Skip to main content

Applications of Microfluidics

  • Chapter
  • First Online:
Microfluidics and Multi Organs on Chip

Abstract

Microfluidics as a field has a plethora of applications in several fields. From heat transfer to biomedical applications, microfluidic techniques are used to deliver solutions. In the present chapter, we look into the basics of microfluidic techniques used to manipulate tiny volumes of fluids. Further, a detailed discussion on acoustofluidics, lab/organ-on-chip, biosensing, and cell manipulation follows. Section 2.4 focuses on the use of bulk and surface acoustic waves to manipulate particles and cells. Section 2.5 sheds light on the use of microfluidic chips mimicking an organ or its basic process and how the same is used to study the effect of drugs on the organs. Section 2.6 focuses on using microfluidic techniques for disease detection and prognosis monitoring. The part on Cell manipulation cuts through various active and passive techniques for cell trapping, focusing, and sorting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leibacher I, Reichert P, Dual J (2015) Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis. Lab Chip 15:2896–2905

    Article  CAS  PubMed  Google Scholar 

  2. McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14:4139–4158

    Article  CAS  PubMed  Google Scholar 

  3. Bijarchi MA, Dizani M, Honarmand M, Shafii MB (2021) Splitting dynamics of ferrofluid droplets inside a microfluidic T-junction using a pulse-width modulated magnetic field in micro-magnetofluidics. Soft Matter 17:1317–1329

    Article  CAS  PubMed  Google Scholar 

  4. Majhy B, Singh VP, Sen AK (2020) Understanding wetting dynamics and stability of aqueous droplet over superhydrophilic spot surrounded by superhydrophobic surface. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2020.01.056

  5. Hazra S et al (2019) Non-inertial lift induced migration for label-free sorting of cells in a co-flowing aqueous two-phase system. Analyst 144:2574–2583

    Article  CAS  PubMed  Google Scholar 

  6. Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17:1–52

    Article  Google Scholar 

  7. Zhou J, Papautsky I (2020) Viscoelastic microfluidics: progress and challenges. Microsyst Nanoeng 6:113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Convery N, Gadegaard N (2019) 30 Years of microfluidics. Micro Nano Eng 2:76–91

    Article  Google Scholar 

  9. Cui P, Wang S (2019) Application of microfluidic chip technology in pharmaceutical analysis: a review. J Pharm Anal 9:238–247

    Article  PubMed  Google Scholar 

  10. Gabriel EFM, Lucca BG, Duarte GRM, Coltro WKT (2018) Recent advances in toner-based microfluidic devices for bioanalytical applications. Anal Methods 10:2952–2962

    Article  CAS  Google Scholar 

  11. Nguyen NT, Hejazian M, Ooi CH, Kashaninejad N (2017) Recent advances and future perspectives on microfluidic liquid handling. Micromachines 8:186

    Article  PubMed Central  Google Scholar 

  12. Bai Y et al (2018) Applications of microfluidics in quantitative biology. Biotechnol J 13:e1700170

    Article  PubMed  CAS  Google Scholar 

  13. Oakey J, Allely J, Marr DWM (2002) Laminar-flow-based separations at the microscale. Biotechnol Prog 18:1439–1442

    Article  CAS  PubMed  Google Scholar 

  14. Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471

    Article  CAS  PubMed  Google Scholar 

  15. Berendsen JTW, Eijkel JCT, Wetzels AM, Segerink LI (2019) Separation of spermatozoa from erythrocytes using their tumbling mechanism in a pinch flow fractionation device. Microsyst Nanoeng 5:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Park JS, Jung HI (2009) Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Anal Chem 81:8280–8288

    Article  CAS  PubMed  Google Scholar 

  17. Zeng L, Balachandar S, Fischer P (2005) Wall-induced forces on a rigid sphere at finite Reynolds number. J Fluid Mech 536:1–25

    Article  Google Scholar 

  18. Alghalibi D, Rosti ME, Brandt L (2019) Inertial migration of a deformable particle in pipe flow. Phys Rev Fluids 4:104201

    Article  Google Scholar 

  19. Yoon DH et al (2009) Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel. Lab Chip 9:87–90

    Article  CAS  PubMed  Google Scholar 

  20. Russom A et al (2009) Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J Phys 11:75025

    Article  PubMed  CAS  Google Scholar 

  21. Duraiswamy S, Yung LYL (2021) Dean migration of unfocused micron sized particles in low aspect ratio spiral microchannels. Biomed Microdevices 23:1–16

    Article  CAS  Google Scholar 

  22. Huang LR, Cox EC, Austin RH, Sturm JC (2016) Continuous particle separation through deterministic lateral displacement. Science 304:987–990

    Article  CAS  Google Scholar 

  23. Zhang Z, Henry E, Gompper G, Fedosov DA (2015) Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes. J Chem Phys 143:243145

    Article  PubMed  CAS  Google Scholar 

  24. Davis JA et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci U S A 103:14779–14784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beech JP, Holm SH, Adolfsson K, Tegenfeldt JO (2012) Sorting cells by size, shape and deformability. Lab Chip 12:1048–1051

    Article  CAS  PubMed  Google Scholar 

  26. Quek R, Le DV, Chiam KH (2011) Separation of deformable particles in deterministic lateral displacement devices. Phys Rev E Stat Nonlinear Soft Matter Phys 83:1–7

    Article  CAS  Google Scholar 

  27. Loutherback K et al (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluid 9:1143–1149

    Article  Google Scholar 

  28. Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23:1973–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pesch GR, Du F (2021) A review of dielectrophoretic separation and classification of non-biological particles. Electrophoresis 42:134–152

    Article  CAS  PubMed  Google Scholar 

  30. Yaman S, Anil-Inevi M, Ozcivici E, Tekin HC (2018) Magnetic force-based microfluidic techniques for cellular and tissue bioengineering. Front Bioeng Biotechnol 6:192

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY, Jouvet L (2010) Hydrodynamic blood plasma separation in microfluidic channels. Microfluid Nanofluid 8:105–114

    Article  CAS  Google Scholar 

  32. Kim J, Massoudi M, Antaki JF, Gandini A (2012) Removal of malaria-infected red blood cells using magnetic cell separators: a computational study. Appl Math Comput 218:6841–6850

    PubMed  PubMed Central  Google Scholar 

  33. Adams JD, Kim U, Soh HT (2008) Multitarget magnetic activated cell sorter. Proc Natl Acad Sci U S A 105:18165–18170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506

    Article  CAS  PubMed  Google Scholar 

  35. McGloin D (2006) Optical tweezers: 20 years on. Philos Trans R Soc A Math Phys Eng Sci 364:3521–3537

    Article  CAS  Google Scholar 

  36. Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51:2259–2280

    Article  Google Scholar 

  37. Bruus H (2012) Acoustofluidics 7: The acoustic radiation force on small particles. Lab Chip 12:1014–1021

    Article  CAS  PubMed  Google Scholar 

  38. Hoque SZ, Sen AK (2020) Interparticle acoustic radiation force between a pair of spherical particles in a liquid exposed to a standing bulk acoustic wave. Phys Fluids 32:072004

    Article  CAS  Google Scholar 

  39. Hoque SZ, Nath A, Sen AK (2021) Dynamical motion of a pair of microparticles at the acoustic pressure nodal plane under the combined effect of axial primary radiation and interparticle forces. J Acoust Soc Am 150:307–320

    Article  CAS  PubMed  Google Scholar 

  40. Sohrabi S, Kassir N, Keshavarz Moraveji M (2020) Droplet microfluidics: fundamentals and its advanced applications. RSC Adv 10:27560–27574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:4

    Article  Google Scholar 

  42. Surya HPN, Parayil S, Banerjee U, Chander S, Sen AK (2015) Alternating and merged droplets in a double T-junction microchannel. Biochip J 9:16–26

    Article  CAS  Google Scholar 

  43. Hatch AC, Patel A, Beer NR, Lee AP (2013) Passive droplet sorting using viscoelastic flow focusing. Lab Chip 13:1308–1315

    Article  CAS  PubMed  Google Scholar 

  44. Umbanhowar PB, Prasad V, Weitz DA (2000) Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16:347–351

    Article  CAS  Google Scholar 

  45. Utada AS et al (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541

    Article  CAS  PubMed  Google Scholar 

  46. Jayaprakash KS, Sen AK (2019) Droplet encapsulation of particles in different regimes and sorting of particle-encapsulating-droplets from empty droplets. Biomicrofluidics 13:034108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu P, Wang L (2017) Passive and active droplet generation with microfluidics: a review. Lab Chip 17:34–75

    Article  CAS  Google Scholar 

  48. Ménétrier-Deremble L, Tabeling P (2006) Droplet breakup in microfluidic junctions of arbitrary angles. Phys Rev E Stat Nonlinear Soft Matter Phys 74:1–4

    Article  CAS  Google Scholar 

  49. Tan YC, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4:292–298

    Article  CAS  PubMed  Google Scholar 

  50. Cho SK, Moon H, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80

    Article  Google Scholar 

  51. Jung JH, Destgeer G, Ha B, Park J, Sung HJ (2016) On-demand droplet splitting using surface acoustic waves. Lab Chip 16:3235–3243

    Article  CAS  PubMed  Google Scholar 

  52. Christopher GF et al (2009) Coalescence and splitting of confined droplets at microfluidic junctions. Lab Chip 9:1102–1109

    Article  CAS  PubMed  Google Scholar 

  53. Xu B, Nguyen N-T, Neng Wong T (2012) Droplet coalescence in microfluidic systems. Micro Nanosyst 3:131–136

    Article  Google Scholar 

  54. Niu X, Gulati S, Edel JB, Demello AJ (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8:1837–1841

    Article  CAS  PubMed  Google Scholar 

  55. Bremond N, Thiam AR, Bibette J (2008) Decompressing emulsion droplets favors coalescence. Phys Rev Lett 100:1–4

    Article  CAS  Google Scholar 

  56. Hemachandran E, Laurell T, Sen AK (2019) Continuous droplet coalescence in a microchannel coflow using bulk acoustic waves. Phys Rev Appl 12:1

    Article  Google Scholar 

  57. Sesen M, Fakhfouri A, Neild A (2019) Coalescence of surfactant-stabilized adjacent droplets using surface acoustic waves. Anal Chem 91:7538–7545

    Article  CAS  PubMed  Google Scholar 

  58. Sudeepthi A, Nath A, Yeo LY, Sen AK (2021) Coalescence of droplets in a microwell driven by surface acoustic waves. Langmuir. https://doi.org/10.1021/acs.langmuir.0c03292

  59. Mazutis L et al (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8:870–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huh D et al (2007) Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal Chem 79:1369–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xi HD et al (2017) Active droplet sorting in microfluidics: a review. Lab Chip 17:751–771

    Article  CAS  PubMed  Google Scholar 

  62. Shang L, Cheng Y, Zhao Y (2017) Emerging droplet microfluidics. Chem Rev 117:7964–8040

    Article  CAS  PubMed  Google Scholar 

  63. Nooranidoost M, Haghshenas M, Muradoglu M, Kumar R (2019) Cell encapsulation modes in a flow-focusing microchannel: effects of shell fluid viscosity. Microfluid Nanofluid 23:1–10

    Article  Google Scholar 

  64. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104:18892–18897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. He M et al (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544

    Article  CAS  PubMed  Google Scholar 

  66. Zeng J et al (2012) Three-dimensional magnetic focusing of particles and cells in ferrofluid flow through a straight microchannel. J Micromech Microeng 22:105018

    Article  CAS  Google Scholar 

  67. Kemna EWM et al (2012) High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12:2881–2887

    Article  CAS  PubMed  Google Scholar 

  68. Kamalakshakurup G, Lee AP (2017) High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices. Lab Chip 17:4324–4333

    Article  CAS  PubMed  Google Scholar 

  69. Gaikwad R, Sen AK (2021) An optomicrofluidic device for the detection and isolation of drop-encapsulated target cells in single-cell format. Analyst 146:95–108

    Article  CAS  PubMed  Google Scholar 

  70. Hemachandran E, Hoque SZ, Laurell T, Sen AK (2021) Reversible stream drop transition in a microfluidic coflow system via on demand exposure to acoustic standing waves. Phys Rev Lett 127:134501

    Article  CAS  PubMed  Google Scholar 

  71. Banerjee U, Jain SK, Sen AK (2021) Particle encapsulation in aqueous ferrofluid drops and sorting of particle-encapsulating drops from empty drops using a magnetic field. Soft Matter 17:6020–6028

    Article  CAS  PubMed  Google Scholar 

  72. Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM (2021) Fabrication and applications of microfluidic devices: a review. Int J Mol Sci 22:1–26

    Article  CAS  Google Scholar 

  73. Choi K, Ng AHC, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440

    Article  CAS  Google Scholar 

  74. Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys. https://doi.org/10.1103/RevModPhys.83.647

  75. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  76. Brittain ST, Paul KE, Zhao X-M, Whitesides GM (1998) Soft lithography and microfabrication. Phys World 11:31–36

    Article  CAS  Google Scholar 

  77. Luz GM, Leite ÁJ, Neto AI, Song W, Mano JF (2011) Wettable arrays onto superhydrophobic surfaces for bioactivity testing of inorganic nanoparticles. Mater Lett 65:296–299

    Article  CAS  Google Scholar 

  78. Rahmawan Y, Xu L, Yang S (2013) Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. J Mater Chem A 1:2955–2969

    Article  CAS  Google Scholar 

  79. Xu T, Xu L-P, Zhang X, Wang S (2019) Bioinspired superwettable micropatterns for biosensing. Chem Soc Rev 48:3153–3165

    Article  CAS  PubMed  Google Scholar 

  80. Li J-F, Zhang Y-J, Ding S-Y, Panneerselvam R, Tian Z-Q (2017) Core–shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117:5002–5069

    Article  CAS  PubMed  Google Scholar 

  81. Song Y, Xu T, Xu L-P, Zhang X (2018) Superwettable nanodendritic gold substrates for direct miRNA SERS detection. Nanoscale 10:20990–20994

    Article  CAS  PubMed  Google Scholar 

  82. Hou J et al (2015) Hydrophilic–hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline. Small 11:2738–2742

    Article  CAS  PubMed  Google Scholar 

  83. Connacher W, Orosco J, Friend J (2020) Droplet ejection at controlled angles via acoustofluidic jetting. Phys Rev Lett 125:184504

    Article  CAS  PubMed  Google Scholar 

  84. Sudeepthi A, Sen AK, Yeo L (2019) Aggregation of a dense suspension of particles in a microwell using surface acoustic wave microcentrifugation. Microfluid Nanofluid 23:76

    Article  CAS  Google Scholar 

  85. Wiklund M, Green R, Ohlin M (2012) Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab Chip. https://doi.org/10.1039/c2lc40203c

  86. Aijian AP, Garrell RL (2015) Digital microfluidics for automated hanging drop cell spheroid culture. J Lab Autom 20:283–295

    Article  CAS  PubMed  Google Scholar 

  87. Nelson WC, Kim CJC (2012) Droplet actuation by electrowetting-on-dielectric (EWOD): a review. J Adhes Sci Technol 26:1747–1771

