  Google Scholar 

  • Ichikawa-Seki, M., Peng, M., Hayashi, K., Shoriki, T., Mohanta, U. K., Shibahara, T., & Itagaki, T. (2017). Nuclear and mitochondrial DNA analysis reveals that hybridization between Fasciola hepatica and Fasciola gigantica occurred in China. Parasitology, 144(2), 206–213.

    Article  CAS  PubMed  Google Scholar 

  • Inglis, W. G. (1971). Speciation in parasitic nematodes. Advances in Parasitology, 9, 185–223.

    Article  CAS  PubMed  Google Scholar 

  • Itagaki, T., Ichinomiya, M., Fukuda, K., Fusyuku, S., & Carmona, C. (2011). Hybridization experiments indicate incomplete reproductive isolating mechanism between Fasciola hepatica and Fasciola gigantica. Parasitology, 138(10), 1278–1284.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, H.-K., Kim, K.-H., & Eom, K. S. (2011). Molecular identification of Taenia specimens after long-term preservation in formalin. Parasitology International, 60(2), 203–205.

    Article  CAS  PubMed  Google Scholar 

  • Jiggins, C. D. (2006). Sympatric speciation: Why the controversy? Current Biology, 16(9), R333–R334.

    Article  CAS  PubMed  Google Scholar 

  • Kagawa, K., & Takimoto, G. (2018). Hybridization can promote adaptive radiation by means of transgressive segregation. Ecology Letters, 21(2), 264–274.

    Article  PubMed  Google Scholar 

  • King, K. C., Stelkens, R. B., Webster, J. P., Smith, D. F., & Brockhurst, M. A. (2015). Hybridization in parasites: Consequences for adaptive evolution, pathogenesis, and public health in a changing world. PLoS Pathogens, 11(9), e1005098. https://doi.org/10.1371/journal.ppat.1005098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiontke, K., Barrière, A., Kolotuev, I., Podbilewicz, B., Sommer, R., Fitch, D. H., & Félix, M.-A. (2007). Trends, stasis, and drift in the evolution of nematode vulva development. Current Biology, 17(22), 1925–1937.

    Article  CAS  PubMed  Google Scholar 

  • Klassen, G. J. (1992). Coevolution: A history of the macroevolutionary approach to studying host-parasite associations. The Journal of Parasitology, 78, 573–587.

    Article  CAS  PubMed  Google Scholar 

  • Knowlton, N. (1993). Sibling species in the sea. Annual Review of Ecology and Systematics, 24(1), 189–216.

    Article  Google Scholar 

  • Kondrashov, A. S., & Shpak, M. (1998). On the origin of species by means of assortative mating. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1412), 2273–2278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korshunova, T., Picton, B., Furfaro, G., Mariottini, P., Pontes, M., Prkić, J., Fletcher, K., Malmberg, K., Lundin, K., & Martynov, A. (2019). Multilevel fine-scale diversity challenges the ‘cryptic species’ concept. Scientific Reports, 9(1), 1–23.

    Article  CAS  Google Scholar 

  • Koukounari, A., Donnelly, C. A., Sacko, M., Keita, A. D., Landouré, A., Dembelé, R., Bosqué-Oliva, E., Gabrielli, A. F., Gouvras, A., Traoré, M., Fenwick, A., & Webster, J. P. (2010). The impact of single versus mixed schistosome species infections on liver, spleen and bladder morbidity within Malian children pre- and post-praziquantel treatment. BMC Infectious Diseases, 10, 227. https://doi.org/10.1186/1471-2334-10-227

    Article  PubMed  PubMed Central  Google Scholar 

  • Le, T. H., De, N. V., Agatsuma, T., Thi Nguyen, T. G., Nguyen, Q. D., McManus, D. P., & Blair, D. (2008). Human fascioliasis and the presence of hybrid/introgressed forms of Fasciola hepatica and Fasciola gigantica in Vietnam. International Journal for Parasitology, 38(6), 725–730. https://doi.org/10.1016/j.ijpara.2007.10.003

    Article  PubMed  Google Scholar 

  • Locke, S. A., Daniel McLaughlin, J., & Marcogliese, D. J. (2010). DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada. Molecular Ecology, 19(13), 2813–2827. https://doi.org/10.1111/j.1365-294X.2010.04713.x

    Article  CAS  PubMed  Google Scholar 

  • Louro, M., Kuzmina, T. A., Bredtmann, C. M., Diekmann, I., de Carvalho, L. M. M., von Samson-Himmelstjerna, G., & Krucken, J. (2021). Genetic variability, cryptic species and phylogenetic relationship of six cyathostomin species based on mitochondrial and nuclear sequences. Scientific Reports, 11(1), 8245. https://doi.org/10.1038/s41598-021-87500-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manuel, M., Ramanujam, K., & Ajjampur, S. S. R. (2021). Molecular tools for diagnosis and surveillance of soil-transmitted helminths in endemic areas. Parasitologia, 1(3), 105–118. https://doi.org/10.3390/parasitologia1030012

    Article  Google Scholar 

  • Marques, J., Santos, M., Gibson, D., Cabral, H., & Olson, P. (2007). Cryptic species of Didymobothrium rudolphii (Cestoda: Spathebothriidea) from the sand sole, Solea lascaris, off the Portuguese coast, with an analysis of their molecules, morphology, ultrastructure and phylogeny. Parasitology, 134(7), 1057–1072.

    Article  CAS  PubMed  Google Scholar 

  • Mary, E. (1942). Systematics and the origin of species. Columbia University Press.

    Google Scholar 

  • Mattiucci, S., Cipriani, P., Webb, S. C., Paoletti, M., Marcer, F., Bellisario, B., Gibson, D. I., & Nascetti, G. (2014). Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for a. simplex sp. C (Nematoda: Anisakidae). The Journal of Parasitology, 100(2), 199–214.

    Article  CAS  PubMed  Google Scholar 

  • Mayden, R. L. (1997). A hierarchy of species concepts: The denouement in the saga of the species problem. Chapman & Hall.

    Google Scholar 

  • Mayden, R. L. (1999). Consilience and a hierarchy of species concepts: Advances toward closure on the species puzzle. Journal of Nematology, 31(2), 95–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayden, R. L., & Wood, R. M. (1995). Systematics, species concepts, and the evolutionarily significant unit in biodiversity and conservation biology (Vol. 17). American Fisheries Society.

    Google Scholar 

  • Mayr, E. (1982). The growth of biological thought: Diversity, evolution, and inheritance. Harvard University Press.

    Google Scholar 

  • Mayr, E. (2015). Principles of systematic zoology. Scientific Publishers.

    Google Scholar 

  • McLennan, D. A., & Brooks, D. R. (1991). Parasites and sexual selection: A macroevolutionary perspective. The Quarterly Review of Biology, 66(3), 255–286.

    Article  CAS  PubMed  Google Scholar 

  • McLennan, D. A., & Brooks, D. R. (2002). Complex histories of speciation and dispersal in communities: A re-analysis of some Australian bird data using BPA. Journal of Biogeography, 29(8), 1055–1066.

    Article  Google Scholar 

  • Mendlova, M., Desdevises, Y., Civáňová, K., Pariselle, A., & Å imková, A. (2012). Monogeneans of west African cichlid fish: Evolution and cophylogenetic interactions. PLoS One, 7(5), e37268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, A. (1999). Homology and homoplasy: The retention of genetic programmes. In Homology (pp. 141–157).

    Google Scholar 

  • Mishler, B. D., & Brandon, R. N. (1987). Individuality, pluralism, and the phylogenetic species concept. Biology and Philosophy, 2(4), 397–414.

    Article  Google Scholar 

  • Morand, S. (2015). (Macro-) evolutionary ecology of parasite diversity: From determinants of parasite species richness to host diversification. International Journal for Parasitology: Parasites and Wildlife, 4(1), 80–87.

    PubMed  PubMed Central  Google Scholar 

  • Morand, S., VeteÅ¡níková Å imková, A., & Gourbiere, S. (2008). Beyond the paradigms of cospeciation and host-switch: Is sympatric speciation an important mode of speciation for parasites? (pp. 125–132).

    Google Scholar 

  • Nakao, M., Lavikainen, A., Yanagida, T., & Ito, A. (2013). Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae). International Journal for Parasitology, 43(12–13), 1017–1029.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, S., Amer, S., Ichikawa, M., Itagaki, T., Fukuda, Y., & Nakai, Y. (2012). Molecular identification of Fasciola spp.(Digenea: Platyhelminthes) in cattle from Vietnam. Parasite: Journal de la Société Française de Parasitologie, 19(1), 85.

    Article  CAS  Google Scholar 

  • Norton, A., Webster, J., Kane, R., & Rollinson, D. (2008). Inter-specific parasite competition: Mixed infections of Schistosoma mansoni and S. rodhaini in the definitive host. Parasitology, 135(4), 473–484.

    Article  CAS  PubMed  Google Scholar 

  • Nowak, M., & May, R. (1994). Superinfection and the evolution of parasite virulence. Proceedings of the Royal Society of London. Series B: Biological Sciences, 255(1342), 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Oey, H., Zakrzewski, M., Gravermann, K., Young, N. D., Korhonen, P. K., Gobert, G. N., Nawaratna, S., Hasan, S., Martínez, D. M., & You, H. (2019). Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridization with S. haematobium. PLoS Pathogens, 15(1), e1007513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O'Neill, R. V., Deangelis, D. L., Waide, J. B., Allen, T. F., & Allen, G. E. (1986). A hierarchical concept of ecosystems. Princeton University Press.

    Google Scholar 

  • Page, R. D. (2003). Tangled trees: Phylogeny, cospeciation, and coevolution. University of Chicago Press.

    Google Scholar 

  • Panchen, A. L. (1992). Classification, evolution, and the nature of biology. Cambridge University Press.

    Book  Google Scholar 

  • Papini, M. R. (2002). Pattern and process in the evolution of learning. Psychological Review, 109(1), 186–201. https://doi.org/10.1037/0033-295x.109.1.186

    Article  PubMed  Google Scholar 

  • Perkins, S. L., Martinsen, E. S., & Falk, B. G. (2011). Do molecules matter more than morphology? Promises and pitfalls in parasites. Parasitology, 138(13), 1664–1674. https://doi.org/10.1017/S0031182011000679

    Article  CAS  PubMed  Google Scholar 

  • Pfenninger, M., & Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology, 7(1), 1–6.

    Article  Google Scholar 

  • Poulin, R. (1999). The functional importance of parasites in animal communities: Many roles at many levels? International Journal for Parasitology, 29(6), 903–914.

    Article  CAS  PubMed  Google Scholar 

  • Poulin, R. (2011). Uneven distribution of cryptic diversity among higher taxa of parasitic worms. Biology Letters, 7(2), 241–244. https://doi.org/10.1098/rsbl.2010.0640

    Article  PubMed  Google Scholar 

  • Racimo, F., Sankararaman, S., Nielsen, R., & Huerta-Sánchez, E. (2015). Evidence for archaic adaptive introgression in humans. Nature Reviews. Genetics, 16(6), 359–371. https://doi.org/10.1038/nrg3936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razo-Mendivil, U., Rosas-Valdez, R., Rubio-Godoy, M., & De León, G. P.-P. (2015). The use of mitochondrial and nuclear sequences in prospecting for cryptic species in Tabascotrema verai (Digenea: Cryptogonimidae), a parasite of Petenia splendida (Cichlidae) in middle America. Parasitology International, 64(2), 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Read, C., & Rothman, A. (1957). The role of carbohydrates in the biology of cestodes. I: The effect of dietary carbohydrate quality on the size of Hymenolepis diminuta. Experimental Parasitology, 6(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Regan, C. T. (1925). Organic evolution. Nature, 116(2915), 398–401.

    Article  Google Scholar 

  • Reidenbach, K. R., Neafsey, D. E., Costantini, C., Sagnon, N. F., Simard, F., Ragland, G. J., Egan, S. P., Feder, J. L., Muskavitch, M. A. T., & Besansky, N. J. (2012). Patterns of genomic differentiation between ecologically differentiated M and S forms of Anopheles gambiae in west and Central Africa. Genome Biology and Evolution, 4(12), 1202–1212. https://doi.org/10.1093/gbe/evs095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roca-Geronès, X., Alcover, M. M., Godínez-González, C., Montoliu, I., & Fisa, R. (2021). Hybrid genotype of Anisakis simplex (s.s.) and A. pegreffii identified in third- and fourth-stage larvae from sympatric and allopatric Spanish marine waters. Animals, 11(8), 2458. Retrieved from https://www.mdpi.com/2076-2615/11/8/2458

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosen, D. E. (1978). Vicariant patterns and historical explanation in biogeography. Systematic Zoology, 27(2), 159–188.

    Article  Google Scholar 

  • Rosen, D. E. (1979). Fishes from the uplands and intermontane basins of Guatemala: Revisionary studies and comparative geography. Bulletin of the AMNH, 162, 5.

    Google Scholar 

  • Sanad, M. M., & Al-Megrin, W. A. (2005). Fascioliasis among local and imported sheep in Saudi Arabia: parasitological and serological diagnosis. Journal of the Egyptian Society of Parasitology, 35(3 Suppl), 1121–1134.

    PubMed  Google Scholar 

  • Sánchez, C. A., Becker, D. J., Teitelbaum, C. S., Barriga, P., Brown, L. M., Majewska, A. A., Hall, R. J., & Altizer, S. (2018). On the relationship between body condition and parasite infection in wildlife: A review and meta-analysis. Ecology Letters, 21(12), 1869–1884.

    Article  PubMed  Google Scholar 

  • Schad, G. (1963). Niche diversification in a parasitic species flock. Nature, 198(4878), 404–406.

    Article  Google Scholar 

  • Schaum, C. E., & Collins, S. (2014). Plasticity predicts evolution in a marine alga. Proceedings of the Royal Society B: Biological Sciences, 281(1793), 20141486.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider, R. F., & Meyer, A. (2017). How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Molecular Ecology, 26(1), 330–350. https://doi.org/10.1111/mec.13880

    Article  PubMed  Google Scholar 

  • Schneider, R., Gollackner, B., Edel, B., Schmid, K., Wrba, F., Tucek, G., Walochnik, J., & Auer, H. (2008). Development of a new PCR protocol for the detection of species and genotypes (strains) of Echinococcus in formalin-fixed, paraffin-embedded tissues. International Journal for Parasitology, 38(8–9), 1065–1071. https://doi.org/10.1016/j.ijpara.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  • Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19(4), 198–207.

    Article  Google Scholar 

  • Simpson, G. G. (1951). The species concept. Evolution, 5(4), 285–298.

    Article  Google Scholar 

  • Simpson, G. G. (1961). Principles of animal taxonomy. Columbia University Press.

    Book  Google Scholar 

  • Sites, J., Jr., & Marshall, J. (2003). Delimiting species: A renaissance issue in systematic biology. Trends in Ecology & Evolution, 18(9), 462–470.

    Article  Google Scholar 

  • Sites, J. W., Jr., & Marshall, J. C. (2004). Operational criteria for delimiting species. Annual Review of Ecology, Evolution, and Systematics, 35, 199–227.

    Article  Google Scholar 

  • Sithithaworn, P., Petney, T. N., & Andrews, R. H. (2015). What significance do helminths species-complexes have for the prevention, diagnosis and treatment of human infections? Oxford University Press.

    Book  Google Scholar 

  • Sommer, R. J. (2020). Phenotypic plasticity: From theory and genetics to current and future challenges. Genetics, 215(1), 1–13. https://doi.org/10.1534/genetics.120.303163

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommer, R. J., Dardiry, M., Lenuzzi, M., Namdeo, S., Renahan, T., Sieriebriennikov, B., & Werner, M. S. (2017). The genetics of phenotypic plasticity in nematode feeding structures. Open Biology, 7(3), 160332. https://doi.org/10.1098/rsob.160332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinauer, M. L., Nickol, B. B., & Orti, G. (2007). Cryptic speciation and patterns of phenotypic variation of a highly variable acanthocephalan parasite. Molecular Ecology, 16(19), 4097–4109. https://doi.org/10.1111/j.1365-294X.2007.03462.x

    Article  CAS  PubMed  Google Scholar 

  • Steinauer, M. L., Hanelt, B., Mwangi, I. N., Maina, G. M., Agola, L. E., Kinuthia, J. M., Mutuku, M. W., Mungai, B. N., Wilson, W. D., Mkoji, G. M., & Loker, E. S. (2008). Introgressive hybridization of human and rodent schistosome parasites in western Kenya. Molecular Ecology, 17(23), 5062–5074. https://doi.org/10.1111/j.1365-294X.2008.03957.x

    Article  CAS  PubMed  Google Scholar 

  • Struck, T. H., Feder, J. L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V. I., Kistenich, S., Larsson, K.-H., Liow, L. H., Nowak, M. D., Stedje, B., Bachmann, L., & Dimitrov, D. (2018). Finding evolutionary processes hidden in cryptic species. Trends in Ecology & Evolution, 33(3), 153–163. https://doi.org/10.1016/j.tree.2017.11.007

    Article  Google Scholar 

  • Sumruayphol, S., Siribat, P., Dujardin, J. P., Dujardin, S., Komalamisra, C., & Thaenkham, U. (2020). Fasciola gigantica, F. hepatica and Fasciola intermediate forms: Geometric morphometrics and an artificial neural network to help morphological identification. PeerJ, 8, e8597. https://doi.org/10.7717/peerj.8597

    Article  PubMed  PubMed Central  Google Scholar 

  • Templeton, A. R. (1989). The meaning of species and speciation: A genetic perspective. In The units of evolution: Essays on the nature of species, 1992 (pp. 159–183).

    Google Scholar 

  • Thaenkham, U., Dekumyoy, P., Komalamisra, C., Sato, M., & Waikagul, J. (2010). Systematics of the subfamily Haplorchiinae (Trematoda: Heterphyidae), based on nuclear ribosomal DNA genes and ITS2 region. Parasitology International, 59(3), 460–465.

    Article  CAS  PubMed  Google Scholar 

  • Van Herwerden, L., Blair, D., & Agatsuma, T. (1998). Intra-and inter-specific variation in nuclear ribosomal internal transcribed spacer 1 of the Schistosoma japonicum species complex. Parasitology, 116(4), 311–317.

    Article  PubMed  Google Scholar 

  • Van Valen, L. (1976). Ecological species, multispecies, and oaks. Taxon, 25, 233–239.

    Article  Google Scholar 

  • Vilas, R., Criscione, C., & Blouin, M. (2005). A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology, 131(6), 839–846.

    Article  CAS  PubMed  Google Scholar 

  • Viney, M., & Diaz, A. (2012). Phenotypic plasticity in nematodes: Evolutionary and ecological significance. Worm, 1, 98–106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Webster, J. P., Gower, C. M., & Norton, A. J. (2008). Evolutionary concepts in predicting and evaluating the impact of mass chemotherapy schistosomiasis control programmes on parasites and their hosts. Evolutionary Applications, 1(1), 66–83. https://doi.org/10.1111/j.1752-4571.2007.00012.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Webster, B. L., Diaw, O. T., Seye, M. M., Webster, J. P., & Rollinson, D. (2013). Introgressive hybridization of Schistosoma haematobium group species in Senegal: Species barrier break down between ruminant and human schistosomes. PLoS Neglected Tropical Diseases, 7(4), e2110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weckstein, J. D. (2004). Biogeography explains cophylogenetic patterns in toucan chewing lice. Systematic Biology, 53(1), 154–164.

    Article  PubMed  Google Scholar 

  • Whitman, D. W., & Agrawal, A. A. (2009). What is phenotypic plasticity and why is it important. In Phenotypic plasticity of insects: Mechanisms and consequences (pp. 1–63).

    Google Scholar 

  • Whitton, J., Wolf, D., Arias, D., Snow, A., & Rieseberg, L. (1997). The persistence of cultivar alleles in wild populations of sunflowers five generations after hybridization. Theoretical and Applied Genetics, 95(1–2), 33–40.

    Article  Google Scholar 

  • Wiens, J. J. (2007). Species delimitation: New approaches for discovering diversity. Systematic Biology, 56(6), 875–878.

    Article  PubMed  Google Scholar 

  • Wiens, J. J., & Servedio, M. R. (2000). Species delimitation in systematics: Inferring diagnostic differences between species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1444), 631–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley, E. O. (1978). The evolutionary species concept reconsidered. Systematic Zoology, 27(1), 17–26.

    Article  Google Scholar 

  • Wiley, E. (1981). Phylogenetic systematics. Wiley.

    Google Scholar 

  • Wiley, E. O., & Lieberman, B. S. (2011). Phylogenetics: Theory and practice of phylogenetic systematics. Wiley.

    Book  Google Scholar 

  • Wiley, E. O., & Mayden, R. L. (2000). A defense of the evolutionary species concept. In Species concepts and phylogenetic theory. A debate (pp. 198–208). Columbia University Press.

    Google Scholar 

  • Wood, B. (1999). Homoplasy: Foe and friend? Wiley Online Library.

    Google Scholar 

  • Xiao, N., Qiu, J., Nakao, M., Li, T., Yang, W., Chen, X., Schantz, P. M., Craig, P. S., & Ito, A. (2006). Echinococcus shiquicus, a new species from the Qinghai–Tibet plateau region of China: Discovery and epidemiological implications. Parasitology International, 55, S233–S236.

    Article  PubMed  Google Scholar 

  • Yoshida, A., Doanh, P. N., & Maruyama, H. (2019). Paragonimus and paragonimiasis in Asia: An update. Acta Tropica, 199, 105074. https://doi.org/10.1016/j.actatropica.2019.105074

    Article  PubMed  Google Scholar 

  • Zhu, X., D'amelio, S., Palm, H., Paggi, L., George-Nascimento, M., & Gasser, R. (2002). SSCP-based identification of members within the Pseudoterranova decipiens complex (Nematoda: Ascaridoidea: Anisakidae) using genetic markers in the internal transcribed spacers of ribosomal DNA. Parasitology, 124(6), 615–623.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thaenkham, U., Chaisiri, K., Hui En Chan, A. (2022). Challenges of Species Identification for Parasitic Helminths. In: Molecular Systematics of Parasitic Helminths . Springer, Singapore. https://doi.org/10.1007/978-981-19-1786-8_5

Download citation

Publish with us

Policies and ethics