Skip to main content

Microbial “OMICS” in Oral Cancer

  • Chapter
  • First Online:
Microbes and Oral Squamous Cell Carcinoma

Abstract

Oral squamous cell carcinoma (OSCC) is the leading cause of mortality in head and neck cancer. Unhealthy habits such as chewing tobacco, smoking, drinking, poor oral hygiene and diet are responsible for chronic inflammation and infections have been recognized as predisposing factors for oral carcinogenesis. Various bacterial species and viruses are known to be associated with oral cancer. The metabolic by-products of the bacterial flora induce permanent genetic alterations in epithelial cells of the host that may drive carcinogenesis. Recent advancements in “omics” technologies have been useful in identifying oral cancer-related microbiome, their genomes, virulence properties, and their interaction with host immunity. To understand the journey of a microbial community from supporting a healthy environment to transitioning into a diseased state, multi-omics approaches are being utilized. These approaches not only provide insight into the microbiome but they can also provide detailed information at the DNA (genome), RNA (transcriptome), protein (proteome), and metabolite (metabolome) level as well. The differential genomic and transcriptomic signatures would lead to the functional identity of the microbial community in a particular environment leading to alterations in the host biological process and pathways. The OMICS-based approaches are powerful tools available to researchers to understand the physiological and pathological roles of microbes in a host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shakya M, Lo CC, Chain PSG (2019) Advances and challenges in metatranscriptomic analysis. Front Genet 10:904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenberg E, Sharon G, Zilber-Rosenberg I (2009) The hologenome theory of evolution: a fusion of neo-Darwinism and Lamarckism. Environ Microbiol 11:2959–2962

    Article  PubMed  Google Scholar 

  3. Nyholm L, Koziol A, Marcos S, Botnen AB, Aizpurua O, Gopalakrishnan S et al (2020) Holo-omics: integrated host-microbiota multi-omics for basic and applied biological research. iScience 23(8):101414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Solbiati J, Frias-Lopez J (2018) Metatranscriptome of the oral microbiome in health and disease. J Dent Res 97(5):492–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Filiatrault MJ (2011) Progress in prokaryotic transcriptomics. Curr Opin Microbiol 14(5):579–586

    Article  CAS  PubMed  Google Scholar 

  6. Bashiardes S, Zilberman-Schapira G, Elinav E (2016) Use of metatranscriptomics in microbiome research. Bioinformatics Biol Insights 10:19–25

    Article  CAS  Google Scholar 

  7. Stashenko P, Yost S, Choi Y, Danciu T, Chen T, Yoganathan S et al (2019) The oral mouse microbiome promotes tumorigenesis in oral squamous cell carcinoma. mSystems 4(4):e00323–e00319

    Article  PubMed  PubMed Central  Google Scholar 

  8. Loo CY, Mitrakul K, Voss IB, Hughes CV, Ganeshkumar N (2003) Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. J Bacteriol 185(21):6241–6254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kilic AO, Tao L, Zhang Y, Lei Y, Khammanivong A, Herzberg MC (2004) Involvement of Streptococcus gordonii beta-glucoside metabolism systems in adhesion, biofilm formation, and in vivo gene expression. J Bacteriol 186(13):4246–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Janda WM, Kuramitsu HK (1978) Production of extracellular and cell-associated glucosyltransferase activity by Streptococcus mutans during growth on various carbon sources. Infect Immun 19(1):116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rolla G, Oppermann RV, Waaler SM, Assev S (1981) Effect of aqueous solutions of sorbitol-xylitol on plaque metabolism and on growth of Streptococcus mutans. Scand J Dent Res 89(3):247–250

    CAS  PubMed  Google Scholar 

  12. Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K et al (2014) Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J 8(8):1659–1672

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M (2014) Metatranscriptomics of the human oral microbiome during health and disease. MBio 5(2):e01012–e01014

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yost S, Duran-Pinedo AE, Krishnan K, Frias-Lopez J (2017) Potassium is a key signal in host-microbiome dysbiosis in periodontitis. PLoS Pathog 13(6):e1006457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J (2015) Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med 7(1):27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Yost S, Stashenko P, Choi Y, Kukuruzinska M, Genco CA, Salama A et al (2018) Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int J Oral Sci 10(4):32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6(9):911–920

    Article  CAS  PubMed  Google Scholar 

  18. Salvato F, Hettich RL, Kleiner M (2021) Five key aspects of metaproteomics as a tool to understand functional interactions in host-associated microbiomes. PLoS Pathog 17(2):e1009245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhardwaj A, Kaur J, Wuest M, Wuest F (2017) In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat Commun 8(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kleiner M (2019) Metaproteomics: much more than measuring gene expression in microbial communities. mSystems 4(3):e00115–e00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lassek C, Burghartz M, Chaves-Moreno D, Otto A, Hentschker C, Fuchs S et al (2015) A metaproteomics approach to elucidate host and pathogen protein expression during catheter-associated urinary tract infections (CAUTIs). Mol Cell Proteomics 14(4):989–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N et al (2019) Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell 179(1):59–73. e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pathak KV, McGilvrey MI, Hu CK, Garcia-Mansfield K, Lewandoski K, Eftekhari Z et al (2020) Molecular profiling of innate immune response mechanisms in ventilator-associated pneumonia. Mol Cell Proteomics 19(10):1688–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Belda-Ferre P, Williamson J, Simon-Soro A, Artacho A, Jensen ON, Mira A (2015) The human oral metaproteome reveals potential biomarkers for caries disease. Proteomics 15(20):3497–3507

    Article  CAS  PubMed  Google Scholar 

  25. Gavin PG, Mullaney JA, Loo D, Cao KL, Gottlieb PA, Hill MM et al (2018) Intestinal metaproteomics reveals host-microbiota interactions in subjects at risk for Type 1 diabetes. Diabetes Care 41(10):2178–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanca A, Palomba A, Fraumene C, Manghina V, Silverman M, Uzzau S (2018) Clostridial butyrate biosynthesis enzymes are significantly depleted in the gut microbiota of nonobese diabetic mice. mSphere 24:3(5)

    Google Scholar 

  27. Jewett A, Head C, Cacalano NA (2006) Emerging mechanisms of immunosuppression in oral cancers. J Dent Res 85(12):1061–1073

    Article  CAS  PubMed  Google Scholar 

  28. Shah NG, Trivedi TI, Tankshali RA, Goswami JA, Jetly DH, Kobawala TP et al (2006) Stat3 expression in oral squamous cell carcinoma: association with clinicopathological parameters and survival. Int J Biol Markers 21(3):175–183

    Article  CAS  PubMed  Google Scholar 

  29. Squarize CH, Castilho RM, Sriuranpong V, Pinto DS Jr, Gutkind JS (2006) Molecular cross-talk between the NFkappaB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia 8(9):733–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Basseres DS, Baldwin AS (2006) Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25(51):6817–6830

    Article  CAS  PubMed  Google Scholar 

  31. Jin DY, Chae HZ, Rhee SG, Jeang KT (1997) Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. J Biol Chem 272(49):30952–30961

    Article  CAS  PubMed  Google Scholar 

  32. Lo WY, Tsai MH, Tsai Y, Hua CH, Tsai FJ, Huang SY et al (2007) Identification of over-expressed proteins in oral squamous cell carcinoma (OSCC) patients by clinical proteomic analysis. Clin Chim Acta 376(1–2):101–107

    Article  CAS  PubMed  Google Scholar 

  33. Nakashima T, Yasumatsu R, Kuratomi Y, Masuda M, Kuwano T, Toh S et al (2006) Role of squamous cell carcinoma antigen 1 expression in the invasive potential of head and neck squamous cell carcinoma. Head Neck 28(1):24–30

    Article  PubMed  Google Scholar 

  34. Imai Y, Sasaki T, Shinagawa Y, Akimoto K, Fujibayashi T (2002) Expression of metastasis suppressor gene (KAI1/CD82) in oral squamous cell carcinoma and its clinico-pathological significance. Oral Oncol 38(6):557–561

    Article  CAS  PubMed  Google Scholar 

  35. Do Kyung K, Ahn SG, Park JC, Kanai Y, Endou H, Yoon JH (2004) Expression of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (4F2hc) in oral squamous cell carcinoma and its precusor lesions. Anticancer Res 24(3A):1671–1676

    Google Scholar 

  36. Schrijvers AH, Gerretsen M, Fritz JM, van Walsum M, Quak JJ, Snow GB et al (1991) Evidence for a role of the monoclonal antibody E48 defined antigen in cell-cell adhesion in squamous epithelia and head and neck squamous cell carcinoma. Exp Cell Res 196(2):264–269

    Article  CAS  PubMed  Google Scholar 

  37. Kusukawa J, Ryu F, Kameyama T, Mekada E (2001) Reduced expression of CD9 in oral squamous cell carcinoma: CD9 expression inversely related to high prevalence of lymph node metastasis. J Oral Pathol Med 30(2):73–79

    Article  CAS  PubMed  Google Scholar 

  38. Nakashima K, Shimada H, Ochiai T, Kuboshima M, Kuroiwa N, Okazumi S et al (2004) Serological identification of TROP2 by recombinant cDNA expression cloning using sera of patients with esophageal squamous cell carcinoma. Int J Cancer 112(6):1029–1035

    Article  CAS  PubMed  Google Scholar 

  39. Jagtap P, McGowan T, Bandhakavi S, Tu ZJ, Seymour S, Griffin TJ et al (2012) Deep metaproteomic analysis of human salivary supernatant. Proteomics 12(7):992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rudney JD, Xie H, Rhodus NL, Ondrey FG, Griffin TJ (2010) A metaproteomic analysis of the human salivary microbiota by three-dimensional peptide fractionation and tandem mass spectrometry. Mol Oral Microbiol 25(1):38–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kolmeder CA, de Vos WM (2014) Metaproteomics of our microbiome - developing insight in function and activity in man and model systems. J Proteomics 31(97):3–16

    Article  CAS  Google Scholar 

  42. Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C, Krishna A et al (2016) Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol 2:16180

    Article  CAS  PubMed  Google Scholar 

  43. Broberg M, Doonan J, Mundt F, Denman S, McDonald JE (2018) Integrated multi-omic analysis of host-microbiota interactions in acute oak decline. Microbiome 6(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  44. Roy A, Wang S, Meschede-Krasa B, Breffle J, Van Hooser SD (2020) An early phase of instructive plasticity before the typical onset of sensory experience. Nat Commun 11(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Washio J, Takahashi N (2016) Metabolomic studies of oral biofilm, oral cancer, and beyond. Int J Mol Sci 2:17(6)

    Google Scholar 

  46. Bultman SJ (2014) Emerging roles of the microbiome in cancer. Carcinogenesis 35(2):249–255

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Zhou Y, Xiao X, Zheng J, Zhou H (2020) Metaproteomics: a strategy to study the taxonomy and functionality of the gut microbiota. J Proteomics 15(219):103737

    Article  CAS  Google Scholar 

  48. Takahashi N (2015) Oral microbiome metabolism: from “who are they?” to “what are they doing?”. J Dent Res 94(12):1628–1637

    Article  CAS  PubMed  Google Scholar 

  49. Keyes PH (1968) Research in dental caries. J Am Dent Assoc 76(6):1357–1373

    Article  CAS  PubMed  Google Scholar 

  50. Helgeland K (1984) Inhibitory effect of NH4Cl on secretion of collagen in human gingival fibroblasts. Scand J Dent Res 92(5):419–425

    CAS  PubMed  Google Scholar 

  51. Kurita-Ochiai T, Seto S, Suzuki N, Yamamoto M, Otsuka K, Abe K et al (2008) Butyric acid induces apoptosis in inflamed fibroblasts. J Dent Res 87(1):51–55

    Article  CAS  PubMed  Google Scholar 

  52. Yaegaki K, Qian W, Murata T, Imai T, Sato T, Tanaka T et al (2008) Oral malodorous compound causes apoptosis and genomic DNA damage in human gingival fibroblasts. J Periodontal Res 43(4):391–399

    Article  CAS  PubMed  Google Scholar 

  53. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi N, Washio J, Mayanagi G (2010) Metabolomics of supragingival plaque and oral bacteria. J Dent Res 89(12):1383–1388

    Article  CAS  PubMed  Google Scholar 

  55. Ogawa T, Washio J, Takahashi T, Echigo S, Takahashi N (2014) Glucose and glutamine metabolism in oral squamous cell carcinoma: insight from a quantitative metabolomic approach. Oral Surg Oral Med Oral Pathol Oral Radiol 118(2):218–225

    Article  PubMed  Google Scholar 

  56. Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85(2):162–169

    Article  CAS  PubMed  Google Scholar 

  57. Carpenter GH (2013) The secretion, components, and properties of saliva. Annu Rev Food Sci Technol 4:267–276

    Article  CAS  PubMed  Google Scholar 

  58. Cuevas-Cordoba B, Santiago-Garcia J (2014) Saliva: a fluid of study for OMICS. Omics 18(2):87–97

    Article  CAS  PubMed  Google Scholar 

  59. Plottel CS, Blaser MJ (2011) Microbiome and malignancy. Cell Host Microbe 10(4):324–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Larrosa M, Gonzalez-Sarrias A, Garcia-Conesa MT, Tomas-Barberan FA, Espin JC (2006) Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhibit estrogenic and antiestrogenic activities. J Agric Food Chem 54(5):1611–1620

    Article  CAS  PubMed  Google Scholar 

  61. Mager DL, Haffajee AD, Devlin PM, Norris CM, Posner MR, Goodson JM (2005) The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med 3:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gong HL, Shi Y, Zhou L, Wu CP, Cao PY, Tao L et al (2013) The composition of microbiome in larynx and the throat biodiversity between laryngeal squamous cell carcinoma patients and control population. PLoS One 8(6):e66476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wei J, Xie G, Zhou Z, Shi P, Qiu Y, Zheng X et al (2011) Salivary metabolite signatures of oral cancer and leukoplakia. Int J Cancer 129(9):2207–2217

    Article  CAS  PubMed  Google Scholar 

  64. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M (2010) Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 6(1):78–95

    Article  CAS  PubMed  Google Scholar 

  65. Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4(10):781–792

    Article  CAS  PubMed  Google Scholar 

  66. Almadori G, Bussu F, Galli J, Limongelli A, Persichilli S, Zappacosta B et al (2007) Salivary glutathione and uric acid levels in patients with head and neck squamous cell carcinoma. Head Neck 29(7):648–654

    Article  PubMed  Google Scholar 

  67. El-Sayed S, Bezabeh T, Odlum O, Patel R, Ahing S, MacDonald K et al (2002) An ex vivo study exploring the diagnostic potential of 1H magnetic resonance spectroscopy in squamous cell carcinoma of the head and neck region. Head Neck 24(8):766–772

    Article  PubMed  Google Scholar 

  68. Somashekar BS, Kamarajan P, Danciu T, Kapila YL, Chinnaiyan AM, Rajendiran TM et al (2011) Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. J Proteome Res 10(11):5232–5241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tripathi P, Kamarajan P, Somashekar BS, MacKinnon N, Chinnaiyan AM, Kapila YL et al (2012) Delineating metabolic signatures of head and neck squamous cell carcinoma: phospholipase A2, a potential therapeutic target. Int J Biochem Cell Biol 44(11):1852–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Granato DC, Neves LX, Trino LD, Carnielli CM, Lopes AFB, Yokoo S et al (2021) Meta-omics analysis indicates the saliva microbiome and its proteins associated with the prognosis of oral cancer patients. Biochim Biophys Acta Proteins Proteomics 1869(8):140659

    Article  CAS  PubMed  Google Scholar 

  71. Haiser HJ, Turnbaugh PJ (2012) Is it time for a metagenomic basis of therapeutics? Science 336(6086):1253–1255

    Article  CAS  PubMed  Google Scholar 

  72. Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3(5):431–438

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman Dixit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, S., Sinha, R., Dixit, A. (2022). Microbial “OMICS” in Oral Cancer. In: Routray, S. (eds) Microbes and Oral Squamous Cell Carcinoma. Springer, Singapore. https://doi.org/10.1007/978-981-19-0592-6_12

Download citation

Publish with us

Policies and ethics