    Article  CAS  Google Scholar 

  88. Mugele F, Baret J-C (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17:R705–R774

    Article  CAS  Google Scholar 

  89. Jones TB (2001) Liquid dielectrophoresis on the microscale. J Electrost 51–52:290–299

    Article  Google Scholar 

  90. Kaler KVIS, Prakash R, Chugh D (2010) Liquid dielectrophoresis and surface microfluidics. Biomicrofluidics 4:022805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Sudeepthi A, Yeo L, Sen AK (2020) Cassie-Wenzel wetting transition on nanostructured superhydrophobic surfaces induced by surface acoustic waves. Appl Phys Lett 116:1–6

    Article  CAS  Google Scholar 

  92. Zhang Y, Nguyen NT (2017) Magnetic digital microfluidics - a review. Lab Chip 17:994–1008

    Article  CAS  PubMed  Google Scholar 

  93. Mandal C, Banerjee U, Sen AK (2019) Transport of a sessile aqueous droplet over spikes of oil based ferrofluid in the presence of a magnetic field. Langmuir. https://doi.org/10.1021/acs.langmuir.9b00631

  94. Sen P, Kim CJ (2009) Capillary spreading dynamics of electrowetted sessile droplets in air. Langmuir 25:4302–4305

    Article  CAS  PubMed  Google Scholar 

  95. Jones TB, Wang KL, Yao DJ (2004) Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis. Langmuir 20:2813–2818

    Article  CAS  PubMed  Google Scholar 

  96. Li J, Kim CJ (2020) Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. Lab Chip 20:1705–1712

    Article  CAS  PubMed  Google Scholar 

  97. Cho HM, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80

    Article  Google Scholar 

  98. Pang L, Ding J, Liu X-X, Fan S-K (2019) Digital microfluidics for cell manipulation. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2019.06.008

  99. Zhuang J, Yin J, Lv S, Wang B, Mu Y (2020) Advanced “lab-on-a-chip” to detect viruses – current challenges and future perspectives. Biosens Bioelectron 163:112291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nasseri B et al (2018) Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron 117:112–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bansal S, Subramanian S (2021) A microfluidic acoustic metamaterial using electrowetting: enabling active broadband tunability. Adv Mater Technol 6:2100491

    Article  CAS  Google Scholar 

  102. Pohl HA (1958) Some effects of nonuniform fields on dielectrics. J Appl Phys 29:1182–1188

    Article  Google Scholar 

  103. Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2011) Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron 26:1800–1814

    Article  CAS  PubMed  Google Scholar 

  104. Piao Y, Yu K, Jones TB, Wang W (2021) Electrical actuation of dielectric droplets by negative liquid dielectrophoresis. Electrophoresis 42(23):2490–2497. https://doi.org/10.1002/elps.202100093

    Article  CAS  PubMed  Google Scholar 

  105. Nampoothiri KN, Sen P (2021) Motion of generated dumbbell-shaped satellite droplets during liquid dielectrophoresis. J Micromech Microeng 31

    Google Scholar 

  106. Nampoothiri KN, Bobji MS, Sen P (2019) Generation of micron-sized droplet streams by high frequency electric fields. Int J Heat Mass Transf 145:118709

    Article  CAS  Google Scholar 

  107. Nampoothiri KN, Srinivasan V, Bobji MS, Sen P (2017) A novel sub-picoliter monodispersed droplet generation device based on liquid dielectrophoresis. Proc IEEE Int Conf Micro Electro Mech Syst 2017:87–90. https://doi.org/10.1109/MEMSYS.2017.7863346

    Article  Google Scholar 

  108. Nampoothiri KN, Seshasayee MS, Srinivasan V, Bobji MS, Sen P (2018) Direct heating of aqueous droplets using high frequency voltage signals on an EWOD platform. Sensors Actuators B Chem 273:862–872

    Article  CAS  Google Scholar 

  109. Nampoothiri KN, Bobji MS, Sen P (2020) De-icing device with self-adjusting power consumption and ice sensing capabilities. J Microelectromech Syst 29:562–570

    Article  CAS  Google Scholar 

  110. Frozanpoor I et al (2021) Programmable droplet actuating platform using liquid dielectrophoresis. J Micromech Microeng 31:055014

    Article  CAS  Google Scholar 

  111. Settnes M, Bruus H (2012) Forces acting on a small particle in an acoustical field in a viscous fluid. Phys Rev E Stat Nonlinear Soft Matter Phys 85:1–12

    Article  CAS  Google Scholar 

  112. Bruus H et al (2011) Forthcoming lab on a chip tutorial series on acoustofluidics: acoustofluidics - exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11:3579–3580

    Article  CAS  PubMed  Google Scholar 

  113. Ding X et al (2013) Surface acoustic wave microfluidics. Lab Chip 13:3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rasouli R, Tabrizian M (2021) Rapid formation of multicellular spheroids in boundary-driven acoustic microstreams. Small 17:1–12

    Article  CAS  Google Scholar 

  115. Dolatmoradi A, Mirtaheri E, El-Zahab B (2017) Thermo-acoustofluidic separation of vesicles based on cholesterol content. Lab Chip 17:1332–1339

    Article  CAS  PubMed  Google Scholar 

  116. Dow P, Kotz K, Gruszka S, Holder J, Fiering J (2018) Acoustic separation in plastic microfluidics for rapid detection of bacteria in blood using engineered bacteriophage. Lab Chip 18:923–932

    Article  CAS  PubMed  Google Scholar 

  117. Ohlsson P, Petersson K, Augustsson P, Laurell T (2018) Acoustic impedance matched buffers enable separation of bacteria from blood cells at high cell concentrations. Sci Rep 8:1–11

    Article  CAS  Google Scholar 

  118. Lenshof A, Magnusson C, Laurell T (2012) Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems. Lab Chip 12:1210–1223

    Article  CAS  PubMed  Google Scholar 

  119. Antfolk M, Magnusson C, Augustsson P, Lilja H, Laurell T (2015) Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal Chem 87:9322–9328

    Article  CAS  PubMed  Google Scholar 

  120. Grenvall C, Magnusson C, Lilja H, Laurell T (2015) Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis. Anal Chem 87:5596–5604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Johnson DA, Feke DL (1995) Methodology for fractionating suspended particles using ultrasonic standing wave and divided flow fields. Sep Technol 5:251–258

    Article  CAS  Google Scholar 

  122. Chen Y et al (2016) High-throughput acoustic separation of platelets from whole blood. Lab Chip 16:3466–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Antfolk M, Laurell T (2017) Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood – a review. Anal Chim Acta 965:9–35

    Article  CAS  PubMed  Google Scholar 

  124. Petersson F, Åberg L, Swärd-Nilsson AM, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79:5117–5123

    Article  CAS  PubMed  Google Scholar 

  125. Karthick S, Sen AK (2018) Improved understanding of acoustophoresis and development of an acoustofluidic device for blood plasma separation. Phys Rev Appl 10:1

    Article  Google Scholar 

  126. Karthick S, Pradeep PN, Kanchana P, Sen AK (2018) Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis. Lab Chip 18:3802–3813

    Article  CAS  PubMed  Google Scholar 

  127. Piyasena ME et al (2012) Multinode acoustic focusing for parallel flow cytometry. Anal Chem 84:1831–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Goddard G, Martin JC, Graves SW, Kaduchak G (2006) Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer. Cytometry A. https://doi.org/10.1002/cyto.a.20205

  129. Kalb DM et al (2017) Line-focused optical excitation of parallel acoustic focused sample streams for high volumetric and analytical rate flow cytometry. Anal Chem. https://doi.org/10.1021/acs.analchem.7b02319

  130. Jakobsson O, Grenvall C, Nordin M, Evander M, Laurell T (2014) Acoustic actuated fluorescence activated sorting of microparticles. Lab Chip 14:1943–1950

    Article  CAS  PubMed  Google Scholar 

  131. Jakobsson O et al (2015) Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device. Anal Chem 87:8497–8502

    Article  CAS  PubMed  Google Scholar 

  132. Wiklund M, Radel S, Hawkes JJ (2013) Acoustofluidics 21: Ultrasound-enhanced immunoassays and particle sensors. Lab Chip 13:25–39

    Article  CAS  PubMed  Google Scholar 

  133. Reboud J et al (2012) Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. Proc Natl Acad Sci U S A 109:15162–15167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gracioso Martins AM et al (2014) Toward complete miniaturisation of flow injection analysis systems: microfluidic enhancement of chemiluminescent detection. Anal Chem 86:10812–10819

    Article  CAS  PubMed  Google Scholar 

  135. Destgeer G et al (2014) Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves. Appl Phys Lett 104:10–15

    Article  CAS  Google Scholar 

  136. Cecchini M, Girardo S, Pisignano D, Cingolani R, Beltram F (2008) Acoustic-counterflow microfluidics by surface acoustic waves. Appl Phys Lett 92:2006–2009

    Article  CAS  Google Scholar 

  137. Zhang SP et al (2018) Digital acoustofluidics enables contactless and programmable liquid handling. Nat Commun 9:1–11

    CAS  Google Scholar 

  138. Bourquin Y, Reboud J, Wilson R, Zhang Y, Cooper JM (2011) Integrated immunoassay using tuneable surface acoustic waves and lensfree detection. Lab Chip 11:2725–2730

    Article  CAS  PubMed  Google Scholar 

  139. Collins DJ, Ma Z, Ai Y (2016) Highly localized acoustic streaming and size-selective submicrometer particle concentration using high frequency microscale focused acoustic fields. Anal Chem 88:5513–5522

    Article  CAS  PubMed  Google Scholar 

  140. Bourquin Y et al (2014) Rare-cell enrichment by a rapid, label-free, ultrasonic isopycnic technique for medical diagnostics. Angew Chem Int Ed 53:5587–5590

    Article  CAS  Google Scholar 

  141. Destgeer G et al (2016) Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab Chip 16:660–667

    Article  CAS  PubMed  Google Scholar 

  142. Lee K, Shao H, Weissleder R, Lee H, Al LEEET (2015) Acoustic purification of extracellular microvesicles. ACS Nano 9(3):2321–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ding X et al (2012) Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip 12:4228–4231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen Y et al (2014) Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW). Lab Chip 14:924–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nam J, Lim H, Kim D, Shin S (2011) Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip 11:3361–3364

