Skip to main content

Review: Two-Dimensional Layered Material Based Electrodes for Lithium Ion and Sodium Ion Batteries

  • Conference paper
  • First Online:
Technological Advancement in Instrumentation & Human Engineering (ICMER 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 882))

Included in the following conference series:

Abstract

Energy crisis is a worldwide problem due to the current conventional resources which are depleting and are causing great environmental concerns. Among many feasible solutions, rechargeable batteries are considered as a powerful alternative to these conventional energy resources. Lithium and sodium ion batteries are one of the best energy storage systems which provide greater cyclic stability and better charge–discharge capacity. These metal ion batteries have achieved great attention and are being used in a range of applications from small electronic devices to electric vehicles. An overall enhancement of metallic ion storage and transportation is the current concern and focus of the researchers. Many electrode materials are tried and tested in this regard which provided great deal of structural and functional improvement. Two dimensional layered materials have also gained much attraction recently in energy storage application due to their higher surface to volume ratio. There are a number of layered structures which have been developed and electrochemically tested as anode or cathode for both lithium and sodium ion batteries. Materials like graphene based structures, transition metal chalcogenides (TMDCs), MXenes, nitrides, Molybdenum Sulfide and organic frameworks showed promising results as electrode for lithium and sodium ion batteries. In this work, an effort is done to cover all these electrode materials along with their complete structural analysis and a thorough evaluation of their electrochemical activity in energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicolosi V et al (2013) Liquid exfoliation of layered materials. Science 340(6139):1226419

    Article  Google Scholar 

  2. Wu C (2017) Inorganic two-dimensional nanomaterials: fundamental understanding, characterizations and energy applications. Royal Society of Chemistry

    Google Scholar 

  3. Jacobs JA, Kilduff TF (2005) Engineering Materials Technology: Structures, Processing, Properties, and Selection. Pearson/Prentice Hall, Hoboken

    Google Scholar 

  4. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Google Scholar 

  5. Kumar P et al (2015) Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94:494–500

    Article  Google Scholar 

  6. Geng D, Cheng Y, Zhang G (2019) Layered Materials for Energy Storage and Conversion. Royal Society of Chemistry

    Google Scholar 

  7. Centi G, Perathoner S (2008) Catalysis by layered materials: a review. Microporous Mesoporous Mater 107(1–2):3–15

    Article  Google Scholar 

  8. McKinney RW et al (2018) Ionic vs. van der Waals layered materials: identification and comparison of elastic anisotropy. J Mater Chem A 6(32):15828–15838

    Google Scholar 

  9. Meng FL et al (2018) Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn–air batteries. Small 14(32):1703843

    Article  Google Scholar 

  10. Corma A et al (1998) Delaminated zeolite precursors as selective acidic catalysts. Nature 396(6709):353–356

    Article  Google Scholar 

  11. Themed issue (2009) Layered materials: structure and properties. J Mater Chem 19(17):2453–2456

    Google Scholar 

  12. Tichit D, Coq B (2003) Catalysis by hydrotalcites and related materials. CATTECH 7(6):206–217

    Article  Google Scholar 

  13. Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112(7):4124–4155

    Article  Google Scholar 

  14. Somorjai GA, Li Y (2010) Introduction to Surface Chemistry and Catalysis. John Wiley & Sons, Hoboken

    Google Scholar 

  15. Raccichini R et al (2015) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271–279

    Article  Google Scholar 

  16. Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9(4):211–223

    Article  Google Scholar 

  17. Ying W, Limin Z, Tianjun H (2015) Progress in oxygen reduction reaction electrocatalysts for metal-air batteries. Acta Chim Sin 73(4):316–325

    Article  Google Scholar 

  18. Ai W et al (2014) Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv Mater 26(35):6186–6192

    Article  Google Scholar 

  19. Wu Z-S et al (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471

    Article  Google Scholar 

  20. Fang Y et al (2013) Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J Am Chem Soc 135(4):1524–1530

    Article  Google Scholar 

  21. Gong A et al (2017) Moving and unsinkable graphene sheets immobilized enzyme for microfluidic biocatalysis. Sci Rep 7(1):1–15

    Article  Google Scholar 

  22. Lan K et al (2019) Two-dimensional mesoporous heterostructure delivering superior pseudocapacitive sodium storage via bottom-up monomicelle assembly. J Am Chem Soc 141(42):16755–16762

    Article  Google Scholar 

  23. Lotfabad EM et al (2014) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8(7):7115–7129

    Article  Google Scholar 

  24. Wang H et al (2010) Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132(40):13978–13980

    Article  Google Scholar 

  25. Xiong P et al (2014) Chemically integrated two-dimensional hybrid zinc manganate/graphene nanosheets with enhanced lithium storage capability. ACS Nano 8(8):8610–8616

