Skip to main content

Photodynamic Therapy of Brain Diseases

  • Chapter
  • First Online:
Advances in Brain Imaging Techniques

Abstract

Photodynamic therapy is a highly perspective tool for cancer treatment. The PDT method has been used for more than 30 years to treat patients with brain cancer. In recent years, the active study of reactive oxygen species and, in particular, the properties of singlet oxygen have opened up new prospects for the use of PDT, and also opened the veil of mystery of the mechanisms behind the action of this method. In addition, the recent discovery of meningeal lymphatic vessels, the properties of PDT to violate the integrity of the blood–brain barrier, and the incompatibility of this with the purification of brain tissue, turned PDT into a method of fighting not only cancer but also other neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Uzdensky AB, Berezhnaya E, Kovaleva V, Neginskaya M, Rudkovskii M, Sharifulina S (2015) Photodynamic therapy: a review of applications in neurooncology and neuropathology. J Biomed Opt 20:61108

    Article  PubMed  Google Scholar 

  2. Zakharov SD, Ivanov AV (1999) Light-oxygen effect in cells and its potential applications in tumour therapy (review). Quant Electron 29:1031

    Article  CAS  Google Scholar 

  3. Kostron H, Hasan T (eds) (2016) Photodynamic medicine: from bench to clinic. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  4. Zavadskaya TS (2015) Photodynamic therapy in the treatment of glioma. Exp Oncol 37:234–241

    Article  Google Scholar 

  5. Abdurashitov A, Tuchin V, Semyachkina-Glushkovskaya O (2020) Photodynamic therapy of brain tumors and novel optical coherence tomography strategies for in vivo monitoring of cerebral fluid dynamics. J Innov Opt Health Sci 13:2030004

    Article  CAS  Google Scholar 

  6. Kwang J (2012) Int Rev Cell Mol Biol 295:139–174

    Article  CAS  Google Scholar 

  7. Edge R, Truscott TG (2021) The reactive oxygen species singlet oxygen, hydroxy radicals, and the superoxide radical anion—examples of their roles in biology and medicine. Oxygen 1:77–95

    Article  Google Scholar 

  8. Gunaydin G, Gedik M, Seylan A (2021) Photodynamic therapy—current limitations and novel approaches. Front Chem 9:691697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferreira dos Santos A, de Almeida DRQ, Terra LF, Baptista MS, Labriola L (2019) Photodynamic therapy in cancer treatment—an update review. J Cancer Metastasis Treat 5:25–45

    CAS  Google Scholar 

  10. Fahmy SA, Azzazy HM, Schaefer J (2021) Liposome photosensitizer formulations for effective cancer photodynamic therapy. Pharmaceutics 13:1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cramer SW, Chen CC (2020) Photodynamic therapy for the treatment of glioblastoma. Front Surg 6:81–92

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ailioaie LM, Ailioaie C, Litscher G (2021) Latest innovations and nanotechnologies with curcumin as a nature-inspired photosensitizer applied in the photodynamic therapy of cancer. Pharmaceutics 23:1562

    Article  CAS  Google Scholar 

  13. Chung H, Dai T, Sharma SK, Huang Y, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533

    Article  PubMed  Google Scholar 

  14. Cotler HB, Chow RT, Hamblin MR, Carroll J (2015) The use of low-level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop Rheumatol 2:188–194

    Article  Google Scholar 

  15. Matheson BC, Lee J (1971) Comparison of the pressure dependences of the visible and infrared electronic absorption spectra of oxygen in gas and in Freon solution. Chem Phys Lett 7:235–239

    Google Scholar 

  16. Jockusch S, Turro NJ, Thompson EK, Gouterman M, Callis JB, Khalil GE (2008) Singlet molecular oxygen by direct excitation. Photochem Photobiol Sci 7:235–239

    Article  CAS  PubMed  Google Scholar 

  17. Anquez F, El Yazidi-Belkoura I, Randoux S, Suret P, Courtade E (2012) Cancerous cell death from sensitizer free photoactivation of singlet oxygen. Photochem Photobiol 88:167–174

    Article  CAS  PubMed  Google Scholar 

  18. Sokolovski SG, Zolotovskaya SA, Goltsov A, Pourreyron C, South AP, Rafailov EU (2013) Infrared laser pulse triggers excessive singlet oxygen production selectively targeting tumour cells. Sci Rep 3:3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Perria C, Capuzzo T, Cavagnaro G, Datti R, Francaviglia N, Rivano C, Tercero VE (1980) Fast attempts at the photodynamic treatment of human gliomas. J Neurosurg Sci 24:119–129

    CAS  PubMed  Google Scholar 

  20. Stylli SS, Kaye AH, MacGregor L, Howes M, Rajendra P (2005) Photodynamic therapy of high grade glioma—long term survival. J Clin Neurosci 12:389–398

    Article  CAS  PubMed  Google Scholar 

  21. Muller PJ, Wilson BC (2006) Photodynamic therapy of brain tumor—a work in progress. Laser Surg Med 38:384–389

    Article  Google Scholar 

  22. Stepp H, Beck T, Pongratz T, Meinel T, Kreth F, Tonn J, Stummer W (2007) ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment. J Environ Pathol Toxicol Oncol 26:157–164

    Article  CAS  PubMed  Google Scholar 

  23. Peshavariya HM, Dusting GJ, Selemidis S (2007) Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic Res 41:699–712

    Article  CAS  PubMed  Google Scholar 

  24. Halliwell B, Gutteridge GM (2007) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  25. Adams JC, Watt FM (1998) An unusual strain of human keratinocytes which do not stratify or undergo terminal differentiation in culture. J Cell Biol 107:1927–1938

    Article  Google Scholar 

  26. Semyachkina-Glushkovskaya OV, Sokolovski SG, Goltsov A, Gekaluyk AS, Saranceva EI, Bragina OA, Tuchin VV, Rafailov EU (2017) Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology. J Progr Quant Electron 55:112–128

    Article  Google Scholar 

  27. Agostinis P, Berg K, Cengel KA (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

    Article  PubMed  PubMed Central  Google Scholar 

  28. Waleska KM, Belotto R, Silva MN, Grasso D, Suriani MD, Lavor TS, Itri R, Baptista MS, Tsubone TM (2021) Autophagy regulation and photodynamic therapy: insights to improve outcomes of cancer treatment. Front Oncol 10:610472

    Article  Google Scholar 

  29. Yanovsky RL, Bartenstein DW, Rogers GS, Isakoff SJ, Chen ST (2019) Photodynamic therapy for solid tumors: a review of the literature. Photodermatol Photoimmunol Photomed 35:295–303

    Article  PubMed  Google Scholar 

  30. Algorri JF, Ochoa M, Roldán-Varona P (2021) Photodynamic therapy: a compendium of latest reviews. Cancers (Basel) 13:4447

    Article  CAS  Google Scholar 

  31. Turubanova VD, Mishchenko TA, Balalaeva IV, Efimov I, Peskova NN, Klapshina LG, Lermontova SA, Bachert C, Krysko O, Vedunova MV, Krysko DV (2021) Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death. Sci Rep 11:7205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eljamel MS, Goodman C, Moseley H (2008) ALA and photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single Centre phase III randomised controlled trial. Lasers Med Sci 23:361–367

    Article  PubMed  Google Scholar 

  33. Muragaki Y, Akimoto J, Maruyama T (2013) Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain. J Neurosurg 119:845–852

    Article  CAS  PubMed  Google Scholar 

  34. Bechet D, Mordon SR, Guillemin F (2014) Photodynamic therapy of malignant brain tumors: a complementary approach to conventional therapies. Cancer Treat Rev 40:229–241

    Article  PubMed  Google Scholar 

  35. Quirk BJ, Brandal G, Donlon S (2015) Photodynamic therapy (PDT) for malignant brain tumors—where do we stand? Photodiagn Photodyn Ther 12:530–544

    Article  Google Scholar 

  36. Gasper LE, Fisher BJ, Macdonald DR (1992) Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. Int J Radiat Oncol Biol Phys 24:55–57

    Article  Google Scholar 

  37. Kaneko S (2012) Safety guidelines for diagnostic and therapeutic laser applications in the neurosurgical field. Laser Ther 21:129–136

    Article  PubMed  PubMed Central  Google Scholar 

  38. Akimoto J (2016) Photodynamic therapy for malignant brain tumors. Neurol Med Chir 56:151–157

    Article  Google Scholar 

  39. Eljamel S (2010) Photodynamic applications in brain tumors: a comprehensive review of the literature. Photodiagn Photodyn Ther 7:76–85

    Article  CAS  Google Scholar 

  40. Zhang C, Feng W, Vodovozova E (2018) Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window. Biomed Opt Express 9:4850–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bors L, Tóth K, Tóth EZ (2018) Age-dependent changes at the blood-brain barrier. A comparative structural and functional study in young adult and middle aged rats. Brain Res Bull 139:269–277

    Article  CAS  PubMed  Google Scholar 

  42. Ruk I, Pouckova P, Benes J (2019) Drug delivery systems for phthalocyanines for photodynamic therapy. Anticancer Res 39:3323–3339

    Article  CAS  Google Scholar 

  43. Sansaloni-Pastor S, Bouilloux J, Lange N (2019) The dark side: photosensitizer prodrugs. Pharmaceuticals 12:148

    Article  CAS  PubMed Central  Google Scholar 

  44. Semyachkina-Glushkovskaya O, Borisova E, Mantareva V, Angelov I, Eneva I, Terskov A, Mamedova A, Shirokov A, Khorovodov A, Klimova M, Agranovich I, Blokhina I, Lezhnev N, Kurths J (2020) Photodynamic opening of the blood-brain barrier using different photosensitizers in mice. Appl Sci 10:33–45

    Article  CAS  Google Scholar 

  45. Mathews MS, Chighvinadze D, Gach HM, Uzal FA, Madsen SJ, Hirschberg H (2011) Cerebral edema following photodynamic therapy using endogenous and exogenous photosensitizers in normal brain. Lasers Surg Med 43:892–900

    Article  PubMed  PubMed Central  Google Scholar 

  46. Semyachkina-Glushkovskaya O, Chehonin V, Borisova E, Fedosov I, Namykin A, Abdurashitov A, Shirokov A, Khlebtsov B, Lyubun Y, Navolokin N, Ulanova M, Shushunova N, Khorovodov A, Agranovich I, Bodrova A, Sagatova M, Shareef AE, Saranceva E, Iskra T, Dvoryatkina M, Zhinchenko E, Sindeeva O, Tuchin V, Kurths J (2018) Photodynamic opening of the blood-brain barrier and pathways of brain clearing. J Biophotonics 10:33–41

    Google Scholar 

  47. Schwamm LH (2012) Stroke in 2011: major advances across the spectrum of stroke care. Nat Rev Neurol 8:63–64

    Article  PubMed  Google Scholar 

  48. Tymianski M (2014) Stroke in 2013: disappointments and advances in acute stroke intervention. Nat Rev Neurol 10:66–68

    Article  PubMed  Google Scholar 

  49. Mergenthaler PH, Meisel A (2012) Do stroke models model stroke? Dis Models Mech 5:718–725

    Article  Google Scholar 

  50. Bergeron M (2013) Inducing photochemical cortical lesions in rat brain. Curr Protoc Neurosci 9:16

    Google Scholar 

  51. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504

    Article  CAS  PubMed  Google Scholar 

  52. Labatgest V, Tomasi S (2013) Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Vis 76:50370

    Google Scholar 

  53. Yanlin WF (ed) (2008) Manual of stroke models in rats. CRC Press, Boca Raton

    Google Scholar 

  54. Schmidt A, Hoppen M, Strecker J, Diederich K, Schäbitz W, Schilling M, Minnerup J (2012) Photochemically induced ischemic stroke in rats. Exp Transl Stroke Med 4:13

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schroeter M, Jander S, Stoll G (2002) Non-invasive induction of focal cerebral ischemia in mice by photothrombosis of cortical microvessels: characterization of inflammatory responses. J Neurosci Methods 117:43–49

    Article  PubMed  Google Scholar 

  56. Shanina EV, Redecker C, Reinecke S, Schallert T, Witte OW (2005) Long-term effects of sequential cortical infarcts on scar size, brain volume and cognitive function. Behav Brain Res 158:69–77

    Article  PubMed  Google Scholar 

  57. Wood N, Sopesen BV, Roberts JC, Pambakian P, Rothaul AL, Hunter AJ, Hamilton TC (1996) Motor dysfunction in a photothrombotic focal ischaemia model. Behav Brain Res 78:113–120

    Article  CAS  PubMed  Google Scholar 

  58. Minnerup J, Kim JB, Schmidt A, Diederich K, Bauer H, Schilling M, Strecker J, Ringelstein EB, Sommer C, Schöler HR, Schäbitz W (2011) Effects of neural progenitor cells on sensorimotor recovery and endogenous repair mechanisms after photothrombotic stroke. Stroke 42:1757–1763

    Article  PubMed  Google Scholar 

  59. Aerden L, Kessels F, Rutten B, Lodder J, Steinbusch H (2004) Diazepam reduces brain lesion size in a photothrombotic model of focal ischemia in rats. Neurosci Lett 367:76–78

    Article  CAS  PubMed  Google Scholar 

  60. Lopez-Valdes HE, Clarkson AN, Ao Y, Charles AC, Carmichael ST, Sofroniew MV, Brennan KC (2014) Memantine enhances recovery from stroke. Stroke 45:2093–2100

    Article  PubMed  PubMed Central  Google Scholar 

  61. Avraham Y, Davidi N, Lassri V, Vorobiev L, Kabesa M, Dayan M, Chernoguz D, Berry E, Leker R (2008) Leptin induces neuroprotection neurogenesis and angiogenesis after stroke. Curr Neurovasc Res 8:313–322

    Article  Google Scholar 

  62. Jang J-W, Lee J-K, Lee M-C, Piao M-S, Kim S-H, Kim H-S (2012) Melatonin reduced the elevated matrix metalloproteinase-9 level in a rat photothrombotic stroke model. J Neurol Sci 323:221–227

    Article  CAS  PubMed  Google Scholar 

  63. Genina EA, Bashkatov AN, Tuchina DK, Timoshina PAD, Navolokin N, Shirokov A, Khorovodov A, Terskov A, Klimova M, Mamedova A, Blokhina I, Agranovich I, Zinchenko E, Semyachkina-Glushkovskaya OV, Tuchin VV (2019) Optical properties of brain tissues at the different stages of glioma development in rats: pilot study. Biomed Opt Express 10:5182–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van der Zee P, Essenpreis M, Delpy DT (1993) Optical properties of brain tissue. Proc SPIE 1:117–123

    Google Scholar 

  65. Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ (2002) Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 47:2059–2073

    Article  CAS  PubMed  Google Scholar 

  66. Gebhart SC, Lin WC, Mahadevan-Jansen A (2006) In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Phys Med Biol 51:2011–2027

    Article  CAS  PubMed  Google Scholar 

  67. Honda N, Ishii K, Kajimoto Y, Kuroiw T, Awazu K (2018) Determination of optical properties of human brain tumor tissues from 350 to 1000 nm to investigate the cause of false negatives in fluorescence-guided resection with5-aminolevulinic acid. J Biomed Opt 23:1–10

    Article  PubMed  Google Scholar 

  68. Sterenborg HJ, Gemert M, Kamphorst W, Wolbers J, Hogervorst W (1989) The spectral dependence of the optical properties of human brain. Lasers Med Sci 4:221–227

    Article  Google Scholar 

  69. Madsen SJ (ed) (2013) Optical methods and instrumentation in brain imaging and therapy. Springer, New York

    Google Scholar 

  70. Golovynskyi S, Golovynska I, Stepanova LI, Datsenko O, Liwei Liu JQ, Ohulchanskyy T (2018) Optical windows for head tissues in near-infrared and short-wave infrared regions: approaching transcranial light applications. J Biophotonics 11:201800141

    Article  Google Scholar 

  71. Schwarzmaier H, Eickmeyer F, Fiedler V, Ulrich F (2002) Basic principles of laser induced interstitial thermotherapy in brain tumors. Med Laser Appl 108:201–208

    Google Scholar 

  72. Svaasand LO, Ellingsen R (1983) Optical properties of human brain. Photochem Photobiol 38:293–299

    Article  CAS  PubMed  Google Scholar 

  73. Zhao Y-J, Yu T-T, Zhang C, Li Z, Luo Q-M, Xu T-H, Zhu D (2018) Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution. Light Sci Appl 7:17153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tuchin VV (ed) (2005) Optical clearing of tissues and blood. SPIE Press, Bellingham, WA

    Google Scholar 

  75. Oliveira L, Tuchin VV (2019) The optical clearing method: a new tool for clinical practice and biomedical engineering. Springer Nature Switzerland AG, Basel

    Book  Google Scholar 

  76. V. V. Tuchin, Dan Zhu, E. A. Genina (ed), Handbook of tissue optical clearing: new prospects in optical imaging. (CRC Press, Boca Raton, 2022)

    Google Scholar 

  77. Sabeeh A, Tuchin VV (2020) Recent advances in the laser radiation transport through the head tissues of humans and animals. J Biomed Photon 6:40201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

This work was supported by RF Governmental Grant No. 075-15-2019-1885, Grant from RSF Nos. 20-15-00090 and 21-75-10088, RFBR Grant No. 19-515-55016 China a, 20-015-00308-a.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Telnova, V.V., Dubrovsky, A.I., Terskov, A.V., Tsven, A.S., Semyachkina-Glushkovskaya, O.V., Tuchin, V.V. (2022). Photodynamic Therapy of Brain Diseases. In: Mazumder, N., Gangadharan, G., Kistenev, Y.V. (eds) Advances in Brain Imaging Techniques. Springer, Singapore. https://doi.org/10.1007/978-981-19-1352-5_8

Download citation

Publish with us

Policies and ethics