    Article  CAS  PubMed  Google Scholar 

  146. Shi J, Mao X, Ahmed D, Colletti A, Huang TJ (2008) Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223

    Article  CAS  PubMed  Google Scholar 

  147. Ren L et al (2015) A high-throughput acoustic cell sorter. Lab Chip 15:3870–3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shi J, Huang H, Stratton Z, Huang Y, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:3354–3359

    Article  CAS  PubMed  Google Scholar 

  149. Ren L et al (2018) Standing surface acoustic wave (SSAW)-based fluorescence-activated cell sorter. Small 14:1–8

    CAS  Google Scholar 

  150. Chen Y et al (2014) Standing surface acoustic wave (SSAW)-based microfluidic cytometer. Lab Chip 14:916–923

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ai Y, Sanders CK, Marrone BL (2013) Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem 85:9126–9134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang Z et al (2020) Erratum: Isolation of exosomes from whole blood by integrating acoustics and microfluidics (Proceedings of the National Academy of Sciences of the United States of America (2017) 114 (10584–10589) DOI: 10.1073/pnas.1709210114). Proc Natl Acad Sci U S A 117:28525

    CAS  Google Scholar 

  153. Ding X et al (2014) Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci U S A 111:12992–12997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dao M et al (2015) Acoustic separation of circulating tumor cells. Proc Natl Acad Sci U S A 112:4970–4975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Wu M et al (2018) Circulating tumor cell phenotyping via high-throughput acoustic separation. Small 14:1–10

    CAS  Google Scholar 

  156. Franke T, Braunmüller S, Schmid L, Wixforth A, Weitz DA (2010) Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10:789–794

    Article  CAS  PubMed  Google Scholar 

  157. Ma Z, Collins DJ, Ai Y (2016) Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave. Anal Chem 88:5316–5323

    Article  CAS  PubMed  Google Scholar 

  158. Ung WL et al (2017) Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design. Lab Chip 17:4059–4069

    Article  CAS  PubMed  Google Scholar 

  159. Destgeer G, Ha BH, Jung JH, Sung HJ (2014) Submicron separation of microspheres via travelling surface acoustic waves. Lab Chip 14:4665–4672

    Article  CAS  PubMed  Google Scholar 

  160. Ahmed D et al (2016) Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 7:11085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lee AP, Patel MV, Tovar AR, Okabe Y (2010) Microfluidic air-liquid cavity acoustic transducers for on-chip integration of sample preparation and sample detection. J Assoc Lab Autom 15:449–454

    Article  CAS  Google Scholar 

  162. Rasouli MR, Tabrizian M (2019) An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles. Lab Chip 19:3316–3325

    Article  CAS  PubMed  Google Scholar 

  163. Doinikov AA, Gerlt MS, Dual J (2020) Acoustic radiation forces produced by sharp-edge structures in microfluidic systems. Phys Rev Lett 124:154501

    Article  CAS  PubMed  Google Scholar 

  164. Huang PH et al (2014) A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip 14:4319–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Huang PH et al (2013) An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Lab Chip 13:3847–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Huang PH et al (2015) An acoustofluidic sputum liquefier. Lab Chip 15:3125–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang Z et al (2019) Cell lysis: via acoustically oscillating sharp edges. Lab Chip 19:4021–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Leibacher I, Hahn P, Dual J (2015) Acoustophoretic cell and particle trapping on microfluidic sharp edges. Microfluid Nanofluid 19:923–933

    Article  CAS  Google Scholar 

  169. Shanti A, Teo J, Stefanini C (2018) In vitro immune organs-on-chip for drug development: a review. Pharmaceutics 10:278

    Article  CAS  PubMed Central  Google Scholar 

  170. McKim J Jr (2010) Building a tiered approach to in vitro predictive toxicity screening: a focus on assays with in vivo relevance. Comb Chem High Throughput Screen 13:188–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Prantil-Baun R et al (2018) Physiologically based pharmacokinetic and pharmacodynamic analysis enabled by microfluidically linked organs-on-chips. Annu Rev Pharmacol Toxicol 58:37–64

    Article  CAS  PubMed  Google Scholar 

  172. Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N (2015) Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos 43:1823–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rowland M, Peck C, Tucker G (2011) Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 51:45–73

    Article  CAS  PubMed  Google Scholar 

  174. Kankala RK, Wang S-B, Chen A-Z (2019) Microengineered organ-on-a-chip platforms towards personalized medicine. Curr Pharm Des 24:5354–5366

    Article  CAS  Google Scholar 

  175. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Huh D et al (2013) Microfabrication of human organs-on-chips. Nat Protoc 8:2135–2157

    Article  CAS  PubMed  Google Scholar 

  178. Yum K, Hong SG, Healy KE, Lee LP (2014) Physiologically relevant organs on chips. Biotechnol J 9:16–27

    Article  CAS  PubMed  Google Scholar 

  179. Zhang YS et al (2017) Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A 114:E2293–E2302

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Perestrelo AR, Águas ACP, Rainer A, Forte G (2015) Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering. Sensors (Switzerland) 15:31142–31170

    Article  Google Scholar 

  181. Huh D et al (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Inamdar NK, Borenstein JT (2011) Microfluidic cell culture models for tissue engineering. Curr Opin Biotechnol 22:681–689