    Article  Google Scholar 

  26. Chang P-Y, Bindumadhavan K, Doong R-A (2015) Size effect of ordered mesoporous carbon nanospheres for anodes in Li-ion battery. Nanomaterials 5(4):2348–2358

    Article  Google Scholar 

  27. Wang J et al (2018) Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework. Angew Chem Int Ed 57(11):2894–2898

    Article  Google Scholar 

  28. Zhang J, Yu A (2015) Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci Bull 60(9):823–838

    Article  Google Scholar 

  29. Huang X et al (2011) Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim Acta 56(14):4960–4965

    Article  Google Scholar 

  30. Han M, Chen G (2016) Optimized dispersion of conductive agents for enhanced Li-storage performance of TiO2. Appl Surf Sci 388:401–405

    Article  Google Scholar 

  31. Li W et al (2013) Sol–gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. J Am Chem Soc 135(49):18300–18303

    Article  Google Scholar 

  32. Sun Z et al (2014) Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat Commun 5(1):1–9

    Article  MathSciNet  Google Scholar 

  33. Hou C et al (2016) Bio-inspired synthesis of xLi2MnO3-(1−x) LiNi0. 33Co0. 33Mn0. 33O2 lithium-rich layered cathode materials. Mater Des 109:718–725

    Google Scholar 

  34. Sandhya C, John B, Gouri C (2014) Lithium titanate as anode material for lithium-ion cells: a review. Ionics 20(5):601–620

    Article  Google Scholar 

  35. Chen S et al (2014) Self-supported Li 4 Ti 5 O 12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ Sci 7(6):1924–1930

    Article  Google Scholar 

  36. Zhang F, Qi L (2016) Recent progress in self-supported metal oxide nanoarray electrodes for advanced lithium-ion batteries. Adv Sci 3(9):1600049

    Article  Google Scholar 

  37. Li X, Tang S, Qu M, Huang P, Li W, Yu Z (2014) A novel spherically porous Zr-doped spinel lithium titanate (Li4Ti5− xZrxO12) for high rate lithium ion batteries. J Alloy Compd 5(588):17–24

    Article  Google Scholar 

  38. Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11(11):4826–4830

    Article  Google Scholar 

  39. Chen Y et al (2014) Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10(8):1536–1543

    Article  Google Scholar 

  40. Chen D et al (2013) In situ nitrogenated graphene–few-layer WS 2 composites for fast and reversible Li+ storage. Nanoscale 5(17):7890–7896

    Article  Google Scholar 

  41. Rojas D, Della Pelle F, Del Carlo M, Compagnone D, Escarpa A (2020) Group VI transition metal dichalcogenides as antifouling transducers for electrochemical oxidation of catechol-containing structures. Electrochem Commun 115:106718

    Google Scholar 

  42. Naguib M et al (2011) ACS nano. Adv Mater 23:4248

    Google Scholar 

  43. Naguib M et al (2013) New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 135(43):15966–15969

    Article  Google Scholar 

  44. Anasori B et al (2015) Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10):9507–9516

    Article  Google Scholar 

  45. Liu R, Li W (2018) High-thermal-stability and high-thermal-conductivity Ti3C2T x MXene/poly (vinyl alcohol)(PVA) composites. ACS Omega 3(3):2609–2617

    Article  Google Scholar 

  46. Hu C et al (2015) Branched graphene nanocapsules for anode material of lithium-ion batteries. Chem Mater 27(15):5253–5260

    Article  Google Scholar 

  47. Naguib M et al (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23(37):4248–4253

    Article  Google Scholar 

  48. Zhao Y et al (2014) Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett 14(5):2849–2853

    Article  Google Scholar 

  49. Rui X et al (2013) Olivine-type nanosheets for lithium ion battery cathodes. ACS Nano 7(6):5637–5646

    Article  Google Scholar 

  50. Li J-Y et al (2015) Romanechite-structured Na 0.31 MnO 1.9 nanofibers as high-performance cathode material for a sodium-ion battery. Chem Commun 51(80):14848–14851

    Google Scholar 

  51. Wang L et al (2017) Copper-substituted Na 0.67 Ni 0.3− x Cu x Mn 0.7 O 2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. J Mater Chem A 5(18):8752–8761

    Google Scholar 

  52. Liu J, Liu XW (2012) Two-dimensional nanoarchitectures for lithium storage. Adv Mater 24(30):4097–4111

    Article  Google Scholar 

  53. Bonaccorso F et al (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217):1246501

    Article  Google Scholar 

  54. Han M et al (2010) Energy environ. Angew Sci Chem Int Ed 49:8738. 2015, 8, 81; b) R. Tripathi, TN Ramesh, BL Ellis, LF Nazar

    Google Scholar 

  55. Chen S et al (2013) Large-scale and low cost synthesis of graphene as high capacity anode materials for lithium-ion batteries. Carbon 64:158–169

    Article  Google Scholar 

  56. Hassoun J et al (2014) An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett 14(8):4901–4906

    Article  Google Scholar 

  57. Wang G et al (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8):2049–2053

    Article  Google Scholar 

  58. Huang S et al (2015) Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries. J Mater Chem A 3(46):23095–23105

    Article  Google Scholar 

  59. Jeon IY et al (2015) Edge-fluorinated graphene nanoplatelets as high performance electrodes for dye-sensitized solar cells and lithium ion batteries. Adv Func Mater 25(8):1170–1179

    Article  Google Scholar 

  60. Qu B et al (2014) Layered SnS2-reduced graphene oxide composite–A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater 26(23):3854–3859

    Article  Google Scholar 

  61. Sahoo M et al (2015) Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery. Mater Res Bull 61:383–390

    Article  Google Scholar 

  62. Chen R et al (2014) Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett 14(10):5899–5904

    Article  Google Scholar 

  63. Xie X et al (2015) MoS2/Graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv Func Mater 25(9):1393–1403

    Article  Google Scholar 

  64. Chen Y et al (2014) Reduced graphene oxide networks as an effective buffer matrix to improve the electrode performance of porous NiCo 2 O 4 nanoplates for lithium-ion batteries. J Mater Chem A 2(12):4449–4456

    Article  Google Scholar 

  65. Masa J et al (2014) MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew Chem Int Ed 53(32):8508–8512

    Article  Google Scholar 

  66. Wang J et al (2014) Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv Mater 26(42):7162–7169

    Article  Google Scholar 

  67. Xie X et al (2014) SnS2 Nanoplatelet@ graphene nanocomposites as high‐capacity anode materials for sodium‐ion batteries. Chem Asian J 9(6):1611–1617

    Google Scholar 

  68. Chang J et al (2014) Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv Mater 26(5):758–764

    Article  Google Scholar 

  69. Chen S et al (2014) Hierarchical 3D mesoporous silicon@ graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res 7(1):85–94

    Article  Google Scholar 

  70. Sun J et al (2015) A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 10(11):980–985

    Article  Google Scholar 

  71. Xie X et al (2017) Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. J Colloid Interface Sci 499:17–32

    Article  Google Scholar 

  72. Urbankowski P et al (2016) Synthesis of two-dimensional titanium nitride Ti 4 N 3 (MXene). Nanoscale 8(22):11385–11391

    Article  Google Scholar 

  73. Wang G et al (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19(44):8378–8384

    Article  Google Scholar 

  74. Su D, Ahn H-J, Wang G (2013) SnO 2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun 49(30):3131–3133

    Article  Google Scholar 

  75. Xie X et al (2015) 3D Networked tin oxide/graphene aerogel with a hierarchically porous architecture for high-rate performance sodium-ion batteries. Chemsuschem 8(17):2948–2955

    Article  Google Scholar 

  76. Zhu J et al (2014) Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries. Nano Energy 3:80–87

    Article  Google Scholar 

  77. Jian Z et al (2014) Fe2 O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem Commun 50(10):1215–1217

    Article  Google Scholar 

  78. Lin J et al (2014) Iron oxide nanoparticle and graphene nanoribbon composite as an anode material for high-performance Li-ion batteries. Adv Func Mater 24(14):2044–2048

    Article  Google Scholar 

  79. Gao G, Wu HB, Lou XW (2014) Citrate-assisted growth of NiCo2O4 nanosheets on reduced graphene oxide for highly reversible lithium storage. Adv Energy Mater 4(14):1400422

    Article  Google Scholar 

  80. Chen Y et al (2014) Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays. Nano Energy 3:88–94

    Article  Google Scholar 

  81. Huang X et al (2014) Self‐assembling synthesis of free‐standing nanoporous graphene–transition‐metal oxide flexible electrodes for high‐performance lithium‐ion batteries and supercapacitors. Chem Asian J 9(1):206–211

    Google Scholar 

  82. Wang H-W et al (2016) Resolving the structure of Ti3C2T x MXenes through multilevel structural modeling of the atomic pair distribution function. Chem Mater 28(1):349–359

    Article  Google Scholar 

  83. Ohzuku T, Iwakoshi Y, Sawai K (1993) Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J Electrochem Soc 140(9):2490

    Article  Google Scholar 

  84. Yata S et al (1994) Structure and properties of deeply Li-doped polyacenic semiconductor materials beyond C6Li stage. Synth Met 62(2):153–158

    Article  Google Scholar 

  85. Stevens D, Dahn J (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147(4):1271

    Article  Google Scholar 

  86. Dahn J, Seel J (2000) Energy and capacity projections for practical dual-graphite cells. J Electrochem Soc 147(3):899

    Article  Google Scholar 

  87. Huang X et al (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686

    Article  Google Scholar 

  88. Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5(10):8848–8868

    Article  Google Scholar 

  89. Zhang L et al (2014) Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting

    Google Scholar 

  90. Wang X et al (2014) Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 8(11):11394–11400

    Article  Google Scholar 

  91. Su D, Dou S, Wang G (2015) Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv Energy Mater 5(6):1401205

    Article  Google Scholar 

  92. Xie X et al (2016) MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv Energy Mater 6(5):1502161

    Article  Google Scholar 

  93. Liu H et al (2012) Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv Energy Mater 2(8):970–975

    Article  Google Scholar 

  94. Shaju K, Rao GS, Chowdari B (2002) Performance of layered Li (Ni1/3Co1/3Mn1/3) O2 as cathode for Li-ion batteries. Electrochim Acta 48(2):145–151

    Article  Google Scholar 

  95. Mao M et al (2014) High electrochemical performance based on the TiO 2 nanobelt@ few-layered MoS 2 structure for lithium-ion batteries. Nanoscale 6(21):12350–12353

    Article  Google Scholar 

  96. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946

    Article  Google Scholar 

  97. Zhou J et al (2015) 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 9(4):3837–3848

    Article  Google Scholar 

  98. Yoo H et al (2015) Cylindrical nanostructured MoS 2 directly grown on CNT composites for lithium-ion batteries. Nanoscale 7(8):3404–3409

    Article  Google Scholar 

  99. Oakes L et al (2016) Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS 2 nanosheets controls electrochemical reactivity. Nat Commun 7(1):1–7

    Article  Google Scholar 

  100. Jiang H et al (2015) 2D monolayer MoS2–carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv Mater 27(24):3687–3695

    Article  Google Scholar 

  101. Li J et al (2015) A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. Nano Energy 16:10–18

    Article  Google Scholar 

  102. Taberna P-L et al (2006) High rate capabilities Fe 3 O 4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5(7):567–573

    Article  Google Scholar 

  103. Wang X et al (2015) Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv Energy Mater 5(23):1501106

    Article  Google Scholar 

  104. Miao Y-E et al (2015) Electrospun porous carbon nanofiber@ MoS 2 core/sheath fiber membranes as highly flexible and binder-free anodes for lithium-ion batteries. Nanoscale 7(25):11093–11101

    Article  Google Scholar 

  105. Kong D et al (2014) Rational design of MoS 2@ graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy Environ Sci 7(10):3320–3325

    Article  Google Scholar 

  106. Yang L et al (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25(8):1180–1184

    Article  Google Scholar 

  107. Hu Z et al (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed 53(47):12794–12798

    Article  Google Scholar 

  108. Wang X et al (2015) Guest–host interactions and their impacts on structure and performance of nano-MoS 2. Nanoscale 7(2):637–641

    Article  Google Scholar 

  109. Choi SH et al (2015) 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Func Mater 25(12):1780–1788

    Article  Google Scholar 

  110. Hu L et al (2015) MoS 2 ultrathin nanosheets obtained under a high magnetic field for lithium storage with stable and high capacity. Nanoscale 7(25):10925–10930

    Article  Google Scholar 

  111. Zhou R et al (2016) Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment. ACS Catal 6(7):4720–4728

    Article  Google Scholar 

  112. Wang J et al (2015) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11(4):473–481

    Article  Google Scholar 

  113. Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B+c 99(1–4):81–85

    Google Scholar 

  114. Yasuda K et al (2012) Acta crystallogr. Bull Chem Soc Japan 85(4):522–526. Sect. A Acta Crystallogr., Sect. A 32, 751, 1976

    Google Scholar 

  115. Xu X et al (2015) Facile synthesis of P2-type Na 0.4 Mn 0.54 Co 0.46 O 2 as a high capacity cathode material for sodium-ion batteries. RSC Adv 5(63):51454–51460

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the Ministry of Higher Education Malaysia for the financial aids and Universiti Malaysia Pahang and its staffs for the laboratory facilities and financial supports from the Fundamental Research Grants Scheme FRGS/1/2019/STG07/UMP/02/7 (University reference RDU1901205) and PGRS2003152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhiyah Binti Abd Aziz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Javed, O., Abd Aziz, R.B. (2023). Review: Two-Dimensional Layered Material Based Electrodes for Lithium Ion and Sodium Ion Batteries. In: Hassan, M.H.A., Zohari, M.H., Kadirgama, K., Mohamed, N.A.N., Aziz, A. (eds) Technological Advancement in Instrumentation & Human Engineering. ICMER 2021. Lecture Notes in Electrical Engineering, vol 882. Springer, Singapore. https://doi.org/10.1007/978-981-19-1577-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1577-2_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1576-5

  • Online ISBN: 978-981-19-1577-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics