Skip to main content

Numerical Simulations of Secular Instabilities

  • Chapter
  • First Online:
Dust-Gas Instabilities in Protoplanetary Disks

Part of the book series: Springer Theses ((Springer Theses))

  • 99 Accesses

Abstract

The work presented in this chapter investigates nonlinear evolution of secular GI. Understanding nonlinear evolution of secular GI is important to understand subsequent planetesimal formation. Because of the slow growth of the instability, one has to use numerical methods that are less diffusive and avoid numerical errors as much as possible. Motivated by this, we first formulate Lagrange-cell method for long-term hydrodynamic simulations. Our method utilizes symplectic integrator, which avoids diffusive errors. Numerical simulations with the formulated methods show that nonlinear evolution is understood as self-gravitational collapse of a dust ring. We also conducted simulations considering radially extended disks. The results show that secular GI creates multiple dust rings that move inward at the so-called drift velocity. Since dust grains become larger via nonlinear secular GI, the resulting multiple rings will be observed a single dark gap. Secular GI creates insignificant substructures in a gas disk, with which we can distinguish secular GI from other ring formation mechanisms that create substructures in both gas and dust disks. Most of the contents in this chapter are based on our papers published in the journals: Tominaga et al. [31, 33].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The finite thickness of the disk indeed weakens the self-gravity for short-wavelength modes [25, 35]. To some extent, the softening term is then expected to mimic this weakning. Thus, the following estimation without the softening might be regarded as a reasonable upper limit.

  2. 2.

    The \(\Sigma _{\mathrm {g},0}\)-dependence of \(t_{\mathrm {stop}}\) does not change the mode properties much.

References

  1. Alexiades V, Amiez G, Gremaud PA (1996) CNME 12(1):31

    Google Scholar 

  2. Andrews SM, Rosenfeld KA, Kraus AL, Wilner DJ (2013) ApJ 771(2):129. https://doi.org/10.1088/0004-637X/771/2/129

  3. Andrews SM, Terrell M, Tripathi A, Ansdell M, Williams JP, Wilner DJ (2018) ApJ 865(2):157. https://doi.org/10.3847/1538-4357/aadd9f

  4. Andrews SM, Wilner DJ, Hughes AM, Qi C, Dullemond CP (2009) ApJ 700(2):1502–1523. https://doi.org/10.1088/0004-637X/700/2/1502

  5. Ansdell M, Williams JP, van der Marel N, Carpenter JM, Guidi G, Hogerheijde M, Mathews GS, Manara CF, Miotello A, Natta A, Oliveira I, Tazzari M, Testi L, van Dishoeck EF, van Terwisga SE (2016) ApJ 828(1):46. https://doi.org/10.3847/0004-637X/828/1/46

  6. Birnstiel T, Dullemond CP, Brauer F (2009) A&A 503(1):L5–L8. https://doi.org/10.1051/0004-6361/200912452

  7. Birnstiel T, Klahr H, Ercolano B (2012) A&A 539:A148. https://doi.org/10.1051/0004-6361/201118136

  8. Dullemond CP, Birnstiel T, Huang J, Kurtovic NT, Andrews SM, Guzmán VV, Pérez LM, Isella A, Zhu Z, Benisty M, Wilner DJ, Bai XN, Carpenter JM, Zhang S, Ricci L (2018) ApJL 869:L46. https://doi.org/10.3847/2041-8213/aaf742

  9. Gonzalez JF, Laibe G, Maddison ST, Pinte C, Ménard F (2015) MNRAS 454(1):L36–L40. https://doi.org/10.1093/mnrasl/slv120

  10. Hastings C, Hayward JT, Wong JP (1955) Approximations for digital computers

    Google Scholar 

  11. Huang J, Andrews SM, Dullemond CP, Isella A, Pérez LM, Guzmán VV, Öberg KI, Zhu Z, Zhang S, Bai XN, Benisty M, Birnstiel T, Carpenter JM, Hughes AM, Ricci L, Weaver E, Wilner DJ (2018) ApJl 869:L42. https://doi.org/10.3847/2041-8213/aaf740

  12. Inoue T, Inutsuka SI (2008) ApJ 687(1):303–310. https://doi.org/10.1086/590528

  13. Isella A, Carpenter JM, Sargent AI (2009) ApJ 701(1):260–282. https://doi.org/10.1088/0004-637X/701/1/260

  14. Kanagawa KD, Muto T, Tanaka H, Tanigawa T, Takeuchi T, Tsukagoshi T, Momose M (2015) ApJL 806(1):L15. https://doi.org/10.1088/2041-8205/806/1/L15

  15. Kitamura Y, Momose M, Yokogawa S, Kawabe R, Tamura M, Ida S (2002) ApJ 581(1):357–380. https://doi.org/10.1086/344223

  16. Latter HN, Rosca R (2017) MNRAS 464:1923–1935. https://doi.org/10.1093/mnras/stw2455

  17. Long F, Herczeg GJ, Harsono D, Pinilla P, Tazzari M, Manara CF, Pascucci I, Cabrit S, Nisini B, Johnstone D, Edwards S, Salyk C, Menard F, Lodato G, Boehler Y, Mace GN, Liu Y, Mulders GD, Hendler N, Ragusa E, Fischer WJ, Banzatti A, Rigliaco E, van de Plas G, Dipierro G, Gully-Santiago M, Lopez-Valdivia R (2019) ApJ 882(1):49. https://doi.org/10.3847/1538-4357/ab2d2d

  18. Machida MN, Matsumoto T, Hanawa T, Tomisaka K (2006) ApJ 645:1227–1245. https://doi.org/10.1086/504423

  19. Nakagawa Y, Sekiya M, Hayashi C (1986) Icar 67(3):375–390. https://doi.org/10.1016/0019-1035(86)90121-1

  20. Okuzumi S, Tanaka H, Kobayashi H, Wada K (2012) ApJ 752(2):106. https://doi.org/10.1088/0004-637X/752/2/106

  21. Pérez LM, Carpenter JM, Andrews SM, Ricci L, Isella A, Linz H, Sargent AI, Wilner DJ, Henning T, Deller AT, Chandler CJ, Dullemond CP, Lazio J, Menten KM, Corder SA, Storm S, Testi L, Tazzari M, Kwon W, Calvet N, Greaves JS, Harris RJ, Mundy LG (2016) Science 353(6307):1519–1521. https://doi.org/10.1126/science.aaf8296

  22. Pierens A (2021) MNRAS 504(3):4522–4532. https://doi.org/10.1093/mnras/stab183

  23. Ricci L, Testi L, Natta A, Brooks KJ (2010) A&A 521:A66. https://doi.org/10.1051/0004-6361/201015039

  24. Schreiber A, Klahr H (2018) ApJ 861:47. https://doi.org/10.3847/1538-4357/aac3d4

  25. Shu FH (1984) In: Greenberg R, Brahic A (eds) IAU Colloq. 75: Planetary Rings, pp 513–561 (1984)

    Google Scholar 

  26. Stammler SM, Dra̧żkowska J, Birnstiel T, Klahr H, Dullemond CP, Andrews SM (2019) ApJL 884(1):L5. https://doi.org/10.3847/2041-8213/ab4423

  27. Takahashi SZ, Inutsuka SI (2014) ApJ 794:55. https://doi.org/10.1088/0004-637X/794/1/55

  28. Takahashi SZ, Inutsuka SI (2016) AJ 152:184. https://doi.org/10.3847/0004-6256/152/6/184

  29. Takeuchi T, Muto T, Okuzumi S, Ishitsu N, Ida S (2012) ApJ 744(2):101. https://doi.org/10.1088/0004-637X/744/2/101

  30. Tazzari M, Clarke CJ, Testi L, Williams JP, Facchini S, Manara CF, Natta A, Rosotti G (2021) MNRAS 506(2):2804–2823. https://doi.org/10.1093/mnras/stab1808

  31. Tominaga RT, Inutsuka SI, Takahashi SZ (2018) PASJ 70:3. https://doi.org/10.1093/pasj/psx143

  32. Tominaga RT, Takahashi SZ, Inutsuka SI (2019) ApJ 881(1):53. https://doi.org/10.3847/1538-4357/ab25ea

  33. Tominaga RT, Takahashi SZ, Inutsuka SI (2020) ApJ 900(2):182. https://doi.org/10.3847/1538-4357/abad36

  34. Tripathi A, Andrews SM, Birnstiel T, Wilner DJ (2017) ApJ 845(1):44. https://doi.org/10.3847/1538-4357/aa7c62

  35. Vandervoort PO (1970) ApJ 161:87. https://doi.org/10.1086/150514

  36. Ward WR (2000) On planetesimal formation: the role of collective particle behavior, pp 75–84 (2000)

    Google Scholar 

  37. Yang CC, Zhu Z (2020) MNRAS 491(4):4702–4718. https://doi.org/10.1093/mnras/stz3232

  38. Youdin AN (2005) ArXiv Astrophysics e-prints

    Google Scholar 

  39. Youdin AN (2011) ApJ 731:99. https://doi.org/10.1088/0004-637X/731/2/99

  40. Youdin AN, Goodman J (2005) ApJ 620:459–469. https://doi.org/10.1086/426895

  41. Youdin AN, Lithwick Y (2007) Icar 192:588–604. https://doi.org/10.1016/j.icarus.2007.07.012

  42. Zhang S, Zhu Z, Huang J, Guzmán VV, Andrews SM, Birnstiel T, Dullemond CP, Carpenter JM, Isella A, Pérez LM, Benisty M, Wilner DJ, Baruteau C, Bai XN, Ricci L (2018) ApJL 869(2):L47. https://doi.org/10.3847/2041-8213/aaf744

  43. Zhu Z, Zhang S, Jiang YF, Kataoka A, Birnstiel T, Dullemond CP, Andrews SM, Huang J, Pérez LM, Carpenter JM, Bai XN, Wilner DJ, Ricci L (2019) ApJL 877(2):L18. https://doi.org/10.3847/2041-8213/ab1f8c

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Tominaga .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tominaga, R. (2022). Numerical Simulations of Secular Instabilities. In: Dust-Gas Instabilities in Protoplanetary Disks. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-19-1765-3_3

Download citation

Publish with us

Policies and ethics