Skip to main content

Transition Metal Dichalcogenides (TMDs) Nanocomposites-Based Supercapacitors

  • Chapter
  • First Online:
Nanomaterials for Innovative Energy Systems and Devices

Abstract

The global energy crisis is the most significant concern of the twenty-first century due to excessive consumption of non-renewable sources such as coal, natural gas, crude oil, etc. Renewable energy sources come out to be the most effective tool to solve these global issues. In this context, there is a need for the advancement of efficient energy storage systems for the complete utilization of renewable energy sources. To fulfill the requirement of continuous energy supply, advanced energy storage devices such as batteries and supercapacitors need to be developed. Various novel materials including metal nitrides, polyoxometalates (POMs) metal-organic frameworks (MOFs), and transition metal dichalcogenides (TMDs) have been used for the supercapacitor application. TMDs and their nanocomposites play a prominent role as active electrode materials in supercapacitors owing to their large surface area and variable oxidation states. TMDs serve as promising materials to achieve significantly high energy densities. Nowadays, supercapacitors are primarily used as a complementary aid to batteries due to their weakness in terms of low energy density. This chapter introduces the need for renewable energy and the importance of supercapacitors as an energy storage device in comparison to batteries. This also describes the supercapacitors and types of supercapacitors. Furthermore, the chapter presents the highlight and reviews the various synthesis methods of TMDs and their nanocomposites with their applications in supercapacitors for use in various fields including hybrid electric vehicles and wearable electronics. Recent advancements along with future challenges and prospects in the field of TMDs-based supercapacitors are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15:1513–1524. https://doi.org/10.1016/J.RSER.2010.11.037

    Article  Google Scholar 

  2. Navarro G, Torres J, Blanco M, Nájera J, Santos-Herran M, Lafoz M (2021) Present and future of supercapacitor technology applied to powertrains, renewable generation and grid connection applications. Energies 14. https://doi.org/10.3390/en14113060

  3. Miao Y, Hynan P, Von Jouanne A, Yokochi A (2019) Current li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 12:1–20. https://doi.org/10.3390/en12061074

    Article  CAS  Google Scholar 

  4. Lu P, Xue D, Yang H, Liu Y (2013) Supercapacitor and nanoscale research towards electrochemical energy storage. Int J Smart Nano Mater 4:2–26. https://doi.org/10.1080/19475411.2011.652218

    Article  CAS  Google Scholar 

  5. Panda PK, Grigoriev A, Mishra YK, Ahuja R (2020) Progress in supercapacitors: roles of two dimensional nanotubular materials Nanoscale Adv 2:7–108. https://doi.org/10.1039/C9NA00307J

  6. Kim BK, Sy S, Yu A, Zhang J (2015) Electrochemical supercapacitors for energy storage and conversion. Handb Clean Energy Syst 1–25. https://doi.org/10.1002/9781118991978.HCES112

  7. Tanwar S, Arya A, Gaur A, Sharma AL (2021) Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. J Phys Condens Matter 33:303002. https://doi.org/10.1088/1361-648X/ABFB3C

  8. Cherusseri J, Choudhary N, Kumar KS, Jung Y, Thomas J (2019) Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horizons 4:840–858. https://doi.org/10.1039/C9NH00152B

    Article  CAS  Google Scholar 

  9. Choi W, Choudhary N, Han G, Park J, Akinwande D (n.d.) Today, undefined 2017, recent development of two-dimensional transition metal dichalcogenides and their applications. Elsevier. https://www.sciencedirect.com/science/article/pii/S1369702116302917. Accessed 20 Feb 2020

  10. Guo Y, Wei Y, Li H, Zhai T (2017) Layer structured materials for advanced energy storage and conversion. Small 13:1701649. https://doi.org/10.1002/SMLL.201701649

    Article  Google Scholar 

  11. Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH (2017) Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today 20:116–130. https://doi.org/10.1016/J.MATTOD.2016.10.002

    Article  CAS  Google Scholar 

  12. Zhou X, Xu B, Lin Z, Shu D, Ma L (2014) Hydrothermal synthesis of flower-like MoS2nanospheres for electrochemical supercapacitors. J Nanosci Nanotechnol 14:7250–7254. https://doi.org/10.1166/JNN.2014.8929

    Article  CAS  Google Scholar 

  13. Han SA, Bhatia R, Kim SW (2015) Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Converg 21(2):1–14. https://doi.org/10.1186/S40580-015-0048-4

  14. Vattikuti SVP, Devarayapalli KC, Nagajyothi PC, Shim J (2020) Microwave synthesized dry leaf-like mesoporous MoSe2 nanostructure as an efficient catalyst for enhanced hydrogen evolution and supercapacitor applications. Microchem J 153:104446. https://doi.org/10.1016/J.MICROC.2019.104446

  15. Devadoss A, Srinivasan N, Devarajan VP, Grace AN, Pitchaimuthu S (2020) Electrocatalytic properties of two-dimensional transition metal dichalcogenides and their hetrostructures in energy applications. 2D Nanoscale Heterostruct Mater 215–241. https://doi.org/10.1016/B978-0-12-817678-8.00008-7

  16. Yan C, Kang W, Wang J, Cui M, Wang X, Foo CY, Chee KJ, Lee PS (2014) Stretchable and wearable electrochromic devices. ACS Nano 8:316–322. https://doi.org/10.1021/nn404061g

    Article  CAS  Google Scholar 

  17. Zhang H, Chhowalla M, Liu Z (2018) 2D nanomaterials: graphene and transition metal dichalcogenides. Chem Soc Rev 47:3015–3017. https://doi.org/10.1039/C8CS90048E

    Article  CAS  Google Scholar 

  18. Wang M, Zhang L, Zhong Y, Huang M, Zhen Z, Zhu H (2018) In situ electrodeposition of polypyrrole onto TaSe2 nanobelts quasi-arrays for high-capacitance supercapacitor. Nanoscale 10:17341–17346. https://doi.org/10.1039/C8NR05261A

    Article  CAS  Google Scholar 

  19. Bissett MA, Kinloch IA, Dryfe RAW (2015) Characterization of MoS2–graphene composites for high-performance coin cell supercapacitors. ACS Appl Mater Interfaces 7:17388–17398. https://doi.org/10.1021/ACSAMI.5B04672

    Article  CAS  Google Scholar 

  20. Sun P, Wang R, Wang Q, Wang H, Wang X (2019) Uniform MoS 2 nanolayer with sulfur vacancy on carbon nanotube networks as binder-free electrodes for asymmetrical supercapacitor. Appl Surf Sci 475:793–802. https://doi.org/10.1016/j.apsusc.2019.01.007

    Article  CAS  Google Scholar 

  21. Masikhwa TM, Barzegar F, Dangbegnon JK, Bello A, Madito MJ, Momodu D, Manyala N (2016) Asymmetric supercapacitor based on VS2 nanosheets and activated carbon materials. RSC Adv 6:38990–39000. https://doi.org/10.1039/C5RA27155J

    Article  CAS  Google Scholar 

  22. Mishra RK, Baek GW, Kim K, Kwon HI, Jin SH (2017) One-step solvothermal synthesis of carnation flower-like SnS2 as superior electrodes for supercapacitor applications. Appl Surf Sci 425:923–931. https://doi.org/10.1016/J.APSUSC.2017.07.045

    Article  CAS  Google Scholar 

  23. Kundu D, Ahammed S, Ranu BC (2012) Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: a general procedure for the synthesis of unsymmetrical diaryl chalcogenides. Green Chem 14:2024–2030. https://doi.org/10.1039/C2GC35328H

    Article  CAS  Google Scholar 

  24. Fu M, Zhu Z, Chen W, Yu H, Liu Q (2020) Microwave-assisted synthesis of MoS2/graphene composites for supercapacitors. J Mater Sci 55:16385–16393. https://doi.org/10.1007/S10853-020-05201-5

    Article  CAS  Google Scholar 

  25. Kwak J, Jung S, Lee N, Thiyagarajan K, Kim JK, Giri A, Jeong U (2018) Microwave-assisted synthesis of group 5 transition metal dichalcogenide thin films. J Mater Chem C 6:11303–11311. https://doi.org/10.1039/C8TC03909G

    Article  CAS  Google Scholar 

  26. Tang L, Li T, Luo Y, Feng S, Cai Z, Zhang H, Liu B, Cheng HM (2020) Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 14 https://doi.org/10.1021/ACSNANO.0C00296

  27. Tedstone AA, Lewis DJ, O’Brien P (2016) Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem Mater 28:1965–1974. https://doi.org/10.1021/ACS.CHEMMATER.6B00430

    Article  CAS  Google Scholar 

  28. Wang C, Wu X, Xu H, Zhu Y, Liang F, Luo C, Xia Y, Xie X, Zhang J, Duan C (2019) VSe2/carbon-nanotube compound for all solid-state flexible in-plane supercapacitor. Appl Phys Lett 114:023902. https://doi.org/10.1063/1.5078555

  29. Miller JR, Simon P (2008) Materials science. Electrochemical capacitors for energy management. Science 321:651–652. https://doi.org/10.1126/SCIENCE.1158736

  30. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6

    Article  Google Scholar 

  31. Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen ZX (2017) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5. https://doi.org/10.1002/ADVS.201700322

  32. Iro ZS, Subramani C, Dash SS (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 11:10628–10643. https://doi.org/10.20964/2016.12.50

  33. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27. https://doi.org/10.1016/J.JPOWSOUR.2006.02.065

    Article  CAS  Google Scholar 

  34. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190. https://doi.org/10.1021/CM049649J

  35. Marin Halper VS, Ellenbogen JC Supercapacitors: a brief overview. MITRE. http://www.mitre.org/tech/nanotech. Accessed 31 Jul 2021

  36. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 711(7):845–854. https://doi.org/10.1038/nmat2297

  37. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. https://doi.org/10.1038/NMAT1368

  38. Chen X, Zhu Y, Zhang M, Sui J, Peng W, Li Y, Zhang G, Zhang F, Fan X (2019) N-Butyllithium-treated Ti3C2Tx MXene with excellent pseudocapacitor performance. ACS Nano 13:9449–9456. https://doi.org/10.1021/ACSNANO.9B04301

    Article  CAS  Google Scholar 

  39. Wang J, Wang J, Kong Z, Lv K, Teng C, Zhu Y (2017) Conducting-polymer-based materials for electrochemical energy conversion and storage. Adv Mater 29:1703044. https://doi.org/10.1002/ADMA.201703044

    Article  Google Scholar 

  40. Shinde NM, Xia QX, Shinde PV, Yun JM, Mane RS, Kim KH (2019) Sulphur source-inspired self-grown 3D NixSy nanostructures and their electrochemical supercapacitors. ACS Appl Mater Interfaces 11:4551–4559. https://doi.org/10.1021/ACSAMI.8B17689

    Article  CAS  Google Scholar 

  41. Ge J, Wang B, Wang J, Zhang Q, Lu B (2020) Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv Energy Mater 10:1903277. https://doi.org/10.1002/AENM.201903277

    Article  CAS  Google Scholar 

  42. Kang HJ, Huh YS, Bin Im W, Jun YS (2019) Molecular cooperative assembly-mediated synthesis of ultra-high-performance hard carbon anodes for dual-carbon sodium hybrid capacitors. ACS Nano 13:11935–11946. https://doi.org/10.1021/ACSNANO.9B06027

  43. Salinas-Torres D, Ruiz-Rosas R, Morallón E, Cazorla-Amorós D (2019) Strategies to enhance the performance of electrochemical capacitors based on carbon materials. Front Mater 115. https://doi.org/10.3389/FMATS.2019.00115

  44. Wu Y, Cao C (2018) The way to improve the energy density of supercapacitors: progress and perspective. Sci China Mater 6112(61):1517–1526. https://doi.org/10.1007/S40843-018-9290-Y

  45. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251. https://doi.org/10.1002/ADMA.201304137

    Article  Google Scholar 

  46. Hao L, Li X, Zhi L (2013) Carbonaceous electrode materials for supercapacitors. Adv Mater 25:3899–3904. https://doi.org/10.1002/ADMA.201301204

    Article  CAS  Google Scholar 

  47. Soon JM, Loh KP (2007) Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem Solid-State Lett 10:250–254. https://doi.org/10.1149/1.2778851

    Article  CAS  Google Scholar 

  48. Cao L, Yang S, Gao W, Liu Z, Gong Y, Ma L, Shi G, Lei S, Zhang Y, Zhang S, Vajtai R (2013) Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9:2905–2910. https://doi.org/10.1002/SMLL.201203164

  49. Liu S, Zeng Y, Zhang M, Xie S, Tong Y, Cheng F, Lu X (2017) Binder-free WS2 nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors. J Mater Chem A 5:21460–21466. https://doi.org/10.1039/C7TA07009H

    Article  CAS  Google Scholar 

  50. Khalil A, Liu Q, He Q, Xiang T, Liu D, Wang C, Fang Q, Song L (2016) Metallic 1T-WS2 nanoribbons as highly conductive electrodes for supercapacitors. RSC Adv 6:48788–48791. https://doi.org/10.1039/c6ra08975e

    Article  CAS  Google Scholar 

  51. Yin W, He D, Bai X, Yu WW (2019) Synthesis of tungsten disulfide quantum dots for high-performance supercapacitor electrodes. J Alloys Compd 786:764–769. https://doi.org/10.1016/J.JALLCOM.2019.02.030

    Article  CAS  Google Scholar 

  52. Balasingam SK, Lee JS, Jun Y (2015) Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalt Trans 44:15491–15498. https://doi.org/10.1039/C5DT01985K

    Article  CAS  Google Scholar 

  53. Pazhamalai P, Krishnamoorthy K, Sahoo S, Kim SJ (2019) Two-dimensional molybdenum diselenide nanosheets as a novel electrode material for symmetric supercapacitors using organic electrolyte. Electrochim Acta 295:591–598. https://doi.org/10.1016/J.ELECTACTA.2018.10.191

    Article  CAS  Google Scholar 

  54. Arul NS, Han JI (2016) Facile hydrothermal synthesis of hexapod-like two dimensional dichalcogenide NiSe2 for supercapacitor. Mater Lett C 345–349. https://doi.org/10.1016/J.MATLET.2016.06.065

  55. Wu J, Peng J, Yu Z, Zhou Y, Guo Y, Li Z, Lin Y, Ruan K, Wu C, Xie Y (2018) Acid-assisted exfoliation toward metallic sub-nanopore TaS2 Monolayer with high volumetric capacitance. J Am Chem Soc 140:493–498. https://doi.org/10.1021/JACS.7B11915

    Article  CAS  Google Scholar 

  56. Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16:272–280. https://doi.org/10.1016/J.MATTOD.2013.07.002

    Article  CAS  Google Scholar 

  57. Cherusseri J, Kar KK (2015) Self-standing carbon nanotube forest electrodes for flexible supercapacitors. RSC Adv 5:34335–34341. https://doi.org/10.1039/C5RA04064G

    Article  CAS  Google Scholar 

  58. Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv Mater 27:1117–1123. https://doi.org/10.1002/ADMA.201404622

    Article  CAS  Google Scholar 

  59. Lin T-W, Sadhasivam T, Wang A-Y, Chen T-Y, Lin J-Y, Shao L (2018) Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors. ChemElectroChem 5:1024–1031. https://doi.org/10.1002/CELC.201800043

    Article  CAS  Google Scholar 

  60. Fang L, Zhang Z, Li X, Zhou H, Ma K, Ge L, Huang K (2016) Fabrication of hybrid cauliflower-like nanoarchitectures by in situ grown ZnO nanoparticals on VS2 ultrathin nanosheets for high performance supercapacitors. Coll Surf A Physicochem Eng Asp 501:42–48. https://doi.org/10.1016/j.colsurfa.2016.04.047

    Article  CAS  Google Scholar 

  61. Joensen P, Frindt RF, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21:457–461. https://doi.org/10.1016/0025-5408(86)90011-5

    Article  CAS  Google Scholar 

  62. Seifert G, Terrones H, Terrones M, Jungnickel G, Frauenheim T (2000) Structure and electronic properties of <span class. Phys Rev Lett 85:146. https://doi.org/10.1103/PhysRevLett.85.146

    Article  CAS  Google Scholar 

  63. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105. https://doi.org/10.1103/PhysRevLett.105.136805

  64. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712. https://doi.org/10.1038/NNANO.2012.193

  65. Chhowalla M, Suk Shin H, Eda G, Li LJ, Ping Loh K, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Publ Gr 5. https://doi.org/10.1038/NCHEM.1589

  66. Upadhyay SN, Satrughna JAK, Pakhira S (2021) Recent advancements of two-dimensional transition metal dichalcogenides and their applications in electrocatalysis and energy storage. Emergent Mater 2021:1–20. https://doi.org/10.1007/S42247-021-00241-2

    Article  Google Scholar 

  67. Eftekhari A (2017) Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl Mater Today 8:1–17. https://doi.org/10.1016/J.APMT.2017.01.006

    Article  Google Scholar 

  68. Huang HH, Fan X, Singh DJ, Zheng WT (2020) Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12:1247–1268. https://doi.org/10.1039/C9NR08313H

    Article  CAS  Google Scholar 

  69. Voiry D, Mohite A, Chhowalla M (2015) Phase engineering of transition metal dichalcogenides. Chem Soc Rev 44:2702–2712. https://doi.org/10.1039/c5cs00151j

    Article  CAS  Google Scholar 

  70. Nam MS, Patil U, Park B, Sim HB, Jun SC (2016) A binder free synthesis of 1D PANI and 2D MoS2 nanostructured hybrid composite electrodes by the electrophoretic deposition (EPD) method for supercapacitor application. RSC Adv 6:101592–101601. https://doi.org/10.1039/c6ra16078f

    Article  CAS  Google Scholar 

  71. Zhang X, Lai Z, Ma Q, Zhang H (2018) Novel structured transition metal dichalcogenide nanosheets. Chem Soc Rev 47:3301–3338. https://doi.org/10.1039/c8cs00094h

    Article  CAS  Google Scholar 

  72. Wang J, Liu J, Zhang B, Ji X, Xu K, Chen C, Miao L, Jiang J (2017) The mechanism of hydrogen adsorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst. Phys Chem Chem Phys 19:10125–10132. https://doi.org/10.1039/c7cp00636e

    Article  CAS  Google Scholar 

  73. Yang Y, Fei H, Ruan G, Xiang C, Tour JM (2014) Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv Mater 26:8163–8168. https://doi.org/10.1002/adma.201402847

    Article  CAS  Google Scholar 

  74. Sun T, Li Z, Liu X, Ma L, Wang J, Yang S (2017) Oxygen-incorporated MoS2 microspheres with tunable interiors as novel electrode materials for supercapacitors. J Power Sources 352:135–142. https://doi.org/10.1016/j.jpowsour.2017.03.123

    Article  CAS  Google Scholar 

  75. Shang X, Chi JQ, Lu SS, Gou JX, Dong B, Li X, Liu YR, Yan KL, Chai YM, Liu CG (2017) Carbon fiber cloth supported interwoven WS 2 nanosplates with highly enhanced performances for supercapacitors. Appl Surf Sci 392:708–714. https://doi.org/10.1016/j.apsusc.2016.09.058

    Article  CAS  Google Scholar 

  76. Ghorai A, Midya A, Ray SK (2018) Superior charge storage performance of WS2 quantum dots in a flexible solid state supercapacitor. New J Chem 42:3609–3613. https://doi.org/10.1039/C7NJ03869K

    Article  CAS  Google Scholar 

  77. Muller GA, Cook JB, Kim HS, Tolbert SH, Dunn B (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett 15:1911–1917. https://doi.org/10.1021/nl504764m

    Article  CAS  Google Scholar 

  78. Guo Z, Yang L, Wang W, Cao L, Dong B (2018) Ultrathin VS2 nanoplate with in-plane and out-of-plane defects for an electrochemical supercapacitor with ultrahigh specific capacitance. J Mater Chem A 6:14681–14688. https://doi.org/10.1039/c8ta03812k

    Article  CAS  Google Scholar 

  79. Vidhya MS, Yuvakkumar R, Ravi G, Saravanakumar B, Velauthapillai D (2021) Asymmetric polyhedron structured NiSe 2 @MoSe 2 device for use as a supercapacitor. Nanoscale Adv 2:4207–4215. https://doi.org/10.1039/d0na01047b

    Article  CAS  Google Scholar 

  80. Huang KJ, Zhang JZ, Fan Y (2015) Preparation of layered MoSe2 nanosheets on Ni-foam substrate with enhanced supercapacitor performance. Mater Lett C 244–247. https://doi.org/10.1016/J.MATLET.2015.03.130

  81. Krishnamoorthy K, Pazhamalai P, Veerasubramani GK, Kim SJ (2016) Mechanically delaminated few layered MoS<SUB>2</SUB> nanosheets based high performance wire type solid-state symmetric supercapacitors. JPS 321:112–119. https://doi.org/10.1016/J.JPOWSOUR.2016.04.116

    Article  CAS  Google Scholar 

  82. Zhao Y, He X, Chen R, Liu Q, Liu J, Yu J, Zhang H, Dong H, Zhang M, Li R, Wang J (2019) Flexible all-solid-state asymmetric supercapacitor based on three-dimensional MoS2/Ketjen black nanoflower arrays. Int J Hydrogen Energy 44:13690–13699. https://doi.org/10.1016/j.ijhydene.2019.03.171

    Article  CAS  Google Scholar 

  83. Singha SS, Rudra S, Mondal S, Pradhan M, Nayak AK, Satpati B, Pal P, Das K, Singha A (2020) Mn incorporated MoS2 nanoflowers: a high performance electrode material for symmetric supercapacitor. Electrochim Acta 338. https://doi.org/10.1016/j.electacta.2020.135815

  84. Zhou C, Wang J, Yan X, Yuan X, Wang D, Zhu Y, Cheng X (2019) Vertical MoS2 nanosheets arrays on carbon cloth as binder-free and flexible electrode for high-performance all-solid-state symmetric supercapacitor. Ceram Int 45:21534–21543. https://doi.org/10.1016/j.ceramint.2019.07.147

    Article  CAS  Google Scholar 

  85. Manuraj M, Kavya Nair KV, Unni KNN, Rakhi RB (2020) High performance supercapacitors based on MoS2 nanostructures with near commercial mass loading. J Alloy Compd 819:152963. https://doi.org/10.1016/j.jallcom.2019.152963

  86. Yu Z, Chen Y, Cheng Z, Tsekouras G, Li X, Wang X, Kong X, Dou SX (2018) Enzyme-catalysed room temperature and atmospheric pressure synthesis of metal carbonate hydroxides for energy storage. Nano Energy 54:200–208. https://doi.org/10.1016/j.nanoen.2018.09.069

    Article  CAS  Google Scholar 

  87. He B (2017) Molybdenum diselenide nanosheets wraping carbon aerogel nanospheres as an advanced material for supercapacitor and electrochemical sensing. Electrochim Acta 257:301–310. https://doi.org/10.1016/j.electacta.2017.10.105

    Article  CAS  Google Scholar 

  88. Chakravarty D, Late DJ (2015) Microwave and hydrothermal syntheses of WSe2 micro/nanorods and their application in supercapacitors. RSC Adv 5:21700–21709. https://doi.org/10.1039/C4RA12599A

    Article  CAS  Google Scholar 

  89. Wan L, Liu J, Li X, Zhang Y, Chen J, Du C, Xie M (2020) Fabrication of core-shell NiMoO4@MoS2 nanorods for high-performance asymmetric hybrid supercapacitors. Int J Hydrogen Energy 45:4521–4533. https://doi.org/10.1016/j.ijhydene.2019.12.057

    Article  CAS  Google Scholar 

  90. Kavil J, Pilathottathil S, Thayyil MS, Periyat P (2019) Development of 2D nano heterostructures based on g-C 3 N 4 and flower shaped MoS 2 as electrode in symmetric supercapacitor device. Nano-Struct Nano-Object 18. https://doi.org/10.1016/J.NANOSO.2019.100317.

  91. Zardkhoshoui AM, Davarani SSH (2018) Flexible asymmetric supercapacitors based on CuO@MnO2-rGO and MoS2-rGO with ultrahigh energy density. J Electroanal Chem 827:221–229. https://doi.org/10.1016/j.jelechem.2018.08.023

    Article  CAS  Google Scholar 

  92. Liu Y, Zhao D, Liu H, Umar A, Wu X (2019) High performance hybrid supercapacitor based on hierarchical MoS 2 /Ni 3 S 2 metal chalcogenide. Chinese Chem Lett 30:1105–1110. https://doi.org/10.1016/j.cclet.2018.12.024

    Article  CAS  Google Scholar 

  93. Chang Z, Ju X, Guo P, Zhu X, Liao C, Zong Y, Li X, Zheng X (2020) Enhanced performance of supercapacitor electrode materials based on hierarchical hollow flowerlike HRGOs/Ni-doped MoS2 composite. J Alloy Compd 824:153873. https://doi.org/10.1016/j.jallcom.2020.153873

  94. Zhang J, Sun J, Hu Y, Wang D, Cui Y (2019) Electrochemical capacitive properties of all-solid-state supercapacitors based on ternary MoS2/CNTs-MnO2 hybrids and ionic mixture electrolyte. J Alloys Compd 780:276–283. https://doi.org/10.1016/j.jallcom.2018.11.332

    Article  CAS  Google Scholar 

  95. Xu X, Zhong W, Zhang X, Dou J, Xiong Z, Sun Y, Wang T, Du Y (2019) Flexible symmetric supercapacitor with ultrahigh energy density based on NiS/MoS 2 @N-rGO hybrids electrode. J Colloid Interface Sci 543:147–155. https://doi.org/10.1016/j.jcis.2019.02.054

    Article  CAS  Google Scholar 

  96. Zhou J, Guo M, Wang L, Ding Y, Zhang Z, Tang Y, Liu C, Luo S (2019) 1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor. Chem Eng J 366:163–171. https://doi.org/10.1016/j.cej.2019.02.079

    Article  CAS  Google Scholar 

  97. Yang X, Zhao L, Lian J (2017) Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. J Power Source 343:373–382. https://doi.org/10.1016/j.jpowsour.2017.01.078

    Article  CAS  Google Scholar 

  98. Ji HM, Luan AL, Dai CC, Man L, Yang G, Hou WH (2019) Highly active free-standing and flexible MoS2/rGO sandwich-structured films for supercapacitor applications. Solid State Commun 297:45–49. https://doi.org/10.1016/J.SSC.2019.05.001

  99. Dai JY, Balamurugan J, Kim NH, Lee JH (2020) Hierarchical CoS@MoS2 core-shell nanowire arrays as free-standing electrodes for high-performance asymmetric supercapacitors. J Alloy Compd 825. https://doi.org/10.1016/J.JALLCOM.2020.154085

  100. Wen S, Liu Y, Zhu F, Shao R, Xu W (2018) Hierarchical MoS 2 nanowires/NiCo 2 O 4 nanosheets supported on Ni foam for high-performance asymmetric supercapacitors. Appl Surf Sci 428:616–622. https://doi.org/10.1016/j.apsusc.2017.09.189

    Article  CAS  Google Scholar 

  101. Shrivastav V, Sundriyal S, Goel P, Shrivastav V, Tiwari UK, Deep A (2020) ZIF-67 derived Co3S4 hollow microspheres and WS2 nanorods as a hybrid electrode material for flexible 2V solid-state supercapacitor. Electrochim Acta 345:136194. https://doi.org/10.1016/j.electacta.2020.136194

  102. Chen W, Yu X, Zhao Z, Ji S, Feng L (2019) Hierarchical architecture of coupling graphene and 2D WS2 for high-performance supercapacitor. Electrochim Acta. https://researcher-app.com/paper/1858468. Accessed 31 Jul 2021

  103. Liang A, Li D, Zhou W, Wu Y, Ye G, Wu J, Chang Y, Wang R, Xu J, Nie G, Hou J, Du Y (2018) Robust flexible WS2/PEDOT:PSS film for use in high-performance miniature supercapacitors. J Electroanal Chem 824:136–146. https://doi.org/10.1016/J.JELECHEM.2018.07.040

    Article  CAS  Google Scholar 

  104. Xu Y, Wang L, Xu Q, Liu L, Fang X, Shi C, Ye B, Chen L, Peng W, Liu Z, Chen W (2019) 3D hybrids based on WS 2 /N, S co-doped reduced graphene oxide: Facile fabrication and superior performance in supercapacitors. Appl Surf Sci 480:1126–1135. https://doi.org/10.1016/j.apsusc.2019.02.217

    Article  CAS  Google Scholar 

  105. Gopalakrishnan K, Sultan S, Govindaraj A, Rao CNR (2015) Supercapacitors based on composites of PANI with nanosheets of nitrogen-doped RGO, BC1.5N, MoS2 and WS2. Nano Energy 12:52–58. https://doi.org/10.1016/J.NANOEN.2014.12.005

  106. Liu Y, Li W, Chang X, Chen H, Zheng X, Bai J, Ren Z (2019) MoSe2 nanoflakes-decorated vertically aligned carbon nanotube film on nickel foam as a binder-free supercapacitor electrode with high rate capability. J Colloid Interface Sci 562:483–492. https://doi.org/10.1016/J.JCIS.2019.11.089

  107. Kirubasankar B, Palanisamy P, Arunachalam S, Murugadoss V, Angaiah S (2019) 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem Eng J 355:881–890. https://doi.org/10.1016/J.CEJ.2018.08.185

    Article  CAS  Google Scholar 

  108. Gao YP, Huang KJ, Shuai HL, Liu L (2017) Synthesis of sphere-feature molybdenum selenide with enhanced electrochemical performance for supercapacitor. Mater Lett 209:319–322. https://doi.org/10.1016/J.MATLET.2017.08.044

    Article  CAS  Google Scholar 

  109. Karade SS, Sankapal BR (2017) Two dimensional cryptomelane like growth of MoSe2 over MWCNTs: symmetric all-solid-state supercapacitor. J Electroanal Chem 802:131–138. https://doi.org/10.1016/J.JELECHEM.2017.08.017

    Article  CAS  Google Scholar 

  110. Wang Q, Wang Y, Zhang X, Wang G, Ji P, Yin F (2018) WSe 2/reduced graphene oxide nanocomposite with superfast sodium ion storage ability as anode for sodium ion capacitors. J Electrochem Soc 165:A3642–A3647. https://doi.org/10.1149/2.0231816jes

    Article  CAS  Google Scholar 

  111. Wang X, Chen Y, Zheng B, Qi F, He J, Li Q, Li P, Zhang W (2017) Graphene-like WSe2nanosheets for efficient and stable hydrogen evolution. J Alloys Compd 691:698–704. https://doi.org/10.1016/j.jallcom.2016.08.305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyagi, S., Sharma, K., Kumar, A., Gautam, Y.K., Malik, A.K., Singh, B.P. (2022). Transition Metal Dichalcogenides (TMDs) Nanocomposites-Based Supercapacitors. In: Khan, Z.H. (eds) Nanomaterials for Innovative Energy Systems and Devices. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-0553-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0553-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0552-0

  • Online ISBN: 978-981-19-0553-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics