Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 276))

Abstract

Graphene oxide (GO) is a commonly used energetic additive in explosive and propellants systems. In order to study the effect of GO on the performance of TKX-50/AP blends, TKX-50/GO, AP/GO, TKX-50/AP/GO composites were prepared by solvent method. Then the structure was characterized by scanning electron microscope (SEM), fourier infrared technology (FT-IR), powder X-ray (XRD). Differential scanning calorimetry (DSC) was used to compare and study the thermal performance changes of TKX-50, AP and the two after being loaded by GO. Finally, the mechanical sensitivity of them was tested by the national military standard method. The results show that GO can be better loaded on the surface of TKX-50 and AP, and there is no chemical change during the loading process, only the combination of physical adsorption force. DSC shows that in the two-component system, GO can reduce the thermal decomposition peak temperature of TKX-50 and AP by 8.86℃ and 40.16℃; but in the TKX-50/AP/GO three-component system, GO only significantly reduces the thermal decomposition peak temperature of TKX-50, and hardly changes the decomposition temperature of AP. In addition, after loading GO, the impact and friction sensitivity of TKX-50 and AP have been significantly reduced, and the safety has been improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Qi, X. Zhang, J. Li, et al., Influence of carbon black particle size on combustion characteristics of CMDB propellant. Chem. Propell. Polym. Mater. 10(6), 51–53 (2012)

    Google Scholar 

  2. S. Li, D. He, W. Shan, et al., A study on comprehensive characteristic of RDX-CMDB propellants containing fullerene. J. Propul. Technol. 18(6), 79–83 (1997)

    Google Scholar 

  3. X. Yu, The effect of carbon nanotubes on the thermal decomposition of CL-20. Chin. J. Explos. Propell. 27(3), 78–80 (2004)

    Google Scholar 

  4. X. Wang, J. Li, Y. Luo, Preparation and thermal decomposition behavior of ammonium perchlorate/graphene aerogel nanocomposites. Chin. J. Explos. Propell. 35(6), 76–80 (2012)

    Google Scholar 

  5. F. Kim, L.J. Cote, J. Huang Graphene oxide: surface activity and two-dimensional assembly. Adv. Mater. 22(17), 1954–1958 (2010)

    Google Scholar 

  6. V.C. Tung, J.H. Huang, I. Tevis et al., Surfactant-free water-processable photoconductive all-carbon composite. J. Am. Chem. Soc. 133(13), 4940–4947 (2015)

    Article  Google Scholar 

  7. J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J. Huang, Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132(23), 8180–8186 (2010)

    Google Scholar 

  8. D. Krishnan, F. Kim, J. Luo et al., Energetic graphene oxide: Challenges and opportunities. Nano Today 7(2), 137–152 (2012)

    Article  CAS  Google Scholar 

  9. N.K. Memon, A.W. Mcbain, S.F. Son, Graphene oxide/ammonium perchlorate composite material for use in solid propellants. J. Propul. Power 32(3), 1–5 (2016)

    Article  Google Scholar 

  10. Y. Li, W.Y. Zhao, Z.H. Mi et al., Graphene-modified explosive lead styphnate composites. J. Therm. Anal. Calorim. 124(2), 683–691 (2016)

    Article  CAS  Google Scholar 

  11. Y.M. Shi, L.J. Li, Chemically modified graphene: flame retardant or fuel for combustion? J. Mater. Chem. 21(10), 3277–3279 (2011)

    Article  CAS  Google Scholar 

  12. J. Yu, J. Wang, Y. Liu, et al., Preparation and thermal properties of CL-20/GO nano-composite energetic materials. Sci. Technol. Eng. 17(12), 93–96 (2017)

    Google Scholar 

  13. X. Zhang, W.M. Hikal, Y. Zhang et al., Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites. Appl. Phys. Lett. 102(14), 5428 (2013)

    Google Scholar 

  14. R. Li, J. Wang, J.P. Shen et al., Preparation and characterization of insensitive HMX/graphene oxide composites. Propell. Explos. Pyrotech. 38(6), 798–804 (2013)

    Article  CAS  Google Scholar 

  15. L. Peng, Y. Li, Y. Yang, et al., Research progress in synthesis of energetic compounds of bicyclo- and multicyclo-tetrazoles. Chin. J. Org. Chem. 32(4), 667–676 (2012)

    Google Scholar 

  16. N. Fischer, D. Fischer, T.M. Klaptke et al., Pushing the limits of energetic materials: the synthesis and characterization of dihydroxylammonium-5,5’-bistetrazole-1,1’-diolate. J. Mater. Chem. 22(38), 20418–20422 (2012)

    Article  CAS  Google Scholar 

  17. X. Huang, T. Guo, M. Liu, et al., Review on bis-azoles and its energetic ion derivatives. Chin. J. Energ. Mater. 23(3), 291–301 (2015)

    Google Scholar 

  18. F. Bi, X. Fan, C. Xu, et al., Review on insensitive non-metallic energetic ionic compounds of tetrazolate anions. Chin. J. Energ. Mater. (Hanneng Cailiao) 20(6), 805–811 (2012)

    Google Scholar 

  19. V.P. Sinditskii, S.A. Filatov, V.I. Kolesov et al., Combustion behavior and physico-chemical properties of dihydroxylammonium-5,5′-bistetrazole-1,1′-diolate (TKX-50). Thermochim. Acta 614, 85–92 (2015)

    Article  CAS  Google Scholar 

  20. X. Xing, S. Zhao, W. Zhang, et al., The detonation properties research on TKX-50 in high explosives. Propell. Explos. Pyrotech. 44(4), 408–412 (2019)

    Google Scholar 

  21. J. Liu, G. Fan, X. Lu, et al., Detonation and Safety Performance of TKX‑50 Based PBX. Chin. J. Energet. Mater. 27(11), 902–907 (2019)

    Google Scholar 

  22. F. Zhao, P. Chen, S. Li, et al., Effect of ballistic modifiers on thermal decomposition characteristics of RDX/AP/HTPB propellant. Thermochimica Acta 416(1), 75–78 (2004)

    Google Scholar 

  23. F. Nie, J. Zhang, Q. Guo, et al., Sol–gel synthesis of nanocomposite crystalline HMX/AP coated by resorcinol–formaldehyde. J. Phys. Chemist. Solids 71(2), 109–113 (2010)

    Google Scholar 

  24. H. Zhai, Y. Zhu, Y. Lu, et al., Preparation and characteristics of CL-20/AP composite energetic materials with zero oxygen balance. Chin. J. Explos. Propell. 41(1), 41–46 (2018)

    Google Scholar 

  25. Y. Lan, J. Deng, Y. Luo, Preparation and characterization of graphene aerogel/Fe2O3/ammonium perchlorate nanostructured energetic composite. J. Sol-Gel Sci. Technol. 74(1), 161–167 (2015)

    Google Scholar 

  26. Y. Zu, Y. Zhao, K. Xu et al., Preparation and comparison of catalytic performance for nano MgFe2O4, GO-loaded MgFe2O4, and GO-coated MgFe2O4, nanocomposites. Ceram. Int. 42, 18844–18850 (2016)

    Article  CAS  Google Scholar 

  27. X. Lan, Study on Graphene Based Composites and Their Catalytic Properties (Nanjing University of Science & Technology, Nanjing, 2013)

    Google Scholar 

  28. L.W. Finger, R.M. Hazen, Crystal structure and compression of ruby to 46 kbar. J. Appl. Phys. 49(12), 5823–5826 (1978)

    Article  CAS  Google Scholar 

  29. H.K. Jeong, P.L. Yun, H.J. Mei et al., Thermal stability of graphite oxide. Chem. Phys. Lett. 470(4–6), 255–258 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 China Ordnance Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Jiang, F., Wang, X., Feng, X. (2022). Preparation, Structure and Performance of TKX-50/AP/GO Composite. In: Gany, A., Fu, X. (eds) 2021 International Conference on Development and Application of Carbon Nanomaterials in Energetic Materials. ICCN 2021. Springer Proceedings in Physics, vol 276. Springer, Singapore. https://doi.org/10.1007/978-981-19-1774-5_9

Download citation

Publish with us

Policies and ethics