Skip to main content

Quantum Anomalous Hall Effect in Magnetic Topological Insulator

  • Chapter
  • First Online:
Quantum Hybrid Electronics and Materials

Part of the book series: Quantum Science and Technology ((QST))

  • 1011 Accesses

Abstract

The quantum anomalous Hall effect (QAHE) is one of the hallmark phenomena associated with topological properties of the electronic band structure. When an electric current flows in a ferromagnetic topological insulator, the Hall resistance orthogonal to both current and magnetization is quantized to the von Klitzing constant \(h/e^2\), where h is the Planck’s constant and e is the elementary charge. The QAHE shares many phenomenological features with the quantum Hall effect in two-dimensional electron systems under strong magnetic fields despite the different microscopic origins of the phenomena. In this chapter, we review the basic concept and emerging properties of the QAHE. In particular, we discuss the transport properties in the engineered magnetic heterostructure films of topological insulators which have provided a unique platform to study emergent topological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics. Holt Rinehart and Winston.

    Google Scholar 

  2. Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Review of Modern Physics, 82, 3045.

    Article  ADS  Google Scholar 

  3. Qi, X.-L., & Zhang, S.-C. (2011). Topological insulators and superconductors. Review of Modern Physics, 83, 1057.

    Article  ADS  Google Scholar 

  4. Ando, Y. (2013). Topological insulator materials. Journal of the Physical Society of Japan, 82, 102001.

    Google Scholar 

  5. Klitzing, K. V., Dorda, G., & Pepper, M. (1980). New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical Review Letters, 45, 494.

    Google Scholar 

  6. Hall, E. (1879). On a new action of the magnet on electric currents. American Journal of Mathematics, 2, 287.

    Google Scholar 

  7. Thouless, D. J., Kohmoto, M., Nightingale, M. P., & den Nijs, M. (1982). Quantized Hall conductance in a two-dimensional periodic potential. Physical Review Letters, 49, 405.

    Google Scholar 

  8. Kohmoto, M. (1985). Topological invariant and the quantization of the Hall conductance. Annals of Physics, 160, 343.

    Google Scholar 

  9. Berry, M. V. (1984). Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London, 392, 45.

    Google Scholar 

  10. Qi, X.-L., Wu, Y.-S., & Zhang, S.-C. (2006). Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Physical Review B, 74, 085308.

    Google Scholar 

  11. Qi, X.-L., Hughes, T. L., & Zhang, S.-C. (2008). Topological field theory of time-reversal invariant insulators. Physical Review B, 78, 195424.

    Google Scholar 

  12. Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2008). Quantum anomalous Hall effect in Hg\(_{1-y}\)Mn\(_{y}\)Te quantum wells. Physical Review Letters, 101, 146802.

    Google Scholar 

  13. Li, R., Wang, J., Qi, X.-L., & Zhang, S.-C. (2010). Dynamical axion field in topological magnetic insulators. Nature Physics, 6, 284.

    Google Scholar 

  14. Yu, R., Zhang, W., Zhang, Z.-J., Zhang, S.-C., Dai, X., & Fang, Z. (2010). Quantized anomalous Hall effect in magnetic topological insulators. Science, 329, 61.

    Article  ADS  Google Scholar 

  15. Nomura, K., & Nagaosa, N. (2011). Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Physical Review Letters, 106, 166802.

    Google Scholar 

  16. Chang, C.-Z., et al. (2013). Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 340, 167.

    Google Scholar 

  17. Hall, E. (1881). On the “Rotational Coefficient“ in nickel and cobalt, The London, Edinburgh, and Dublin Philosophical. Magazine and Journal of Science, 12, 157.

    Google Scholar 

  18. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H., & Ong, N. P. (2010). Anomalous Hall effect. Review of Modern Physics, 82, 1539.

    Google Scholar 

  19. Karplus, R., & Luttinger, J. M. (1954). Hall effect in ferromagnetics. Physical Review, 95, 1154.

    Google Scholar 

  20. Onoda, M., & Nagaosa, N. (2002). Topological nature of anomalous Hall effect in ferromagnets. Journal of Physical Society of Japan, 71, 19.

    Google Scholar 

  21. Jungwirth, T., Niu, Q., & MacDonald, A. H. (2002). Anomalous Hall effect in ferromagnetic semiconductors. Physical Review Letters, 88, 207208.

    Google Scholar 

  22. Xiao, D., Chang, M.-C., & Niu, Q. (2010). Berry phase effects on electronic properties. Review of Modern Physics, 82, 1959.

    Google Scholar 

  23. Miyasato, T., Abe, N., Fujii, T., Asamitsu, A., Onoda, S., Onose, Y., Nagaosa, N., & Tokura, Y. (2007). Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Physical Review Letters, 99, 086602.

    Google Scholar 

  24. Sundaram, G., & Niu, Q. (1999). Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects. Physical Review B, 59, 14915.

    Google Scholar 

  25. Fang, Z., Nagaosa, N., Takahashi, K. S., Asamitsu, A., Mathieu, R., Ogasawara, T., Yamada, H., Kawasaki, M., Tokura, Y., & Terakura, K. (2003). The anomalous Hall effect and magnetic monopoles in momentum space. Science, 302, 92.

    Google Scholar 

  26. Yao, Y., Kleinman, L., MacDonald, A. H., Sinova, J., Jungwirth, T., Wang, D.-S., Wang, E., & Niu, Q. (2004). First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe. Physical Review Letters, 92, 037204.

    Google Scholar 

  27. Onoda, M., & Nagaosa, N. (2003). Quantized anomalous Hall effect in two-dimensional ferromagnets: quantum Hall effect in metals. Physical Review Letters, 90, 206601.

    Google Scholar 

  28. Tokura, Y., Yasuda, K., & Tsukazaki, A. (2019). Magnetic topological insulators. Nature Review Physics, 1, 126.

    Google Scholar 

  29. Liu, C.-X., Zhang, S.-C., & Qi, X.-L. (2016). The quantum anomalous Hall effect: theory and experiment. Annual Review of Condensed Matter Physics, 7, 301.

    Google Scholar 

  30. Kou, X., Fan, Y., & Wang, K. L. (2019). Review of quantum Hall trio. Journal of Physics and Chemistry of Solids, 128, 2.

    Google Scholar 

  31. He, K., Wang, Y., & Xue, Q.-K. (2018). Topological materials: Quantum anomalous Hall system. Annual Review of Condensed Matter Physics, 9, 329.

    Google Scholar 

  32. Kane, C. L., & Mele, E. J. (2005). \(Z_2\) Topological order and the quantum Spin Hall effect. Physical Review Letters, 95, 146802.

    Google Scholar 

  33. Kane, C. L., & Mele, E. J. (2005). Quantum spin Hall effect in graphene. Physical Review Letters, 95, 226801.

    Google Scholar 

  34. Fu, L., Kane, C. L., & Mele, E. J. (2007). Topological insulators in three dimensions. Physical Review Letters, 98, 106803.

    Google Scholar 

  35. Vergniory, M. G., Elcoro, L., Felser, C., Regnault, N., Bernevig, B. A., & Wang, Z. (2019). A complete catalogue of high-quality topological materials. Nature, 566, 480.

    Google Scholar 

  36. Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi\(_2\)Se\(_3\), Bi\(_2\)Te\(_3\) and Sb\(_2\)Te\(_3\) with a single Dirac cone on the surface. Nature Physics, 5, 438.

    Google Scholar 

  37. Hsieh, D., et al. (2009). Observation of unconventional quantum spin textures in topological insulators. Science, 323, 919.

    Google Scholar 

  38. Xia, Y., et al. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5, 398.

    Google Scholar 

  39. Chen, Y. L., et al. (2009). Experimental realization of a three-dimensional topological insulator, Bi\(_2\)Te\(_3\). Science, 325, 178.

    Google Scholar 

  40. Hsieh, D., et al. (2009). A tunable topological insulator in the spin helical Dirac transport regime. Nature, 460, 1101.

    Google Scholar 

  41. Cheng, P., et al. (2010). Landau quantization of topological surface states in Bi\(_2\)Se\(_3\). Physical Review Letters, 105, 076801.

    Google Scholar 

  42. Hanaguri, T., Igarashi, K., Kawamura, M., Takagi, H., & Sasagawa, T. (2010). Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi\(_2\)Se\(_3\). Physical Review B, 82, 081305.

    Google Scholar 

  43. Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K., & Ando, Y. (2010). Large bulk resistivity and surface quantum oscillations in the topological insulator Bi\(_2\)Te\(_2\)Se. Physical Review B, 82, 241306.

    Google Scholar 

  44. Taskin, A. A., Ren, Z., Sasaki, S., Segawa, K., & Ando, Y. (2011). Observation of Dirac holes and electrons in a topological insulator. Physical Review Letters, 107, 016801.

    Google Scholar 

  45. Arakane, T., Sato, T., Souma, S., Kosaka, K., Nakayama, K., Komatsu, M., Takahashi, T., Ren, Z., Segawa, K., & Ando, Y. (2012). Tunable Dirac cone in the topological insulator Bi\(_{2-x}\)Sb\(_x\)Te\(_{3-y}\)Se\(_y\). Nature Communication, 3, 636.

    Google Scholar 

  46. Zhang, J., et al. (2011). Band structure engineering in (Bi\(_{1-x}\)Sb\(_x\))\(_2\)Te\(_3\) ternary topological insulators. Nature Communication, 2, 574.

    Google Scholar 

  47. Haldane, F. D. M. (1988). Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “Parity anomaly. Physical Review Letters, 61, 2015.

    Google Scholar 

  48. Niemi, A. J., & Semenoff, G. W. (1983). Axial-anomaly-induced fermion fractionization and effective gauge-theory actions in odd-dimensional space-times. Physical Review Letters, 51, 2077.

    Google Scholar 

  49. Nielsen, N. B., & Ninomiya, M. (1981). Absence of neutrinos on a lattice: (I). Proof by homotopy theory. Nuclear Physics B, 185, 20.

    Google Scholar 

  50. Biswas, R. R., & Balatsky, A. V. (2010). Impurity-induced states on the surface of three-dimensional topological insulators. Physical Review B, 81, 233405.

    Google Scholar 

  51. Rosenberg, G., & Franz, M. (2012). Surface magnetic ordering in topological insulators with bulk magnetic dopants. Physical Review B, 85, 195119.

    Google Scholar 

  52. Henk, J., Flieger, M., Maznichenko, I. V., Mertig, I., Ernst, A., Eremeev, S. V., & Chulkov, E. V. (2012). Topological character and magnetism of the Dirac state in Mn-doped Bi\(_2\)Te\(_3\). Physical Review Letters, 109, 076801.

    Google Scholar 

  53. Zhang, J.-M., Zhu, W., Zhang, Y., Xiao, D., & Yao, Y. (2012). Tailoring magnetic doping in the topological insulator Bi\(_2\)Se\(_3\). Physical Review Letters, 109, 266405.

    Google Scholar 

  54. Liu, Q., Liu, C.-X., Xu, C., Qi, X.-L., & Zhang, S.-C. (2009). Magnetic impurities on the surface of a topological insulator. Physical Review Letters, 102, 156603.

    Google Scholar 

  55. Zhu, J.-J., Yao, D.-X., Zhang, S.-C., & Chang, K. (2011). Electrically controllable surface magnetism on the surface of topological insulators. Physical Review Letters, 106, 097201.

    Google Scholar 

  56. Checkelsky, J. G., Ye, J., Onose, Y., Iwasa, Y., & Tokura, Y. (2012). Dirac-fermion-mediated ferromagnetism in a topological insulator. Nature Physics, 8, 729.

    Google Scholar 

  57. Chang, C.-Z., et al. (2013). Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Advanced Materials, 25, 1065.

    Google Scholar 

  58. Wray, L. A., et al. (2011). A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nature Physics, 7, 32.

    Google Scholar 

  59. Chen, Y. L., et al. (2010). Massive Dirac Fermion on the surface of a magnetically doped topological insulator. Science, 329, 659.

    Google Scholar 

  60. Xu, S.-Y., et al. (2012). Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nature Physics, 8, 616.

    Google Scholar 

  61. Lee, I., et al. (2015). Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Cr\(_x\)(Bi\(_{0.1}\)Sb\(_{0.9}\))\(_{2-x}\)Te\(_3\). Proceedings of National Academy of Science, 112, 1316.

    Google Scholar 

  62. Wang, J., Lian, B., Zhang, H., & Zhang, S.-C. (2013). Anomalous edge transport in the quantum anomalous Hall state. Physical Review Letters, 111, 086803.

    Google Scholar 

  63. Kou, X., et al. (2014). Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Physical Review Letters, 113, 137201.

    Google Scholar 

  64. Checkelsky, J. G., Yoshimi, R., Tsukazaki, A., Takahashi, K. S., Kozuka, Y., Falson, J., Kawasaki, M., & Tokura, Y. (2014). Trajectory of anomalous Hall effect toward the quantized state in a ferromagnetic topological insulator. Nature Physics, 10, 731–736.

    Google Scholar 

  65. Chang, C.-Z., et al. (2015). High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nature Materials, 14, 473.

    Google Scholar 

  66. Grauer, S., Fijalkowski, K. M., Schreyeck, S., Winnerlein, M., Brunner, K., Thomale, R., Gould, C., & Molenkamp, L. W. (2017). Scaling of the quantum anomalous Hall effect as an indicator of axion electrodynamics. Physical Review Letters, 118, 246801.

    Google Scholar 

  67. König, M., Wiedemann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X.-L., & Zhang, S.-C. (2007). Quantum spin Hall insulator state in HgTe quantum wells. Science, 318, 766.

    Google Scholar 

  68. Pruisken, A. M. M. (1988). Universal singularities in the integral quantum Hall effect. Physical Review Letters, 61, 1297.

    Google Scholar 

  69. Huckestein, B. (1995). Scaling theory of the integer quantum Hall effect. Review of Modern Physics, 67, 357.

    Google Scholar 

  70. Sondhi, S. L., Girvin, S. M., Carini, J. P., & Shahar, D. (1997). Continuous quantum phase transitions. Review of Modern Physics, 69, 315.

    Google Scholar 

  71. Büttiker, M. (1986). Four-terminal phase-coherent conductance. Physical Review Letters, 57, 1761.

    Google Scholar 

  72. Büttiker, M. (1988). Absence of backscattering in the quantum Hall effect in multiprobe conductors. Physical Review B, 38, 9375.

    Google Scholar 

  73. Datta, S. (1997). Electronic transport in mesoscopic systems. Cambridge University Press.

    Google Scholar 

  74. Laughlin, R. B. (1981). Quantized Hall conductivity in two dimensions. Physical Review B, 23, 5632.

    Google Scholar 

  75. Hatsugai, Y. (1993). Chern number and edge states in the integer quantum Hall effect. Physical Review Letters, 71, 3697.

    Google Scholar 

  76. Morimoto, T., Furusaki, A., & Nagaosa, N. (2015). Topological magnetoelectric effects in thin films of topological insulators. Physical Review B, 92, 085113.

    Google Scholar 

  77. Pertsova, A., Canali, C. M., & MacDonald, A. H. (2016). Quantum Hall edge states in topological insulator nanoribbons. Physical Review B, 94, 121409.

    Google Scholar 

  78. Yasuda, K., Mogi1, M., Yoshimi, R., Tsukazaki, A., Takahashi, K. S., Kawasaki, M., Kagawa, F., & Tokura, Y. (2017). Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science, 358, 1311.

    Google Scholar 

  79. Sessi, P., et al. (2016). Dual nature of magnetic dopants and competing trends in topological insulators. Nature Communication, 7, 12027.

    Google Scholar 

  80. Lachman, E. O., et al. (2015). Visualization of superparamagnetic dynamics in magnetic topological insulators. Science Advances, 1, e1500740.

    Google Scholar 

  81. Wang, W., Chang, C.-Z., Moodera, J. S., & Wu, W. (2016). Visualizing ferromagnetic domain behavior of magnetic topological insulator thin films. Quantum Materials, 1, 16023.

    Google Scholar 

  82. Lachman, E. O., et al. (2017). Observation of superparamagnetism in coexistence with quantum anomalous Hall \(C\) = \(\pm \)1 and \(C\) = 0 Chern states. Quantum Materials, 2, 70.

    Google Scholar 

  83. Kawamura, M., Yoshimi, R., Tsukazaki, A., Takahashi, K. S., Kawasaki, M., & Tokura, Y. (2017). Current-driven instability of the quantum anomalous Hall effect in ferromagnetic topological insulators. Physical Review Letters, 119, 016803.

    Google Scholar 

  84. Fox, E. J., Rosen, I. T., Yang, Y., Jones, G. R., Elmquist, R. E., Kou, X., Pan, L., Wang, K. L., & Goldhaber-Gordon, D. (2018). Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. Physical Review B, 98, 075145.

    Google Scholar 

  85. Mogi, M., Yoshimi, R., Tsukazaki, A., Yasuda, K., Kozuka, Y., Takahashi, K. S., Kawasaki, M., & Tokura, Y. (2015). Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Applied Physics Letters, 107, 182401.

    Google Scholar 

  86. Ou, Y., et al. (2018). Enhancing the quantum anomalous Hall effect by magnetic codoping in a topological insulator. Advanced Materials, 30, 1703062.

    Google Scholar 

  87. Bestwick, A. J., Fox, E. J., Kou, X., Pan, L., Wang, K. L., & Goldhaber-Gordon, D. (2015). Precise quantization of the anomalous Hall effect near zero magnetic field. Physical Review Letters, 114, 187201.

    Google Scholar 

  88. Götz, M., et al. (2018). Precision measurement of the quantized anomalous Hall resistance at zero magnetic field. Applied Physics Letters, 112, 072102.

    Google Scholar 

  89. Okazaki, Y., et al. (2020). Precise resistance measurement of quantum anomalous Hall effect in magnetic heterostructure film of topological insulator. Applied Physics Letters, 116, 143101.

    Google Scholar 

  90. Mahoney, A. C., Colless, J. I., Peeters, L., Pauka, S. J., Fox, E. J., Kou, X., Pan, L., Wang, K. L., Goldhaber-Gordon, D., & Reilly, D. J. (2017). Zero-field edge plasmons in a magnetic topological insulator. Nature Communications, 8, 1836.

    Google Scholar 

  91. The International System of Units (SI). (2019). (9th Edn.). https://doi.org/10.6028/NIST.SP.330-2019

  92. von Klitzing, K. (2019). Essay: Quantum Hall effect and the new international system of units. Physical Review Letters, 122, 200001.

    Google Scholar 

  93. Poirier, W., & Schopfer, F. (2009). Resistance metrology based on the quantum Hall effect. European Physics Journal Special Topics, 172, 207.

    Google Scholar 

  94. Essin, A. M., Moore, J. E., & Vanderbilt, D. (2009). Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Physical Review Letters, 102, 146805.

    Google Scholar 

  95. Wang, J., Lian, B., Qi, X.-L., & Zhang, S.-C. (2015). Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Physical Review B, 92, 081107.

    Google Scholar 

  96. Maciejko, J., Qi, X.-L., Drew, H. D., & Zhang, S.-C. (2010). Topological quantization in units of the fine structure constant. Physical Review Letters, 105, 166803.

    Google Scholar 

  97. Tse, W.-K., & MacDonald, A. H. (2010). Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Physical Review Letters, 105, 057401.

    Google Scholar 

  98. Okada, K. N., Takahashi, Y., Mogi, M., Yoshimi, R., Tsukazaki, A., Takahashi, K. S., Ogawa, N., Kawasaki, M., & Tokura, Y. (2016). Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nature Communications, 7, 12245.

    Google Scholar 

  99. Wu, L., Salehi, M., Koirala, N., Moon, J., Oh, S., & Armitage, N. P. (2016). Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science, 354, 1124.

    Google Scholar 

  100. Fiebig, M. (2005). Revival of the magnetoelectric effect. Journal of Physics D, 38, R123.

    Google Scholar 

  101. Mogi, M., Kawamura, M., Tsukazaki, A., Yoshimi, R., Takahashi, K. S., Kawasaki, M., & Tokura, Y. (2017). Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Science Advances, 3, eaao1669.

    Google Scholar 

  102. Mogi, M., Kawamura, M., Yoshimi, R., Tsukazaki, A., Kozuka, Y., Shirakawa, N., Takahashi, K. S., Kawasaki, M., & Tokura, Y. (2017). A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nature Materials, 16, 516.

    Google Scholar 

  103. Allen, M., Cui, Y., Ma, E. Y., Mogi, M., Kawamura, M., Fulga, I. C., Goldhaber-Gordon, D., Tokura, Y., & Shen, Z.-X. (2019). Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proceedings of National Academy of Science, 116, 14511.

    Google Scholar 

  104. Wang, J., Lian, B., & Zhang, S.-C. (2015). Quantum anomalous Hall effect in magnetic topological insulators. Physica Scripta, T164, 014003.

    Google Scholar 

  105. Linder, J., Yokoyama, T., & Sudbø, A. (2009). Anomalous finite size effects on surface states in the topological insulator Bi\(_2\)Se\(_3\). Physical Review B, 80, 205401.

    Google Scholar 

  106. Zhang, Y., et al. (2010). Crossover of the three-dimensional topological insulator Bi\(_2\)Se\(_3\) to the two-dimensional limit. Nature Physics, 6, 584.

    Google Scholar 

  107. Wei, H. P., Tsui, D. C., Paalanen, M. A., & Pruisken, A. M. M. (1988). Experiments on delocalization and university in the integral quantum Hall effect. Physical Review Letters, 61, 1294.

    Google Scholar 

  108. Feng, Y., et al. (2015). Observation of the zero Hall plateau in a quantum anomalous Hall insulator. Physical Review Letters, 115, 126801.

    Google Scholar 

  109. Kou, X., Pan, L., Wang, J., Fan, Y., Choi, E. S., Lee, W.-L., Nie, T., Murata, K., Shao, Q., Zhang, S.-C., & Wang, K. L. (2015). Metal-to-insulator switching in quantum anomalous Hall states. Nature Communications, 6, 8474.

    Google Scholar 

  110. Kawamura, M., Mogi, M., Yoshimi, R., Tsukazaki, A., Kozuka, Y., Takahashi, K. S., Kawasaki, M., & Tokura, Y. (2018). Topological quantum phase transition in magnetic topological insulator upon magnetization rotation. Physical Review B, 98, 140404.

    Google Scholar 

  111. Aoki, H., & Ando, T. (1985). Critical localization in two-dimensional Landau quantization. Physical Review Letters, 54, 831.

    Google Scholar 

  112. Chalker, J. T., & Coddington, P. D. (1988). Percolation, quantum tunnelling and the integer Hall effect. Journal of Physics C: Solid State Physics, 21, 2665.

    Google Scholar 

  113. Slevin, K., & Ohtsuki, T. (2009). Critical exponent for the quantum Hall transition. Physical Review B, 80, 041304.

    Google Scholar 

  114. Kawamura, M., Mogi, M., Yoshimi, R., Tsukazaki, A., Kozuka, Y., Takahashi, K. S., Kawasaki, M., & Tokura, Y. (2020). Current scaling of the topological quantum phase transition between the quantum anomalous Hall insulator and a trivial insulator. Physical Review B, 102, 041301.

    Google Scholar 

  115. Polyakov, D. G., & Shklovskii, B. I. (1993). Conductivity-peak broadening in the quantum Hall regime. Physical Review B, 48, 11167.

    Google Scholar 

  116. Wei, H. P., Engel, L. W., & Tsui, D. C. (1994). Current scaling in the integer quantum Hall effect. Physical Review B, 50, 14609.

    Google Scholar 

  117. Yasuda, K., Tsukazaki, A., Yoshimi, R., Takahashi, K. S., Kawasaki, M., & Tokura, Y. (2016). Large unidirectional magnetoresistance in a magnetic topological insulator. Physical Review Letters, 117, 127202.

    Google Scholar 

  118. Hauser, J. J. (1969). Magnetic proximity effect. Physical Review, 187, 580.

    Google Scholar 

  119. Yang, Q. I., et al. (2013). Emerging weak localization effects on a topological insulator-insulating ferromagnet (Bi\(_2\)Se\(_3\)-EuS) interface. Physical Review B, 88, 081407.

    Google Scholar 

  120. Katmis, F., et al. (2016). A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature, 533, 513–516.

    Google Scholar 

  121. Kandala, A., Richardella, A., Rench, D. W., Zhanga, D. M., Flanagan, T. C., & Samarth, N. (2013). Growth and characterization of hybrid insulating ferromagnet-topological insulator heterostructure devices. Applied Physics Letters, 103, 202409.

    Google Scholar 

  122. Jiang, Z., Chang, C.-Z., Tang, C., Wei, P., Moodera, J. S., & Shi, J. (2015). Independent tuning of electronic properties and induced ferromagnetism in topological insulators with heterostructure approach. Nano Letters, 15, 5835–5840.

