Skip to main content

Spatiotemporal Location Privacy Preservation in 5G-Enabled Sparse Mobile Crowdsensing

  • Conference paper
  • First Online:
  • 542 Accesses

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 394))

Abstract

With the increasing popularity of 5G communications, smart cities have become one of the inevitable trends in the development of modern cities, and smart city services are the foundation of 5G smart cities. Sparse mobile crowdsensing (SparseMCS), as a new and informative urban service model, has attracted the attention of many researchers. Generally, the data required for a sensing task often has a high spatial and temporal correlation, which means that the data uploaded by users need to carry their location information, which may cause serious location privacy issues. The existing location privacy protection mechanism usually only pays attention to the location information of the user’s travel and ignores that people’s daily travel often has a fixed pattern. The attacker can use long-term observation and prior knowledge to infer the victim’s travel mode and analyze its location information. To achieve efficient, robust, and private data sensing, we built a SparseMCS framework with the following three elements: (1) We train the data adjustment model offline on the server-side and solve the position mapping matrix; (2) Design a noise-sensitive data reasoning algorithm improves the accuracy of data; (3) Combining differences and spatiotemporal location privacy to protect the user’s location information and travel mode. Experiments based on real datasets prove that our 5G-supported sparse mobile crowdsensing framework provides more comprehensive and effective location privacy protection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Tan, H. Xiao, K. Yu, M. Aloqaily, Y. Jararweh, A blockchain-empowered crowdsourcing system for 5G-enabled smart cities. Comput. Stand. Interfaces 76, 103517 (2021). [Online]. https://doi.org/10.1016/j.csi.2021.103517

  2. S.B. Shah, C. Zhe, F. Yin, I.U. Khan, S. Begum, M. Faheem, F.A. Khan, 3D weighted centroid algorithm & RSSI ranging model strategy for node localization in WSN based on smart devices. Sustain. Cities Soc. 39, 298–308 (2018). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2210670717312982

  3. S.B.H. Shah, L. Wang, M.E. Haque, M.J. Islam, A. Carie, N. Kumar, Lifetime improvements of smart sensors maintenance protocol in prospect of IoT-based Rampal power plant, in 2020 16th International Conference on Mobility, Sensing and Networking (MSN) (2020), pp. 260–267

    Google Scholar 

  4. S.B.H. Shah, Z. Chen, S.H. Ahmed, F. Yin, M. Faheem, S. Begum, Depth based routing protocol using smart clustered sensor nodes in underwater WSN, in Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, Amman, Jordan, 26–27 June 2018, ed. by A. Abuarqoub, B. Adebisi, M. Hammoudeh, S. Murad, M. Arioua (ACM, 2018), pp. 53:1–53:7. [Online]. https://doi.org/10.1145/3231053.3231119

  5. M. Faheem, R.A. Butt, B. Raza, M.W. Ashraf, M.A. Ngadi, V.C. Gungor, A multi-channel distributed routing scheme for smart grid real-time critical event monitoring applications in the perspective of industry 4.0. Int. J. Ad Hoc Ubiquitous Comput. 32(4), 236–256 (2019). [Online]. https://doi.org/10.1504/IJAHUC.2019.103264

  6. M. Faheem, R.A. Butt, R. Ali, B. Raza, M.A. Ngadi, V.C. Gungor, CBI4.0: a cross-layer approach for big data gathering for active monitoring and maintenance in the manufacturing industry 4.0. J. Ind. Inf. Integr. 24, 100236 (2021). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2452414X21000364

  7. Y. Zhu, Z. Li, H. Zhu, M. Li, Q. Zhang, A compressive sensing approach to urban traffic estimation with probe vehicles. IEEE Trans. Mob. Comput. 12(11), 2289–2302 (2013)

    Article  Google Scholar 

  8. R.K. Rana, C.T. Chou, S.S. Kanhere, N. Bulusu, W. Hu, Ear-phone: an end-to-end participatory urban noise mapping system, in Proceedings of the 9th International Conference on Information Processing in Sensor Networks, IPSN 2010, Stockholm, Sweden, 12–16 Apr 2010, ed. by T.F. Abdelzaher, T. Voigt, A. Wolisz (ACM, 2010), pp. 105–116. [Online]. https://doi.org/10.1145/1791212.1791226

  9. D. Hasenfratz, O. Saukh, S. Sturzenegger, L. Thiele, Participatory air pollution monitoring using smartphones. Mob. Sens. (2012)

    Google Scholar 

  10. L. Wang, D. Zhang, Y. Wang, C. Chen, X. Han, A. M’hamed, Sparse mobile crowdsensing: challenges and opportunities. IEEE Commun. Mag. 54(7), 161–167 (2016)

    Google Scholar 

  11. J.E. Dobson, P.F. Fisher, Geoslavery. IEEE Technol. Soc. Mag. 22(1), 47–52 (2003). [Online]. https://doi.org/10.1109/MTAS.2003.1188276

  12. J. Krumm, A survey of computational location privacy. Pers. Ubiquitous Comput. 13(6), 391–399 (2009)

    Article  Google Scholar 

  13. M.E. Andrés, N.E. Bordenabe, K. Chatzikokolakis, C. Palamidessi, Geo-indistinguishability: differential privacy for location-based systems, in 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin, Germany, 4–8 Nov 2013, ed. by A. Sadeghi, V.D. Gligor, M. Yung (ACM, 2013), pp. 901–914

    Google Scholar 

  14. C. Dwork, Differential privacy, in 33rd International Colloquium on Automata, Languages and Programming, ICALP 2006, Proceedings, Part II, Venice, Italy, 10–14 July 2006, ed. by M. Bugliesi, B. Preneel, V. Sassone, I. Wegener. Lecture Notes in Computer Science, vol. 4052 (Springer, 2006), pp. 1–12

    Google Scholar 

  15. R. Shokri, Privacy games: optimal user-centric data obfuscation, in Proc. Priv. Enh. Technol. 2015(2), 299–315 (2015). [Online]. https://doi.org/10.1515/popets-2015-0024

  16. Y. Cao, Y. Xiao, L. Xiong, L. Bai, PriSTE: from location privacy to spatiotemporal event privacy, in 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, 8–11 Apr 2019 (IEEE, 2019), pp. 1606–1609

    Google Scholar 

  17. V. Primault, A. Boutet, S.B. Mokhtar, L. Brunie, The long road to computational location privacy: a survey. IEEE Commun. Surv. Tutor. 21(3), 2772–2793 (2019)

    Article  Google Scholar 

  18. L. Pournajaf, D.A. Garcia-Ulloa, L. Xiong, V.S. Sunderam, Participant privacy in mobile crowd sensing task management: a survey of methods and challenges. SIGMOD Rec. 44(4), 23–34 (2015)

    Article  Google Scholar 

  19. K.T. Putra, H. Chen, Prayitno, M.R. Ogiela, C. Chou, C. Weng, Z. Shae, Federated compressed learning edge computing framework with ensuring data privacy for PM2.5 prediction in smart city sensing applications. Sensors 21(13), 4586 (2021). [Online]. https://doi.org/10.3390/s21134586

  20. M. Li, Y. Li, L. Fang, ELPPS: an enhanced location privacy preserving scheme in mobile crowd-sensing network based on edge computing, in 19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2020, Guangzhou, China, 29 Dec 2020–1 Jan 2021, ed. by G. Wang, R.K.L. Ko, M.Z.A. Bhuiyan, Y. Pan (IEEE, 2020), pp. 475–482. [Online]. https://doi.org/10.1109/TrustCom50675.2020.00071

  21. L. Wang, D. Zhang, D. Yang, B.Y. Lim, X. Han, X. Ma, Sparse mobile crowdsensing with differential and distortion location privacy. IEEE Trans. Inf. Forensics Secur. 15, 2735–2749 (2020)

    Article  Google Scholar 

  22. L.T. Nguyen, J. Kim, B. Shim, Low-rank matrix completion: a contemporary survey. IEEE Access 7, 94215–94237 (2019)

    Google Scholar 

  23. E.J. Candès, Y. Plan, Matrix completion with noise. Proc. IEEE 98(6), 925–936 (2010)

    Article  Google Scholar 

  24. D. Yang, D. Zhang, Z. Yu, Z. Yu, Fine-grained preference-aware location search leveraging crowdsourced digital footprints from LBSNs, in The 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’13, Zurich, Switzerland, 8–12 Sept 2013, ed. by F. Mattern, S. Santini, J.F. Canny, M. Langheinrich, J. Rekimoto (ACM, 2013), pp. 479–488. [Online]. https://doi.org/10.1145/2493432.2493464

  25. Y. Cao, Y. Xiao, L. Xiong, L. Bai, M. Yoshikawa, PriSTE: protecting spatiotemporal event privacy in continuous location-based services. Proc. VLDB Endow. 12(12), 1866–1869 (2019)

    Article  Google Scholar 

  26. S. Agrawal, J.R. Haritsa, A framework for high-accuracy privacy-preserving mining, in Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, Tokyo, Japan, 5–8 Apr 2005, ed. by K. Aberer, M.J. Franklin, S. Nishio (IEEE Computer Society, 2005), pp. 193–204

    Google Scholar 

  27. F. Ingelrest, G. Barrenetxea, G. Schaefer, M. Vetterli, O. Couach, M. Parlange, Sensorscope: application-specific sensor network for environmental monitoring. ACM Trans. Sens. Netw. 6(2), 17:1–17:32 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was support from the National Science Foundation of China (Grant No. 61877007), Fundamental Research Funds for the Central Universities (Grant No. DUT20GJ205), and the Shandong National Science Foundation of China (Grant No. ZR202103040468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingChu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Yang, Q., Zheng, X., Nawaf, L. (2022). Spatiotemporal Location Privacy Preservation in 5G-Enabled Sparse Mobile Crowdsensing. In: Bashir, A.K., Fortino, G., Khanna, A., Gupta, D. (eds) Proceedings of International Conference on Computing and Communication Networks. Lecture Notes in Networks and Systems, vol 394. Springer, Singapore. https://doi.org/10.1007/978-981-19-0604-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0604-6_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0603-9

  • Online ISBN: 978-981-19-0604-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics