Skip to main content

Tumour-on-a-Chip: Perfusion Systems to Model the Extracellular Breast Tumour Microenvironment—From Tumour Progression to Metastasis Formation

  • Chapter
  • First Online:
Microfluidics and Multi Organs on Chip

Abstract

The integration of three-dimensional (3D) tumour models in perfusion systems has provided new tools to study cancer and metastasis. Such systems are designed to have a high degree of control over biophysical properties of the extracellular tumour microenvironment (TME), and cellular composition. Advancement in 3D models, tissue engineering, biomaterials and microfluidics has allowed an extra level of control over spatial and temporal properties of the TME, and multiplexed in vitro models helped in enhancing knowledge on tumour development, progression and formation of distal metastasis. Advanced 3D tumour in vitro models are nowadays used not only to understand tumour development but also to provide tools for testing therapies and improve preclinical drug development. Breast cancer is one of the most diagnosed types of cancer, with high incidence of recurrent metastasis to bone. Many in vitro models are designed to mimic breast cancer and metastasis to bone and used in early metastatic detection, drug screening and therapy intervention. In this chapter, physical properties of the breast TME are discussed with specific reference to perfusion and microfluidic systems. Advantages of perfusion systems to control flow rates, shear stresses and transmission of mechanical forces, nutrient and oxygen delivery are presented. Ultimately, breast cancer cells’ extravasation and formation of distal metastasis to bone-like recipient are discussed with critical perspective to current knowledge-gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harbeck N et al (2019) Breast cancer. Nat Rev Dis Primers 5(1):66. https://doi.org/10.1038/s41572-019-0111-2. (In eng)

    Article  PubMed  Google Scholar 

  2. Rebello RJ et al (2021) Prostate cancer. Nat Rev Dis Primers 7(1):9. https://doi.org/10.1038/s41572-020-00243-0. (In eng)

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590. (In eng)

    Article  PubMed  Google Scholar 

  4. D’Oronzo S, Wood S, Brown JE (2021) The use of bisphosphonates to treat skeletal complications in solid tumours. Bone 147:115907. https://doi.org/10.1016/j.bone.2021.115907. (In eng)

    Article  CAS  PubMed  Google Scholar 

  5. Thibaudeau L, Quent VM, Holzapfel BM, Taubenberger AV, Straub M, Hutmacher DW (2014) Mimicking breast cancer-induced bone metastasis in vivo: current transplantation models and advanced humanized strategies. Cancer Metastasis Rev 33(2–3):721–735. https://doi.org/10.1007/s10555-014-9499-z. (In eng)

    Article  CAS  PubMed  Google Scholar 

  6. Gandaglia G et al (2015) Impact of the site of metastases on survival in patients with metastatic prostate cancer. Eur Urol 68(2):325–334. https://doi.org/10.1016/j.eururo.2014.07.020. (In eng)

    Article  PubMed  Google Scholar 

  7. Gandaglia G et al (2014) Distribution of metastatic sites in patients with prostate cancer: a population-based analysis. Prostate 74(2):210–216. https://doi.org/10.1002/pros.22742. (In eng)

    Article  PubMed  Google Scholar 

  8. Clines GA, Guise TA (2008) Molecular mechanisms and treatment of bone metastasis. Expert Rev Mol Med 10:e7. https://doi.org/10.1017/S1462399408000616. (In eng)

    Article  PubMed  Google Scholar 

  9. Wong SK, Mohamad NV, Giaze TR, Chin KY, Mohamed N, Ima-Nirwana S (2019) Prostate cancer and bone metastases: the underlying mechanisms. Int J Mol Sci 20(10). https://doi.org/10.3390/ijms20102587. (In eng)

  10. Miyashita H, Cruz C, Malamud S (2020) Risk factors for skeletal-related events in patients with bone metastasis from breast cancer undergoing treatment with zoledronate. Breast Cancer Res Treat 182(2):381–388. https://doi.org/10.1007/s10549-020-05712-4. (In eng)

    Article  CAS  PubMed  Google Scholar 

  11. VanderWalde A, Hurria A (2011) Aging and osteoporosis in breast and prostate cancer. CA Cancer J Clin 61(3):139–156. https://doi.org/10.3322/caac.20103. (In eng)