    Article  CAS  PubMed  Google Scholar 

  183. Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26:120–126

    Article  CAS  PubMed  Google Scholar 

  184. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    Article  CAS  PubMed  Google Scholar 

  185. Mittal R et al (2019) Organ-on-chip models: implications in drug discovery and clinical applications. J Cell Physiol 234:8352–8380

    Article  CAS  PubMed  Google Scholar 

  186. Arrigoni C, Gilardi M, Bersini S, Candrian C, Moretti M (2017) Bioprinting and organ-on-chip applications towards personalized medicine for bone diseases. Stem Cell Rev Rep 13:407–417

    Article  CAS  PubMed  Google Scholar 

  187. Skardal A et al (2017) Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep 7:1–16

    Article  CAS  Google Scholar 

  188. Lee SH, Sung JH (2018) Organ-on-a-chip technology for reproducing multiorgan physiology. Adv Healthc Mater 7:1–17

    Article  CAS  Google Scholar 

  189. Ronaldson-Bouchard K, Vunjak-Novakovic G (2018) Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22:310–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zamprogno P et al (2021) Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Commun Biol 4:1–10

    Article  CAS  Google Scholar 

  191. Zhang M et al (2021) Biomimetic human disease model of SARS-CoV-2-induced lung injury and immune responses on organ chip system. Adv Sci 8:1–14

    Google Scholar 

  192. Singh AV et al (2021) Advances in smoking related in vitro inhalation toxicology: a perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem Res Toxicol. https://doi.org/10.1021/acs.chemrestox.1c00219

  193. Huang D et al (2021) Reversed-engineered human alveolar lung-on-a-chip model. Proc Natl Acad Sci U S A 118:1–10

    Article  Google Scholar 

  194. Benam KH et al (2015) Engineered in vitro disease models. Annu Rev Pathol Mech Dis 10:195–262

    Article  CAS  Google Scholar 

  195. Jin Y et al (2018) Three-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neurons. Nat Biomed Eng 2:522–539

    Article  CAS  PubMed  Google Scholar 

  196. Estlack Z, Bennet D, Reid T, Kim J (2017) Microengineered biomimetic ocular models for ophthalmological drug development. Lab Chip 17:1539–1551

    Article  CAS  PubMed  Google Scholar 

  197. Ma C, Peng Y, Li H, Chen W (2021) Organ-on-a-chip: a new paradigm for drug development. Trends Pharmacol Sci 42:119–133

    Article  CAS  PubMed  Google Scholar 

  198. Wu Q et al (2020) Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online 19:1–19

    Article  CAS  Google Scholar 

  199. Yu F, Hunziker W, Choudhury D (2019) Engineering microfluidic organoid-on-a-chip platforms. Micromachines 10:1–12

    Article  Google Scholar 

  200. Chinen AB et al (2017) Nanoparticle probes for the detection of cancer biomarkers. Cells Tissues Fluoresc 115:10530–10574

    Google Scholar 

  201. Shi W et al (2017) Magnetic particles assisted capture and release of rare circulating tumor cells using wavy-herringbone structured microfluidic devices. Lab Chip 17:3291–3299

    Article  CAS  PubMed  Google Scholar 

  202. Viganò P et al (2001) Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection. Biomed Microdevices 3:191–200

    Article  Google Scholar 

  203. Binkley MM, Cui M, Berezin MY, Meacham JM (2020) Antibody conjugate assembly on ultrasound-confined microcarrier particles. ACS Biomater Sci Eng 6:6108–6116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Austin Suthanthiraraj PP, Sen AK (2019) Localized surface plasmon resonance (LSPR) biosensor based on thermally annealed silver nanostructures with on-chip blood-plasma separation for the detection of dengue non-structural protein NS1 antigen. Biosens Bioelectron 132:38–46

    Article  CAS  PubMed  Google Scholar 

  206. Khan NI, Song E (2020) Lab-on-a-chip systems for aptamer-based biosensing. Micromachines 11:220

    Article  PubMed Central  Google Scholar 

  207. Chen Y, Pulikkathodi K, Ma Y, Wang Y, Lee G (2019) Lab on a Chip transistors for enumeration of circulating tumor. Lab Chip. https://doi.org/10.1039/c8lc01072b

  208. Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. Trends Anal Chem 27:108–117

    Article  CAS  Google Scholar 

  209. Campaña AL et al (2019) Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater. Biosensors 9:41

    Article  PubMed Central  CAS  Google Scholar 

  210. Hernández-Ibáñez N et al (2016) Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens Bioelectron 77:1168–1174

    Article  PubMed  CAS  Google Scholar 

  211. Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Polypyrrole-hydrogel composites for the construction of clinically important biosensors. Biosens Bioelectron 17:53–59

    Article  CAS  PubMed  Google Scholar 

  212. Maji SK, Sreejith S, Mandal AK, Ma X, Zhao Y (2014) Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl Mater Interfaces 6:13648–13656

    Article  CAS  PubMed  Google Scholar 

  213. Jiang S et al (2013) Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat Commun 4:1–7

    Article  Google Scholar 

  214. Karunya R et al (2019) Rapid measurement of hydrogen sulphide in human blood plasma using a microfluidic method. Sci Rep 9:1–11

    Article  CAS  Google Scholar 

  215. Gaikwad R, Thangaraj PR, Sen AK (2021) Direct and rapid measurement of hydrogen peroxide in human blood using a microfluidic device. Sci Rep 11:1–10

    Article  CAS  Google Scholar 

  216. Del Ben F et al (2016) A method for detecting circulating tumor cells based on the measurement of single-cell metabolism in droplet-based microfluidics. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.201602328

  217. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? (vol 41, pg 211, 2016). Trends Biochem Sci 41:287

    Article  CAS  PubMed  Google Scholar 

  218. Balcells M et al (2002) Reactive polymer coatings: a platform for patterning proteins and mammalian cells onto a broad range of materials. Langmuir 9:3632–3638

    Google Scholar 

  219. Khademhosseini A, Yeh J, Jon S, Eng G, Suh KY (2004) Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab Chip 4:425–430

    Article  CAS  PubMed  Google Scholar 

  220. Vijayasai AP et al (2010) Haptic controlled three-axis MEMS gripper system. Rev Sci Instrum 81:105114

    Article  PubMed  CAS  Google Scholar 

  221. Tang Y et al (2014) Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells. Sci Rep. https://doi.org/10.1038/srep06052

  222. Di Carlo D, Aghdam N, Lee LP (2006) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78:4925–4930

    Article  PubMed  CAS  Google Scholar 

  223. Kim H, Lee S, Lee JH, Kim J (2015) Integration of a microfluidic chip with a size-based cell bandpass filter for reliable isolation of single cells. Lab Chip 15:4128–4132

    Article  CAS  PubMed  Google Scholar 

  224. Ahmed MG et al (2017) Isolation, detection, and antigen-based profiling of circulating tumor cells using a size-dictated immunocapture chip. Angew Chem Int Ed Engl 129:10821–10825

    Article  Google Scholar 

  225. Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220. https://doi.org/10.1039/B715524G

    Article  CAS  PubMed  Google Scholar 

  226. Fu AY, Spence C, Scherer A, Arnold FH, Quake SR (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17:1109–1111

    Article  CAS  PubMed  Google Scholar 

  227. Wyss HM, Blair DL, Morris JF, Stone HA, Weitz DA (2006) Mechanism for clogging of microchannels. Phys Rev E Stat Nonlinear Soft Matter Phys 74:1–4

    Article  CAS  Google Scholar 

  228. Park J et al (2006) Asymmetric nozzle structure for particles converging into a highly confined region. Curr Appl Phys 6:992–995

    Article  Google Scholar 

  229. Marella SV, Udaykumar HS (2004) Computational analysis of the deformability of leukocytes modeled with viscous and elastic structural components. Phys Fluids 16:244–264

    Article  CAS  Google Scholar 

  230. Huh D et al (2002) Use of air-liquid two-phase flow in hydrophobic microfluidic channels for disposable flow cytometers. Biomed Microdevices 4:141–149

    Article  Google Scholar 

  231. Choi S, Song S, Choi C, Park JK (2008) Sheathless focusing of microbeads and blood cells based on hydrophoresis. Small 4:634–641

    Article  CAS  PubMed  Google Scholar 

  232. Sajeesh P, Manasi S, Doble M, Sen AK (2015) A microfluidic device with focusing and spacing control for resistance-based sorting of droplets and cells. Lab Chip 15:3738–3748

    Article  CAS  PubMed  Google Scholar 

  233. Alazzam A, Mathew B, Alhammadi F (2017) Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis. J Sep Sci 40:1193–1200

    Article  CAS  PubMed  Google Scholar 

  234. Wang L et al (2009) Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 30:782–791

    Article  PubMed  CAS  Google Scholar 

  235. Wang X et al (2011) Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11:3656–3662

    Article  CAS  PubMed  Google Scholar 

  236. Palmer RMJ, Ferrige AG, Moncada S (1987) Optical trapping and manipulation of single cells using infrared laser beam. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  237. Zhang Z, Kimkes TEP, Heinemann M (2019) Manipulating rod-shaped bacteria with optical tweezers. Sci Rep 9:1–9

    CAS  Google Scholar 

  238. Chiu TK et al (2016) Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis-cancer cell line model. Sci Rep 6:1–14

    Article  CAS  Google Scholar 

  239. Robert D et al (2011) Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 11:1902–1910

    Article  CAS  PubMed  Google Scholar 

  240. Shen F, Hwang H, Hahn YK, Park JK (2012) Label-free cell separation using a tunable magnetophoretic repulsion force. Anal Chem 84:3075–3081

    Article  CAS  PubMed  Google Scholar 

  241. Rodríguez-Villarreal AI et al (2011) Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup. Lab Chip 11:1240–1248

    Article  PubMed  Google Scholar 

  242. Zeng J, Chen C, Vedantam P, Tzeng TR, Xuan X (2013) Magnetic concentration of particles and cells in ferrofluid flow through a straight microchannel using attracting magnets. Microfluid Nanofluid 15:49–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satpathi, N.S. et al. (2022). Applications of Microfluidics. In: Mohanan, P.V. (eds) Microfluidics and Multi Organs on Chip . Springer, Singapore. https://doi.org/10.1007/978-981-19-1379-2_2

Download citation

Publish with us

Policies and ethics