    Google Scholar 

  123. Tang, C., et al. (2017). Above 400-K robust perpendicular ferromagnetic phase in a topological insulator. Science Advances, 3, e1700307.

    Google Scholar 

  124. Watanabe, R., Yoshimi, R., Kawamura, M., Mogi, M., Tsukazaki, A., Yu, X. Z., Nakajima, K., Takahashi, K. S., Kawasaki, M., & Tokura, Y. (2019). Quantum anomalous Hall effect driven by magnetic proximity coupling in all-telluride based heterostructure. Applied Physics Letters, 115, 102403.

    Google Scholar 

  125. Sato, K., & Adachi, S. (1993). Optical properties of ZnTe. Journal of Applied Physics, 73, 926.

    Google Scholar 

  126. Otrokov, M. M., et al. (2017). Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Materials, 4 025082.

    Google Scholar 

  127. Eremeev, S. V., Men‘shov, V. N., Tugushev, V. V., Echenique, P. M., & Chulkov, E. V. (2013). Magnetic proximity effect at the three-dimensional topological insulator/magnetic insulator interface. Physical Review B, 88, 144430.

    Google Scholar 

  128. Ye, M., et al. (2015). Carrier-mediated ferromagnetism in the magnetic topological insulator Cr-doped (Sb, Bi)\(_2\)Te\(_3\). Nature Communications, 6, 8913.

    Google Scholar 

  129. Peixoto, T. R. F., et al. (2016). Impurity states in the magnetic topological insulator V:(Bi, Sb)\(_2\)Te\(_3\). Physical Review B, 94, 195140.

    Google Scholar 

  130. Mogi, M., et al. (2019). Large anomalous Hall effect in topological insulators with proximitized ferromagnetic insulators. Physical Review Letters, 123, 016804.

    Google Scholar 

  131. Liu, C., Wang, Y., Li, H., Wu, Y., Li, Y., Li, J., He, K., Xu, Y., Zhang, J., & Wang, Y. (2020). Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nature Materials, 19, 522.

    Google Scholar 

  132. Deng, Y., Yu, Y., Shi, M. Z., Guo, Z., Xu, Z., Wang, J., Chen, X. H., & Zhang, Y. (2020).Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi\(_2\)Te\(_4\). Science, 367, 895.

    Google Scholar 

  133. Sharpe, A. L., Fox, E. J., Barnard, A. W., Finney, J., Watanabe, K., Taniguchi, T., Kastner, M. A., & Goldhaber-Gordon, D. (2019). Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 365, 605.

    Google Scholar 

  134. Serlin, M., Tschirhart, C. L., Polshyn, H., Zhang, Y., Zhu, J., Watanabe, K., Taniguchi, T., Balents, L., & Young, A. F. (2020). Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science, 367, 900.

    Google Scholar 

  135. Li, J., Li, Y., Du, S., Wang, Z., Gu, B.-L., Zhang, S.-C., He, K., Duan, W., & Xu, Y. (2019). Intrinsic magnetic topological insulators in van der Waals layered MnBi\(_2\)Te\(_4\)-family materials. Science Advances , 5, eaaw5685.

    Google Scholar 

  136. Bistritzer, R., & MacDonald, A. H. (2011). Moiré bands in twisted double-layer graphene. Proceedings of National Academy of Sciences, 108, 12233.

    Google Scholar 

  137. Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., & Jarillo-Herrero, P. (2018). Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43.

    Google Scholar 

Download references

Acknowledgements

The author thanks R. Yoshimi, K. Yasuda, M. Mogi, A. Tsukazaki, T. Morimoto, N. Nagaosa, M. Kawasaki, and Y. Tokura for enlightening discussions. This research was supported in part by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (No. 15H05867) and Core Research for Evolutional Science and Technology (CREST), Japanese Science and Technology (JST, No. JPMJCR16F1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Kawamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawamura, M. (2022). Quantum Anomalous Hall Effect in Magnetic Topological Insulator. In: Hirayama, Y., Hirakawa, K., Yamaguchi, H. (eds) Quantum Hybrid Electronics and Materials. Quantum Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-1201-6_9

Download citation

Publish with us

Policies and ethics