    Article  PubMed  Google Scholar 

  12. Bersini S et al (2014) A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35(8):2454–2461. https://doi.org/10.1016/j.biomaterials.2013.11.050. (In eng)

    Article  CAS  PubMed  Google Scholar 

  13. Bittner KR, Jiménez JM, Peyton SR (2020) Vascularized biomaterials to study cancer metastasis. Adv Healthc Mater 9(8):e1901459. https://doi.org/10.1002/adhm.201901459. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen MB, Whisler JA, Fröse J, Yu C, Shin Y, Kamm RD (2017) On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protoc 12(5):865–880. https://doi.org/10.1038/nprot.2017.018. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kong J et al (2016) A novel microfluidic model can mimic organ-specific metastasis of circulating tumor cells. Oncotarget 7(48):78421–78432. https://doi.org/10.18632/oncotarget.9382. (In eng)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pradhan S, Slater JH (2019) Tunable hydrogels for controlling phenotypic cancer cell states to model breast cancer dormancy and reactivation. Biomaterials 215:119177. https://doi.org/10.1016/j.biomaterials.2019.04.022. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiao GL, Song LN, Deng ZF, Chen Y, Ma LJ (2018) Prognostic value of CD44v6 expression in breast cancer: a meta-analysis. Onco Targets Ther 11:5451–5457. https://doi.org/10.2147/OTT.S156101. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. https://doi.org/10.1038/nm.3394. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu W, Chen L, Wang Y, Jin J, Xie X, Zhang J (2020) Hyaluronic acid predicts poor prognosis in breast cancer patients: a protocol for systematic review and meta analysis. Medicine (Baltimore) 99(22):e20438. https://doi.org/10.1097/MD.0000000000020438. (In eng)

    Article  Google Scholar 

  20. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109(34):13515–13520. https://doi.org/10.1073/pnas.1210182109. (In eng)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bersini S, Jeon JS, Moretti M, Kamm RD (2014) In vitro models of the metastatic cascade: from local invasion to extravasation. Drug Discov Today 19(6):735–742. https://doi.org/10.1016/j.drudis.2013.12.006. (In eng)

    Article  CAS  PubMed  Google Scholar 

  22. Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13(8):1489–1500. https://doi.org/10.1039/c3lc41320a. (In eng)

    Article  CAS  PubMed  Google Scholar 

  23. Puls TJ, Tan X, Husain M, Whittington CF, Fishel ML, Voytik-Harbin SL (2018) Development of a novel 3D tumor-tissue invasion model for high-throughput, high-content phenotypic drug screening. Sci Rep 8(1):13039. https://doi.org/10.1038/s41598-018-31138-6. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DelNero P et al (2015) 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways. Biomaterials 55:110–118. https://doi.org/10.1016/j.biomaterials.2015.03.035. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fane M, Weeraratna AT (2020) How the ageing microenvironment influences tumour progression. Nat Rev Cancer 20(2):89–106. https://doi.org/10.1038/s41568-019-0222-9. (In eng)

    Article  CAS  PubMed  Google Scholar 

  26. Taubenberger AV et al (2019) 3D microenvironment stiffness regulates tumor spheroid growth and mechanics via p21 and ROCK. Adv Biosyst 3(9):e1900128. https://doi.org/10.1002/adbi.201900128. (In eng)

    Article  CAS  PubMed  Google Scholar 

  27. Cavo M, Fato M, Peñuela L, Beltrame F, Raiteri R, Scaglione S (2016) Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model. Sci Rep 6:35367. https://doi.org/10.1038/srep35367. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh A, Brito I, Lammerding J (2018) Beyond tissue stiffness and bioadhesivity: advanced biomaterials to model tumor microenvironments and drug resistance. Trends Cancer 4(4):281–291. https://doi.org/10.1016/j.trecan.2018.01.008. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu X, Farach-Carson MC, Jia X (2014) Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 32(7):1256–1268. https://doi.org/10.1016/j.biotechadv.2014.07.009. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karami D, Richbourg N, Sikavitsas V (2019) Dynamic in vitro models for tumor tissue engineering. Cancer Lett 449:178–185. https://doi.org/10.1016/j.canlet.2019.01.043. (In eng)

    Article  CAS  PubMed  Google Scholar 

  31. Shieh AC (2011) Biomechanical forces shape the tumor microenvironment. Ann Biomed Eng 39(5):1379–1389. https://doi.org/10.1007/s10439-011-0252-2. (In eng)

    Article  PubMed  Google Scholar 

  32. Wu M, Frieboes HB, McDougall SR, Chaplain MA, Cristini V, Lowengrub J (2013) The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J Theor Biol 320:131–151. https://doi.org/10.1016/j.jtbi.2012.11.031. (In eng)

    Article  PubMed  Google Scholar 

  33. Pedersen JA, Lichter S, Swartz MA (2010) Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces. J Biomech 43(5):900–905. https://doi.org/10.1016/j.jbiomech.2009.11.007. (In eng)

    Article  PubMed  Google Scholar 

  34. Huang Y, Agrawal B, Sun D, Kuo JS, Williams JC (2011) Microfluidics-based devices: New tools for studying cancer and cancer stem cell migration. Biomicrofluidics 5(1):13412. https://doi.org/10.1063/1.3555195. (In eng)

    Article  CAS  PubMed  Google Scholar 

  35. Fleury ME, Boardman KC, Swartz MA (2006) Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys J 91(1):113–121. https://doi.org/10.1529/biophysj.105.080192. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stowers RS et al (2017) Extracellular matrix stiffening induces a malignant phenotypic transition in breast epithelial cells. Cell Mol Bioeng 10(1):114–123. https://doi.org/10.1007/s12195-016-0468-1. (In eng)

    Article  CAS  PubMed  Google Scholar 

  37. Ondeck MG et al (2019) Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling. Proc Natl Acad Sci U S A 116(9):3502–3507. https://doi.org/10.1073/pnas.1814204116. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wullkopf L et al (2018) Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol Biol Cell 29(20):2378–2385. https://doi.org/10.1091/mbc.E18-05-0319. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Narayan OP, Mu X, Hasturk O, Kaplan DL (2021) Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomater 121:214–223. https://doi.org/10.1016/j.actbio.2020.12.018. (In eng)

    Article  CAS  PubMed  Google Scholar 

  40. Tirella A, Mattei G, La Marca M, Ahluwalia A, Tirelli N (2020) Functionalized enzyme-responsive biomaterials to model tissue stiffening. Front Bioeng Biotechnol 8:208. https://doi.org/10.3389/fbioe.2020.00208. (In eng)

    Article  PubMed  PubMed Central  Google Scholar 

  41. De La Rosa R, Manuel J, Wubetu J, Tirelli N, Tirella A (2018) Colorectal tumor 3D in vitro models: advantages of biofabrication for the recapitulation of early stages of tumour development. Biomed Phys Eng Expr 4(4):045010. https://doi.org/10.1088/2057-1976/aac1c9

    Article  Google Scholar 

  42. Wu Z, Ovaert TC, Niebur GL (2012) Viscoelastic properties of human cortical bone tissue depend on gender and elastic modulus. J Orthop Res 30(5):693–699. https://doi.org/10.1002/jor.22001. (In eng)

    Article  CAS  PubMed  Google Scholar 

  43. Pierantozzi MD, Scalzone A, Jindal S, Stīpniece L, Šalma-Ancāne K, Dalgarno K, Gentile P, Elena M (2020) 3D printed Sr-containing composite scaffolds: effect of structural design and material formulation towards new strategies for bone tissue engineering. Compos Sci Technol 191:108069. https://doi.org/10.1016/j.compscitech.2020.108069

    Article  CAS  Google Scholar 

  44. Mancuso E et al (2021) Additively manufactured BaTiO. Mater Sci Eng C Mater Biol Appl 126:112192. https://doi.org/10.1016/j.msec.2021.112192. (In eng)

    Article  CAS  PubMed  Google Scholar 

  45. Ramamonjisoa N, Ackerstaff E (2017) Characterization of the tumor microenvironment and tumor-stroma interaction by non-invasive preclinical imaging. Front Oncol 7:3. https://doi.org/10.3389/fonc.2017.00003. (In eng)

    Article  PubMed  PubMed Central  Google Scholar 

  46. Polacheck WJ, Charest JL, Kamm RD (2011) Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc Natl Acad Sci U S A 108(27):11115–11120. https://doi.org/10.1073/pnas.1103581108. (In eng)

    Article  PubMed  PubMed Central  Google Scholar 

  47. Langer EM et al (2019) Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep 26(3):608–623.e6. https://doi.org/10.1016/j.celrep.2018.12.090. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kwak TJ, Lee E (2020) In vitro modeling of solid tumor interactions with perfused blood vessels. Sci Rep 10(1):20142. https://doi.org/10.1038/s41598-020-77180-1. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buchanan CF, Voigt EE, Szot CS, Freeman JW, Vlachos PP, Rylander MN (2014) Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng Part C Methods 20(1):64–75. https://doi.org/10.1089/ten.TEC.2012.0731. (In eng)

    Article  CAS  PubMed  Google Scholar 

  50. Stroock AD, Fischbach C (2010) Microfluidic culture models of tumor angiogenesis. Tissue Eng Part A 16(7):2143–2146. https://doi.org/10.1089/ten.TEA.2009.0689. (In eng)

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cross VL et al (2010) Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 31(33):8596–8607. https://doi.org/10.1016/j.biomaterials.2010.07.072. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gioiella F, Urciuolo F, Imparato G, Brancato V, Netti PA (2016) An engineered breast cancer model on a chip to replicate ecm-activation in vitro during tumor progression. Adv Healthc Mater 5(23):3074–3084. https://doi.org/10.1002/adhm.201600772. (In eng)

    Article  CAS  PubMed  Google Scholar 

  53. Bhat SM et al (2021) 3D tumor angiogenesis models: recent advances and challenges. J Cancer Res Clin Oncol 147(12):3477–3494. https://doi.org/10.1007/s00432-021-03814-0. (In eng)

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pisano M, Triacca V, Barbee KA, Swartz MA (2015) An in vitro model of the tumor-lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion. Integr Biol (Camb) 7(5):525–533. https://doi.org/10.1039/c5ib00085h. (In eng)

    Article  CAS  Google Scholar 

  55. Nguyen N et al (2021) Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling. Biophys Rev 13(5):769–786. https://doi.org/10.1007/s12551-021-00815-8. (In eng)

    Article  PubMed  Google Scholar 

  56. Harbeck N (2020) Breast cancer is a systemic disease optimally treated by a multidisciplinary team. Nat Rev Dis Primers 6(1):30. https://doi.org/10.1038/s41572-020-0167-z. (In eng)

    Article  PubMed  Google Scholar 

  57. Marshall LE, Goliwas KF, Miller LM, Penman AD, Frost AR, Berry JL (2017) Flow-perfusion bioreactor system for engineered breast cancer surrogates to be used in preclinical testing. J Tissue Eng Regen Med 11(4):1242–1250. https://doi.org/10.1002/term.2026. (In eng)

    Article  CAS  PubMed  Google Scholar 

  58. Jeon JS et al (2015) Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A 112(1):214–219. https://doi.org/10.1073/pnas.1417115112. (In eng)

    Article  CAS  PubMed  Google Scholar 

  59. Marturano-Kruik A et al (2018) Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proc Natl Acad Sci U S A 115(6):1256–1261. https://doi.org/10.1073/pnas.1714282115. (In eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Annalisa Tirella would like to thank Dr. Elena Mancuso (Ulster University) for the insightful conversations on materials design, bioprinting and 3D-printed polymeric scaffolds, as well as for their integration in perfusion systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Tirella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tirella, A. (2022). Tumour-on-a-Chip: Perfusion Systems to Model the Extracellular Breast Tumour Microenvironment—From Tumour Progression to Metastasis Formation. In: Mohanan, P.V. (eds) Microfluidics and Multi Organs on Chip . Springer, Singapore. https://doi.org/10.1007/978-981-19-1379-2_28

Download citation

Publish with us

Policies and ethics