Skip to main content

Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment

  • Chapter
  • First Online:
Sphingolipid Metabolism and Metabolic Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1372))

Abstract

High plasma levels of lipids and/or lipoproteins are risk factors for atherosclerosis, nonalcoholic fatty liver disease (NAFLD), obesity, and diabetes. These four conditions have also been identified as risk factors leading to the development of chronic kidney disease (CKD). Although many pathways that generate high plasma levels of these factors have been identified, most clinical and physiologic dysfunction results from aberrant assembly and secretion of lipoproteins. The results of several published studies suggest that elevated levels of low-density lipoprotein (LDL)-cholesterol are a risk factor for atherosclerosis, myocardial infarction, coronary artery calcification associated with type 2 diabetes, and NAFLD. Cholesterol metabolism has also been identified as an important pathway contributing to the development of CKD; clinical treatments designed to alter various steps of the cholesterol synthesis and metabolism pathway are currently under study. Cholesterol synthesis and catabolism contribute to a multistep process with pathways that are regulated at the cellular level in renal tissue. Cholesterol metabolism may also be regulated by the balance between the influx and efflux of cholesterol molecules that are capable of crossing the membrane of renal proximal tubular epithelial cells and podocytes. Cellular accumulation of cholesterol can result in lipotoxicity and ultimately kidney dysfunction and failure. Thus, further research focused on cholesterol metabolism pathways will be necessary to improve our understanding of the impact of cholesterol restriction, which is currently a primary intervention recommended for patients with dyslipidemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCA1:

ATP-binding cassette transporter (ABC) A1

ABCG1:

ATP-binding cassette subfamily G member 1

ACAT1:

Acyl CoA: cholesterol acyltransferase 1 sterol-O-acyltransferase 1

Apo:

Apolipoprotein

ApoA1:

Apolipoprotein A1

ATP:

Adenosine triphosphate

Bmal1:

Aryl hydrocarbon receptor nuclear translocator-like protein 1

BMI:

Body mass index

Cd36:

Scavenger receptor class B

CKD:

Chronic kidney disease

Clk Δ19/Δ19 :

Clock mutant mice

CVD:

Cardiovascular disease

ESKD:

End-stage kidney disease

FASN:

Fatty acid synthase

FXRs:

Farnesoid X receptors

GFRs:

Glomerular filtration rates

HDAC1:

Histone deacetylase 1

HDL:

High-density lipoprotein

HK2 cells:

Human proximal tubule cells

HIF:

Hypoxia-inducible factor

HMGCR:

3-Hydroxy-3-methylglutaryl-CoA reductase

KO:

Knock out

LCAT:

Lecithin-cholesterol acyltransferase

LDL:

Low-density lipoprotein

LDLr:

Low-density lipoprotein receptor

IncRNAs:

Long noncoding RNAs

LPL:

Lipoprotein lipase

LOX-1:

Lectin-like oxLDL receptor-1

LXRs:

Liver X receptors

miRNAs:

MicroRNAs

MTP:

Microsomal triglyceride transfer protein

NAFLD:

Nonalcoholic fatty liver disease

NCEH1:

Neutral cholesterol ester hydrolase 1

NPC1:

Niemann-Pick C1

NPC1L1:

NPC1-like intracellular cholesterol transporter 1

NRs:

Nuclear receptors

Nrf2:

Nuclear factor-erythroid factor 2-related factor 2

NS:

Nephrotic syndrome

PCSK9:

Proprotein convertase subtilisin/kexin type 9

PHD2:

Hypoxia-inducible factor prolyl hydroxylase 2

PKD:

Polycystic kidney disease

PLTP:

Phospholipid transfer protein

PPARs:

Peroxisome proliferator-activated receptors

ROS:

Reactive oxygen species

RPTECs:

Renal proximal tubule epithelial cells

Shp:

Small heterodimer partner

SPRING:

SREBF pathway regulator in Golgi 1

SR-A1:

Scavenger receptor class A

SR-B1:

Scavenger receptor class B type 1

SREBPs:

Sterol regulatory element-binding proteins

USP20:

Ubiquitin C-terminal hydrolase 20

VLDLs:

Very light density lipoproteins

References

  1. Levitan, I., Fang, Y., Rosenhouse-Dantsker, A., & Romanenko, V. (2010). Cholesterol and ion channels. Sub-Cellular Biochemistry, 51, 509–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Joles, J. A., Kunter, U., Janssen, U., Kriz, W., Rabelink, T. J., Koomans, H. A., & Floege, J. (2000). Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. Journal of the American Society of Nephrology, 11, 669–683.

    Article  CAS  PubMed  Google Scholar 

  3. Simonet, W. S., Bucay, N., Pitas, R. E., Lauer, S. J., & Taylor, J. M. (1991). Multiple tissue-specific elements control the apolipoprotein E/C-I gene locus in transgenic mice. The Journal of Biological Chemistry, 266, 8651–8654.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, J., Muntner, P., Hamm, L. L., Jones, D. W., Batuman, V., Fonseca, V., Whelton, P. K., & He, J. (2004). The metabolic syndrome and chronic kidney disease in U.S. adults. Annals of Internal Medicine, 140, 167–174.

    Article  PubMed  Google Scholar 

  5. Jiang, T., Liebman, S. E., Lucia, M. S., Li, J., & Levi, M. (2005). Role of altered renal lipid metabolism and the sterol regulatory element binding proteins in the pathogenesis of age-related renal disease. Kidney International, 68, 2608–2620.

    Article  CAS  PubMed  Google Scholar 

  6. Trevisan, R., Dodesini, A. R., & Lepore, G. (2006). Lipids and renal disease. Journal of the American Society of Nephrology, 17, S145–S147.

    Article  CAS  PubMed  Google Scholar 

  7. Hill, N. R., Fatoba, S. T., Oke, J. L., Hirst, J. A., O'Callaghan, C. A., Lasserson, D. S., & Hobbs, F. D. (2016). Global prevalence of chronic kidney disease—A systematic review and meta-analysis. PLoS One, 11, e0158765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). (1997). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet, 349, 1857–1863.

    Article  Google Scholar 

  9. Afsar, B., Yilmaz, M. I., Siriopol, D., Unal, H. U., Saglam, M., Karaman, M., Gezer, M., Sonmez, A., Eyileten, T., Aydin, I., et al. (2017). Thyroid function and cardiovascular events in chronic kidney disease patients. Journal of Nephrology, 30, 235–242.

    Article  CAS  PubMed  Google Scholar 

  10. Brenner, B. M., Cooper, M. E., de Zeeuw, D., Keane, W. F., Mitch, W. E., Parving, H. H., Remuzzi, G., Snapinn, S. M., Zhang, Z., Shahinfar, S., et al. (2001). Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. The New England Journal of Medicine, 345, 861–869.

    Article  CAS  PubMed  Google Scholar 

  11. Bulbul, M. C., Dagel, T., Afsar, B., Ulusu, N. N., Kuwabara, M., Covic, A., & Kanbay, M. (2018). Disorders of lipid metabolism in chronic kidney disease. Blood Purification, 46, 144–152.

    Article  CAS  PubMed  Google Scholar 

  12. Gaede, P., Lund-Andersen, H., Parving, H. H., & Pedersen, O. (2008). Effect of a multifactorial intervention on mortality in type 2 diabetes. The New England Journal of Medicine, 358, 580–591.

    Article  CAS  PubMed  Google Scholar 

  13. Hovind, P., Tarnow, L., Rossing, K., Rossing, P., Eising, S., Larsen, N., Binder, C., & Parving, H. H. (2003). Decreasing incidence of severe diabetic microangiopathy in type 1 diabetes. Diabetes Care, 26, 1258–1264.

    Article  PubMed  Google Scholar 

  14. Kendrick, J., & Chonchol, M. B. (2008). Nontraditional risk factors for cardiovascular disease in patients with chronic kidney disease. Nature Clinical Practice. Nephrology, 4, 672–681.

    Article  PubMed  Google Scholar 

  15. Legrand, M., Bell, S., Forni, L., Joannidis, M., Koyner, J. L., Liu, K., & Cantaluppi, V. (2021). Pathophysiology of COVID-19-associated acute kidney injury. Nature Reviews. Nephrology, 17, 751–764.

    Article  CAS  PubMed  Google Scholar 

  16. Lewis, E. J., Hunsicker, L. G., Clarke, W. R., Berl, T., Pohl, M. A., Lewis, J. B., Ritz, E., Atkins, R. C., Rohde, R., Raz, I., et al. (2001). Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. The New England Journal of Medicine, 345, 851–860.

    Article  CAS  PubMed  Google Scholar 

  17. Maung, S. C., El Sara, A., Chapman, C., Cohen, D., & Cukor, D. (2016). Sleep disorders and chronic kidney disease. World Journal of Nephrology, 5, 224–232.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vlagopoulos, P. T., & Sarnak, M. J. (2005). Traditional and nontraditional cardiovascular risk factors in chronic kidney disease. The Medical Clinics of North America, 89, 587–611.

    Article  PubMed  Google Scholar 

  19. Kovesdy, C. P., Furth, S. L., Zoccali, C., & World Kidney Day Steering Committee. Electronic Address, m.w.o., and World Kidney Day Steering, C. (2017a). Obesity and kidney disease: Hidden consequences of the epidemic. Kidney International, 91, 260–262.

    Article  PubMed  Google Scholar 

  20. Kovesdy, C. P., Furth, S. L., Zoccali, C., & World Kidney Day Steering, C. (2017b). Obesity and kidney disease: Hidden consequences of the epidemic. Clinical Kidney Journal, 10, 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Noels, H., Lehrke, M., Vanholder, R., & Jankowski, J. (2021). Lipoproteins and fatty acids in chronic kidney disease: Molecular and metabolic alterations. Nature Reviews. Nephrology, 17, 528–542.

    Article  CAS  PubMed  Google Scholar 

  22. Vaziri, N. D. (2006). Dyslipidemia of chronic renal failure: The nature, mechanisms, and potential consequences. American Journal of Physiology. Renal Physiology, 290, F262–F272.

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y., Hepokoski, M., Gu, W., Simonson, T., & Singh, P. (2021). Targeting mitochondria and metabolism in acute kidney injury. Journal of Clinical Medicine, 10, 3991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhatia, D., Capili, A., & Choi, M. E. (2020). Mitochondrial dysfunction in kidney injury, inflammation, and disease: Potential therapeutic approaches. Kidney Research and Clinical Practice, 39, 244–258.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Forbes, J. M., & Thorburn, D. R. (2018). Mitochondrial dysfunction in diabetic kidney disease. Nature Reviews. Nephrology, 14, 291–312.

    Article  CAS  PubMed  Google Scholar 

  26. Tang, C., Livingston, M. J., Liu, Z., & Dong, Z. (2020). Autophagy in kidney homeostasis and disease. Nature Reviews. Nephrology, 16, 489–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goedeke, L., Wagschal, A., Fernandez-Hernando, C., & Naar, A. M. (2016). miRNA regulation of LDL-cholesterol metabolism. Biochimica et Biophysica Acta, 1861, 2047–2052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Firsov, D., & Bonny, O. (2018). Circadian rhythms and the kidney. Nature Reviews. Nephrology, 14, 626–635.

    Article  CAS  PubMed  Google Scholar 

  29. Pan, X., Mota, S., & Zhang, B. (2020a). Circadian clock regulation on lipid metabolism and metabolic diseases. Advances in Experimental Medicine and Biology, 1276, 53–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Solocinski, K., & Gumz, M. L. (2015). The circadian clock in the regulation of renal rhythms. Journal of Biological Rhythms, 30, 470–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zuber, A. M., Centeno, G., Pradervand, S., Nikolaeva, S., Maquelin, L., Cardinaux, L., Bonny, O., & Firsov, D. (2009). Molecular clock is involved in predictive circadian adjustment of renal function. Proceedings of the National Academy of Sciences of the United States of America, 106, 16523–16528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., Olsen, J. V., & Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325, 834–840.

    Article  CAS  PubMed  Google Scholar 

  33. Santos-Rosa, H., & Caldas, C. (2005). Chromatin modifier enzymes, the histone code and cancer. European Journal of Cancer, 41, 2381–2402.

    Article  CAS  PubMed  Google Scholar 

  34. Inoue, K., Gan, G., Ciarleglio, M., Zhang, Y., Tian, X., Pedigo, C. E., Cavanaugh, C., Tate, J., Wang, Y., Cross, E., et al. (2019). Podocyte histone deacetylase activity regulates murine and human glomerular diseases. The Journal of Clinical Investigation, 129, 1295–1313.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Agrawal, S., He, J. C., & Tharaux, P. L. (2021). Nuclear receptors in podocyte biology and glomerular disease. Nature Reviews. Nephrology, 17, 185–204.

    Article  CAS  PubMed  Google Scholar 

  36. Libby, A. E., Jones, B., Lopez-Santiago, I., Rowland, E., & Levi, M. (2021). Nuclear receptors in the kidney during health and disease. Molecular Aspects of Medicine, 78, 100935.

    Article  CAS  PubMed  Google Scholar 

  37. Sinha, S., Dwivedi, N., Woodgett, J., Tao, S., Howard, C., Fields, T. A., Jamadar, A., & Rao, R. (2020). Glycogen synthase kinase-3beta inhibits tubular regeneration in acute kidney injury by a FoxM1-dependent mechanism. The FASEB Journal, 34, 13597–13608.

    Article  CAS  PubMed  Google Scholar 

  38. Poyan Mehr, A., Tran, M. T., Ralto, K. M., Leaf, D. E., Washco, V., Messmer, J., Lerner, A., Kher, A., Kim, S. H., Khoury, C. C., et al. (2018). De novo NAD(+) biosynthetic impairment in acute kidney injury in humans. Nature Medicine, 24, 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  39. George, B., You, D., Joy, M. S., & Aleksunes, L. M. (2017). Xenobiotic transporters and kidney injury. Advanced Drug Delivery Reviews, 116, 73–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Caramori, M. L., & Mauer, M. (2003). Diabetes and nephropathy. Current Opinion in Nephrology and Hypertension, 12, 273–282.

    Article  CAS  PubMed  Google Scholar 

  41. Kessler, G., & Friedman, J. (1998). Metabolism of fatty acids and glucose. Circulation, 98, 1351.

    Article  CAS  PubMed  Google Scholar 

  42. Kleinzeller, A., & McAvoy, E. M. (1986). Glucose transport and metabolism in rat renal proximal tubules: multicomponent effects of insulin. Biochimica et Biophysica Acta, 856, 545–555.

    Article  CAS  PubMed  Google Scholar 

  43. Mather, A., & Pollock, C. (2011). Glucose handling by the kidney. Kidney International. Supplement, S1–S6.

    Google Scholar 

  44. Vallon, V. (2020). Glucose transporters in the kidney in health and disease. Pflügers Archiv, 472, 1345–1370.

    Article  CAS  PubMed  Google Scholar 

  45. Vallon, V., & Komers, R. (2011). Pathophysiology of the diabetic kidney. Comprehensive Physiology, 1, 1175–1232.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vallon, V., Platt, K. A., Cunard, R., Schroth, J., Whaley, J., Thomson, S. C., Koepsell, H., & Rieg, T. (2011). SGLT2 mediates glucose reabsorption in the early proximal tubule. Journal of the American Society of Nephrology, 22, 104–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ferro, C. J., Mark, P. B., Kanbay, M., Sarafidis, P., Heine, G. H., Rossignol, P., Massy, Z. A., Mallamaci, F., Valdivielso, J. M., Malyszko, J., et al. (2018). Lipid management in patients with chronic kidney disease. Nature Reviews. Nephrology, 14, 727–749.

    Article  CAS  PubMed  Google Scholar 

  48. Vaziri, N. D. (2016). HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nature Reviews. Nephrology, 12, 37–47.

    Article  CAS  PubMed  Google Scholar 

  49. Kang, H. M., Ahn, S. H., Choi, P., Ko, Y. A., Han, S. H., Chinga, F., Park, A. S., Tao, J., Sharma, K., Pullman, J., et al. (2015). Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nature Medicine, 21, 37–46.

    Article  CAS  PubMed  Google Scholar 

  50. Stadler, K., Goldberg, I. J., & Susztak, K. (2015). The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Current Diabetes Reports, 15, 40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Baek, J., He, C., Afshinnia, F., Michailidis, G., & Pennathur, S. (2021). Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nature Reviews. Nephrology, 18, 38–55.

    Article  PubMed  CAS  Google Scholar 

  52. Rao, S., Walters, K. B., Wilson, L., Chen, B., Bolisetty, S., Graves, D., Barnes, S., Agarwal, A., & Kabarowski, J. H. (2016). Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging. American Journal of Physiology. Renal Physiology, 310, F1136–F1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Subramanian, A., Sidhom, E. H., Emani, M., Vernon, K., Sahakian, N., Zhou, Y., Kost-Alimova, M., Slyper, M., Waldman, J., Dionne, D., et al. (2019). Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nature Communications, 10, 5462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Harder, J. L., Menon, R., Otto, E. A., Zhou, J., Eddy, S., Wys, N. L., O'Connor, C., Luo, J., Nair, V., Cebrian, C., et al. (2019). Organoid single cell profiling identifies a transcriptional signature of glomerular disease. JCI Insight, 4, e122697.

    Article  PubMed Central  Google Scholar 

  55. Kruger, C., Nguyen, T. T., Breaux, C., Guillory, A., Mangelli, M., Fridianto, K. T., Kovalik, J. P., Burk, D. H., Noland, R. C., Mynatt, R., et al. (2019). Proximal tubular cell-specific ablation of carnitine acetyltransferase causes tubular disease and secondary glomerulosclerosis. Diabetes, 68, 819–831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chung, K. W., Dhillon, P., Huang, S., Sheng, X., Shrestha, R., Qiu, C., Kaufman, B. A., Park, J., Pei, L., Baur, J., et al. (2019). Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metabolism, 30, 784–799e785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ducasa, G. M., Mitrofanova, A., Mallela, S. K., Liu, X., Molina, J., Sloan, A., Pedigo, C. E., Ge, M., Santos, J. V., Hernandez, Y., et al. (2019). ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. The Journal of Clinical Investigation, 129, 3387–3400.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Herman-Edelstein, M., Scherzer, P., Tobar, A., Levi, M., & Gafter, U. (2014). Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. Journal of Lipid Research, 55, 561–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huber, T. B., Edelstein, C. L., Hartleben, B., Inoki, K., Jiang, M., Koya, D., Kume, S., Lieberthal, W., Pallet, N., Quiroga, A., et al. (2012). Emerging role of autophagy in kidney function, diseases and aging. Autophagy, 8, 1009–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thomas, M. C., Brownlee, M., Susztak, K., Sharma, K., Jandeleit-Dahm, K. A., Zoungas, S., Rossing, P., Groop, P. H., & Cooper, M. E. (2015). Diabetic kidney disease. Nature Reviews. Disease Primers, 1, 15018.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wright, M. B., Varona Santos, J., Kemmer, C., Maugeais, C., Carralot, J. P., Roever, S., Molina, J., Ducasa, G. M., Mitrofanova, A., Sloan, A., et al. (2021). Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nature Communications, 12, 4662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zoccali, C., Vanholder, R., Massy, Z. A., Ortiz, A., Sarafidis, P., Dekker, F. W., Fliser, D., Fouque, D., Heine, G. H., Jager, K. J., et al. (2017). The systemic nature of CKD. Nature Reviews. Nephrology, 13, 344–358.

    Article  PubMed  Google Scholar 

  63. Reiss, A. B., Voloshyna, I., De Leon, J., Miyawaki, N., & Mattana, J. (2015). Cholesterol metabolism in CKD. American Journal of Kidney Diseases, 66, 1071–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, Z., Jiang, T., Li, J., Proctor, G., McManaman, J. L., Lucia, S., Chua, S., & Levi, M. (2005). Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes, 54, 2328–2335.

    Article  CAS  PubMed  Google Scholar 

  65. Honzumi, S., Takeuchi, M., Kurihara, M., Fujiyoshi, M., Uchida, M., Watanabe, K., Suzuki, T., & Ishii, I. (2018). The effect of cholesterol overload on mouse kidney and kidney-derived cells. Renal Failure, 40, 43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Agrawal, S., Zaritsky, J. J., Fornoni, A., & Smoyer, W. E. (2018). Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nature Reviews. Nephrology, 14, 57–70.

    Article  CAS  PubMed  Google Scholar 

  67. Morawietz, H. (2007). LOX-1 and atherosclerosis: Proof of concept in LOX-1-knockout mice. Circulation Research, 100, 1534–1536.

    Article  CAS  PubMed  Google Scholar 

  68. Pirillo, A., Norata, G. D., & Catapano, A. L. (2013). LOX-1, OxLDL, and atherosclerosis. Mediators of Inflammation, 2013, 152786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Okamura, D. M., Pennathur, S., Pasichnyk, K., Lopez-Guisa, J. M., Collins, S., Febbraio, M., Heinecke, J., & Eddy, A. A. (2009). CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. Journal of the American Society of Nephrology, 20, 495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, X., Okamura, D. M., Lu, X., Chen, Y., Moorhead, J., Varghese, Z., & Ruan, X. Z. (2017a). CD36 in chronic kidney disease: Novel insights and therapeutic opportunities. Nature Reviews. Nephrology, 13, 769–781.

    Article  CAS  PubMed  Google Scholar 

  71. Horton, J. D., Goldstein, J. L., & Brown, M. S. (2002). SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of Clinical Investigation, 109, 1125–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shimano, H., & Sato, R. (2017). SREBP-regulated lipid metabolism: Convergent physiology—divergent pathophysiology. Nature Reviews. Endocrinology, 13, 710–730.

    Article  CAS  PubMed  Google Scholar 

  73. Sun, L., Halaihel, N., Zhang, W., Rogers, T., & Levi, M. (2002). Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. The Journal of Biological Chemistry, 277, 18919–18927.

    Article  CAS  PubMed  Google Scholar 

  74. Bobulescu, I. A. (2010). Renal lipid metabolism and lipotoxicity. Current Opinion in Nephrology and Hypertension, 19, 393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Loregger, A., Raaben, M., Nieuwenhuis, J., Tan, J. M. E., Jae, L. T., van den Hengel, L. G., Hendrix, S., van den Berg, M., Scheij, S., Song, J. Y., et al. (2020). Haploid genetic screens identify SPRING/C12ORF49 as a determinant of SREBP signaling and cholesterol metabolism. Nature Communications, 11, 1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Collaboration, N. C. D. R. F. (2020). Repositioning of the global epicentre of non-optimal cholesterol. Nature, 582, 73–77.

    Article  CAS  Google Scholar 

  77. Luo, J., Yang, H., & Song, B. L. (2020). Mechanisms and regulation of cholesterol homeostasis. Nature Reviews. Molecular Cell Biology, 21, 225–245.

    Article  CAS  PubMed  Google Scholar 

  78. Mukherjee, S., & Maxfield, F. R. (1999). Cholesterol: Stuck in traffic. Nature Cell Biology, 1, E37–E38.

    Article  CAS  PubMed  Google Scholar 

  79. Carstea, E. D., Morris, J. A., Coleman, K. G., Loftus, S. K., Zhang, D., Cummings, C., Gu, J., Rosenfeld, M. A., Pavan, W. J., Krizman, D. B., et al. (1997). Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science, 277, 228–231.

    Article  CAS  PubMed  Google Scholar 

  80. Loftus, S. K., Morris, J. A., Carstea, E. D., Gu, J. Z., Cummings, C., Brown, A., Ellison, J., Ohno, K., Rosenfeld, M. A., Tagle, D. A., et al. (1997). Murine model of Niemann-Pick C disease: Mutation in a cholesterol homeostasis gene. Science, 277, 232–235.

    Article  CAS  PubMed  Google Scholar 

  81. Liscum, L., & Klansek, J. J. (1998). Niemann-Pick disease type C. Current Opinion in Lipidology, 9, 131–135.

    Article  CAS  PubMed  Google Scholar 

  82. Chang, T. Y., Chang, C. C., & Cheng, D. (1997). Acyl-coenzyme A:cholesterol acyltransferase. Annual Review of Biochemistry, 66, 613–638.

    Article  CAS  PubMed  Google Scholar 

  83. Chang, T. Y., Chang, C. C., Lin, S., Yu, C., Li, B. L., & Miyazaki, A. (2001). Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and -2. Current Opinion in Lipidology, 12, 289–296.

    Article  CAS  PubMed  Google Scholar 

  84. Chang, T. Y., Li, B. L., Chang, C. C., & Urano, Y. (2009b). Acyl-coenzyme A:cholesterol acyltransferases. American Journal of Physiology. Endocrinology and Metabolism, 297, E1–E9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ference, B. A., Robinson, J. G., Brook, R. D., Catapano, A. L., Chapman, M. J., Neff, D. R., Voros, S., Giugliano, R. P., Davey Smith, G., Fazio, S., et al. (2016). Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. The New England Journal of Medicine, 375, 2144–2153.

    Article  CAS  PubMed  Google Scholar 

  86. Lim, G. B. (2017). Genetics: HMGCR and PCSK9 variants and cardiovascular risk. Nature Reviews. Cardiology, 14, 66.

    PubMed  Google Scholar 

  87. Lindgren, V., Luskey, K. L., Russell, D. W., & Francke, U. (1985). Human genes involved in cholesterol metabolism: Chromosomal mapping of the loci for the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes. Proceedings of the National Academy of Sciences of the United States of America, 82, 8567–8571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Buhman, K. F., Accad, M., & Farese, R. V. (2000). Mammalian acyl-CoA:cholesterol acyltransferases. Biochimica et Biophysica Acta, 1529, 142–154.

    Article  CAS  PubMed  Google Scholar 

  89. Miyazaki, A., Sakai, M., Sakamoto, Y., & Horiuchi, S. (2003). Acyl-coenzyme A:cholesterol acyltransferase inhibitors for controlling hypercholesterolemia and atherosclerosis. Current Opinion in Investigational Drugs, 4, 1095–1099.

    CAS  PubMed  Google Scholar 

  90. Liu, X., Ducasa, G. M., Mallela, S. K., Kim, J. J., Molina, J., Mitrofanova, A., Wilbon, S. S., Ge, M., Fontanella, A., Pedigo, C., et al. (2020). Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome. Kidney International, 98, 1275–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Okazaki, H., Igarashi, M., Nishi, M., Sekiya, M., Tajima, M., Takase, S., Takanashi, M., Ohta, K., Tamura, Y., Okazaki, S., et al. (2008). Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages. The Journal of Biological Chemistry, 283, 33357–33364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ishii, I., Oka, M., Katto, N., Shirai, K., Saito, Y., & Hirose, S. (1992). Beta-VLDL-induced cholesterol ester deposition in macrophages may be regulated by neutral cholesterol esterase activity. Arteriosclerosis and Thrombosis, 12, 1139–1145.

    Article  CAS  PubMed  Google Scholar 

  93. Kritharides, L., Christian, A., Stoudt, G., Morel, D., & Rothblat, G. H. (1998). Cholesterol metabolism and efflux in human THP-1 macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1589–1599.

    Article  CAS  PubMed  Google Scholar 

  94. Jiang, X. C., Agellon, L. B., Walsh, A., Breslow, J. L., & Tall, A. (1992). Dietary cholesterol increases transcription of the human cholesteryl ester transfer protein gene in transgenic mice. Dependence on natural flanking sequences. The Journal of Clinical Investigation, 90, 1290–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rosenson, R. S., Brewer, H. B., Jr., Davidson, W. S., Fayad, Z. A., Fuster, V., Goldstein, J., Hellerstein, M., Jiang, X. C., Phillips, M. C., Rader, D. J., et al. (2012). Cholesterol efflux and atheroprotection: Advancing the concept of reverse cholesterol transport. Circulation, 125, 1905–1919.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tall, A. R., Jiang, X., Luo, Y., & Silver, D. (2000). 1999 George Lyman Duff memorial lecture: Lipid transfer proteins, HDL metabolism, and atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1185–1188.

    Article  CAS  PubMed  Google Scholar 

  97. Wang, X., Collins, H. L., Ranalletta, M., Fuki, I. V., Billheimer, J. T., Rothblat, G. H., Tall, A. R., & Rader, D. J. (2007). Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. The Journal of Clinical Investigation, 117, 2216–2224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pan, X., Bradfield, C. A., & Hussain, M. M. (2016). Global and hepatocyte-specific ablation of Bmal1 induces hyperlipidaemia and enhances atherosclerosis. Nature Communications, 7, 13011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pan, X., Jiang, X. C., & Hussain, M. M. (2013). Impaired cholesterol metabolism and enhanced atherosclerosis in clock mutant mice. Circulation, 128, 1758–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Merscher-Gomez, S., Guzman, J., Pedigo, C. E., Lehto, M., Aguillon-Prada, R., Mendez, A., Lassenius, M. I., Forsblom, C., Yoo, T., Villarreal, R., et al. (2013). Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes, 62, 3817–3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tsun, J. G., Yung, S., Chau, M. K., Shiu, S. W., Chan, T. M., & Tan, K. C. (2014). Cellular cholesterol transport proteins in diabetic nephropathy. PLoS One, 9, e105787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Hong, C., & Tontonoz, P. (2014). Liver X receptors in lipid metabolism: Opportunities for drug discovery. Nature Reviews. Drug Discovery, 13, 433–444.

    Article  CAS  PubMed  Google Scholar 

  103. Tontonoz, P., & Mangelsdorf, D. J. (2003). Liver X receptor signaling pathways in cardiovascular disease. Molecular Endocrinology, 17, 985–993.

    Article  CAS  PubMed  Google Scholar 

  104. Walczak, R., & Tontonoz, P. (2002). PPARadigms and PPARadoxes: Expanding roles for PPARgamma in the control of lipid metabolism. Journal of Lipid Research, 43, 177–186.

    Article  CAS  PubMed  Google Scholar 

  105. Tovar-Palacio, C., Torres, N., Diaz-Villasenor, A., & Tovar, A. R. (2012). The role of nuclear receptors in the kidney in obesity and metabolic syndrome. Genes & Nutrition, 7, 483–498.

    Article  CAS  Google Scholar 

  106. Van der Geize, R., Yam, K., Heuser, T., Wilbrink, M. H., Hara, H., Anderton, M. C., Sim, E., Dijkhuizen, L., Davies, J. E., Mohn, W. W., et al. (2007). A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 104, 1947–1952.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Chang, J. C., Miner, M. D., Pandey, A. K., Gill, W. P., Harik, N. S., Sassetti, C. M., & Sherman, D. R. (2009a). igr Genes and Mycobacterium tuberculosis cholesterol metabolism. Journal of Bacteriology, 191, 5232–5239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Griffin, J. E., Pandey, A. K., Gilmore, S. A., Mizrahi, V., McKinney, J. D., Bertozzi, C. R., & Sassetti, C. M. (2012). Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chemistry & Biology, 19, 218–227.

    Article  CAS  Google Scholar 

  109. Miner, M. D., Chang, J. C., Pandey, A. K., Sassetti, C. M., & Sherman, D. R. (2009). Role of cholesterol in Mycobacterium tuberculosis infection. Indian Journal of Experimental Biology, 47, 407–411.

    CAS  PubMed  Google Scholar 

  110. Moorhead, J. F., Chan, M. K., El-Nahas, M., & Varghese, Z. (1982). Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet, 2, 1309–1311.

    Article  CAS  PubMed  Google Scholar 

  111. Cohen, M. P. (1980). Glycosaminoglycans are integral constituents of renal glomerular basement membrane. Biochemical and Biophysical Research Communications, 92, 343–348.

    Article  CAS  PubMed  Google Scholar 

  112. Liu, R., Carretero, O. A., Ren, Y., & Garvin, J. L. (2005). Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback. Kidney International, 67, 1837–1843.

    Article  CAS  PubMed  Google Scholar 

  113. Wahl, P., Ducasa, G. M., & Fornoni, A. (2016). Systemic and renal lipids in kidney disease development and progression. American Journal of Physiology. Renal Physiology, 310, F433–F445.

    Article  CAS  PubMed  Google Scholar 

  114. Baldelomar, E. J., Charlton, J. R., Beeman, S. C., Hann, B. D., Cullen-McEwen, L., Pearl, V. M., Bertram, J. F., Wu, T., Zhang, M., & Bennett, K. M. (2016). Phenotyping by magnetic resonance imaging nondestructively measures glomerular number and volume distribution in mice with and without nephron reduction. Kidney International, 89, 498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Beeman, S. C., Cullen-McEwen, L. A., Puelles, V. G., Zhang, M., Wu, T., Baldelomar, E. J., Dowling, J., Charlton, J. R., Forbes, M. S., Ng, A., et al. (2014). MRI-based glomerular morphology and pathology in whole human kidneys. American Journal of Physiology. Renal Physiology, 306, F1381–F1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sun, Y., Ge, X., Li, X., He, J., Wei, X., Du, J., Sun, J., Li, X., Xun, Z., Liu, W., et al. (2020). High-fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction. Cell Death & Disease, 11, 914.

    Article  CAS  Google Scholar 

  117. Zager, R. A., & Johnson, A. (2001). Renal cortical cholesterol accumulation is an integral component of the systemic stress response. Kidney International, 60, 2299–2310.

    Article  CAS  PubMed  Google Scholar 

  118. Agrawal, S., Zaritsky, J. J., Fornoni, A., & Smoyer, W. E. (2017). Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nature Reviews. Nephrology, 14, 70.

    Article  PubMed  Google Scholar 

  119. Pedigo, C. E., Ducasa, G. M., Leclercq, F., Sloan, A., Mitrofanova, A., Hashmi, T., Molina-David, J., Ge, M., Lassenius, M. I., Forsblom, C., et al. (2016). Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. The Journal of Clinical Investigation, 126, 3336–3350.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ruan, X. Z., Varghese, Z., & Moorhead, J. F. (2009). An update on the lipid nephrotoxicity hypothesis. Nature Reviews. Nephrology, 5, 713–721.

    Article  CAS  PubMed  Google Scholar 

  121. Yamamoto, T., Takabatake, Y., Takahashi, A., Kimura, T., Namba, T., Matsuda, J., Minami, S., Kaimori, J. Y., Matsui, I., Matsusaka, T., et al. (2017). High-fat diet-induced lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in the kidney. Journal of the American Society of Nephrology, 28, 1534–1551.

    Article  CAS  PubMed  Google Scholar 

  122. Sun, H., Yuan, Y., & Sun, Z. L. (2013). Cholesterol contributes to diabetic nephropathy through SCAP-SREBP-2 pathway. International Journal of Endocrinology, 2013, 592576.

    PubMed  PubMed Central  Google Scholar 

  123. Vaziri, N. D. (2010). Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease. Journal of Renal Nutrition, 20, S35–S43.

    Article  CAS  PubMed  Google Scholar 

  124. Weiner, D. E., Tighiouart, H., Amin, M. G., Stark, P. C., MacLeod, B., Griffith, J. L., Salem, D. N., Levey, A. S., & Sarnak, M. J. (2004). Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: A pooled analysis of community-based studies. Journal of the American Society of Nephrology, 15, 1307–1315.

    Article  PubMed  Google Scholar 

  125. Yilmaz, M. I., Siriopol, D., Saglam, M., Unal, H. U., Karaman, M., Gezer, M., Kilinc, A., Eyileten, T., Guler, A. K., Aydin, I., et al. (2016). Osteoprotegerin in chronic kidney disease: Associations with vascular damage and cardiovascular events. Calcified Tissue International, 99, 121–130.

    Article  CAS  PubMed  Google Scholar 

  126. Balarini, C. M., Oliveira, M. Z., Pereira, T. M., Silva, N. F., Vasquez, E. C., Meyrelles, S. S., & Gava, A. L. (2011). Hypercholesterolemia promotes early renal dysfunction in apolipoprotein E-deficient mice. Lipids in Health and Disease, 10, 220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sastre, C., Rubio-Navarro, A., Buendia, I., Gomez-Guerrero, C., Blanco, J., Mas, S., Egido, J., Blanco-Colio, L. M., Ortiz, A., & Moreno, J. A. (2013). Hyperlipidemia-associated renal damage decreases Klotho expression in kidneys from ApoE knockout mice. PLoS One, 8, e83713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Qian, C., Yang, Q., Guo, L., Zhu, H., You, X., Liu, H., & Sun, Y. (2021). Exercise reduces hyperlipidemia-induced kidney damage in apolipoprotein E-deficient mice. Experimental and Therapeutic Medicine, 21, 153.

    Article  CAS  PubMed  Google Scholar 

  129. Segerer, S., Eitner, F., Cui, Y., Hudkins, K. L., & Alpers, C. E. (2002). Cellular injury associated with renal thrombotic microangiopathy in human immunodeficiency virus-infected macaques. Journal of the American Society of Nephrology, 13, 370–378.

    Article  PubMed  Google Scholar 

  130. Wen, M., Segerer, S., Dantas, M., Brown, P. A., Hudkins, K. L., Goodpaster, T., Kirk, E., LeBoeuf, R. C., & Alpers, C. E. (2002). Renal injury in apolipoprotein E-deficient mice. Laboratory Investigation, 82, 999–1006.

    Article  CAS  PubMed  Google Scholar 

  131. Byrne, C. D., & Targher, G. (2020). NAFLD as a driver of chronic kidney disease. Journal of Hepatology, 72, 785–801.

    Article  PubMed  Google Scholar 

  132. Pan, X., Queiroz, J., & Hussain, M. M. (2020b). Nonalcoholic fatty liver disease in CLOCK mutant mice. The Journal of Clinical Investigation, 130, 4282–4300.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Burmakin, M., Fasching, A., Kobayashi, H., Urrutia, A. A., Damdimopoulos, A., Palm, F., & Haase, V. H. (2021). Pharmacological HIF-PHD inhibition reduces renovascular resistance and increases glomerular filtration by stimulating nitric oxide generation. Acta Physiologica (Oxford, England), 233, e13668.

    Article  CAS  Google Scholar 

  134. Haase, V. H. (2019). ARNT as a novel antifibrotic target in CKD. American Journal of Kidney Diseases, 73, 281–284.

    Article  PubMed  Google Scholar 

  135. Okada, K., Yanai, M., Takeuchi, K., Matsuyama, K., Nitta, K., Hayashi, K., & Takahashi, S. (2014). Sex differences in the prevalence, progression, and improvement of chronic kidney disease. Kidney & Blood Pressure Research, 39, 279–288.

    Article  CAS  Google Scholar 

  136. Ricardo, A. C., Yang, W., Sha, D., Appel, L. J., Chen, J., Krousel-Wood, M., Manoharan, A., Steigerwalt, S., Wright, J., Rahman, M., et al. (2019). Sex-related disparities in CKD progression. Journal of the American Society of Nephrology, 30, 137–146.

    Article  CAS  PubMed  Google Scholar 

  137. Coggins, C. H., Breyer Lewis, J., Caggiula, A. W., Castaldo, L. S., Klahr, S., & Wang, S. R. (1998). Differences between women and men with chronic renal disease. Nephrology, Dialysis, Transplantation, 13, 1430–1437.

    Article  CAS  PubMed  Google Scholar 

  138. Al-Rejaie, S. S., Abuohashish, H. M., Alkhamees, O. A., Aleisa, A. M., & Alroujayee, A. S. (2012). Gender difference following high cholesterol diet induced renal injury and the protective role of rutin and ascorbic acid combination in Wistar albino rats. Lipids in Health and Disease, 11, 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Schrauben, S. J., Hsu, J. Y., Wright Nunes, J., Fischer, M. J., Srivastava, A., Chen, J., Charleston, J., Steigerwalt, S., Tan, T. C., Fink, J. C., et al. (2019). Health behaviors in younger and older adults with CKD: Results from the CRIC study. Kidney International Reports, 4, 80–93.

    Article  PubMed  Google Scholar 

  140. Wei, J., Zhu, J., Zhang, J., Jiang, S., Qu, L., Wang, L., Buggs, J., Tan, X., Cheng, F., & Liu, R. (2020). Aging impairs renal autoregulation in mice. Hypertension, 75, 405–412.

    Article  CAS  PubMed  Google Scholar 

  141. Bellin, A. R., Zhang, Y., Thai, K., Rosenblum, N. D., Cullen-McEwen, L. A., Bertram, J. F., & Gilbert, R. E. (2019). Impaired SIRT1 activity leads to diminution in glomerular endowment without accelerating age-associated GFR decline. Physiological Reports, 7, e14044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Chu, Y., Lan, R. S., Huang, R., Feng, H., Kumar, R., Dayal, S., Chan, K. S., & Dai, D. F. (2020). Glutathione peroxidase-1 overexpression reduces oxidative stress, and improves pathology and proteome remodeling in the kidneys of old mice. Aging Cell, 19, e13154.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Itoh, K., Tong, K. I., & Yamamoto, M. (2004). Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radical Biology & Medicine, 36, 1208–1213.

    Article  CAS  Google Scholar 

  144. Kamisako, T., Tanaka, Y., Kishino, Y., Ikeda, T., Yamamoto, K., Masuda, S., & Ogawa, H. (2014). Role of Nrf2 in the alteration of cholesterol and bile acid metabolism-related gene expression by dietary cholesterol in high fat-fed mice. Journal of Clinical Biochemistry and Nutrition, 54, 90–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lyu, J., Imachi, H., Fukunaga, K., Sato, S., Ibata, T., Kobayashi, T., Dong, T., Yoshimoto, T., Yonezaki, K., Nagata, H., et al. (2018). Angiotensin II induces cholesterol accumulation and impairs insulin secretion by regulating ABCA1 in beta cells. Journal of Lipid Research, 59, 1906–1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yang, Y., Yang, Q., Yang, J., Ma, Y., & Ding, G. (2017b). Angiotensin II induces cholesterol accumulation and injury in podocytes. Scientific Reports, 7, 10672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Pan, X., & Hussain, M. M. (2021). Bmal1 regulates production of larger lipoproteins by modulating cAMP-responsive element-binding protein H and apolipoprotein AIV. Hepatology.

    Google Scholar 

  148. Ansermet, C., Centeno, G., Nikolaeva, S., Maillard, M. P., Pradervand, S., & Firsov, D. (2019). The intrinsic circadian clock in podocytes controls glomerular filtration rate. Scientific Reports, 9, 16089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Zhang, D., & Pollock, D. M. (2018). Circadian regulation of kidney function: Finding a role for Bmal1. American Journal of Physiology. Renal Physiology, 314, F675–F678.

    Article  CAS  PubMed  Google Scholar 

  150. Zhang, D., & Pollock, D. M. (2020). Diurnal regulation of renal electrolyte excretion: The role of paracrine factors. Annual Review of Physiology, 82, 343–363.

    Article  CAS  PubMed  Google Scholar 

  151. Jeon, T. I., & Osborne, T. F. (2012). SREBPs: metabolic integrators in physiology and metabolism. Trends in Endocrinology and Metabolism, 23, 65–72.

    Article  CAS  PubMed  Google Scholar 

  152. Wu, N., Sarna, L. K., Hwang, S. Y., Zhu, Q., Wang, P., Siow, Y. L., & O, K. (2013). Activation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase during high fat diet feeding. Biochimica et Biophysica Acta, 1832, 1560–1568.

    Article  CAS  PubMed  Google Scholar 

  153. Lu, X. Y., Shi, X. J., Hu, A., Wang, J. Q., Ding, Y., Jiang, W., Sun, M., Zhao, X., Luo, J., Qi, W., et al. (2020). Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature, 588, 479–484.

    Article  CAS  PubMed  Google Scholar 

  154. Boletta, A. (2016). Slowing polycystic kidney disease by fasting. Journal of the American Society of Nephrology, 27, 1268–1270.

    Article  CAS  PubMed  Google Scholar 

  155. Nowak, K. L., & Hopp, K. (2020). Metabolic reprogramming in autosomal dominant polycystic kidney disease: evidence and therapeutic potential. Clinical Journal of the American Society of Nephrology, 15, 577–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Torres, J. A., Kruger, S. L., Broderick, C., Amarlkhagva, T., Agrawal, S., Dodam, J. R., Mrug, M., Lyons, L. A., & Weimbs, T. (2019). Ketosis ameliorates renal cyst growth in polycystic kidney disease. Cell Metabolism, 30, 1007–1023e1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Warner, G., Hein, K. Z., Nin, V., Edwards, M., Chini, C. C., Hopp, K., Harris, P. C., Torres, V. E., & Chini, E. N. (2016). Food restriction ameliorates the development of polycystic kidney disease. Journal of the American Society of Nephrology, 27, 1437–1447.

    Article  CAS  PubMed  Google Scholar 

  158. Chaix, A., Lin, T., Le, H. D., Chang, M. W., & Panda, S. (2019). Time-Restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metabolism, 29, 303–319e304.

    Article  CAS  PubMed  Google Scholar 

  159. Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E. A., Gill, S., Leblanc, M., Chaix, A., Joens, M., Fitzpatrick, J. A., et al. (2012). Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metabolism, 15, 848–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Longo, V. D., & Panda, S. (2016). Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metabolism, 23, 1048–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wilkinson, M. J., Manoogian, E. N. C., Zadourian, A., Lo, H., Fakhouri, S., Shoghi, A., Wang, X., Fleischer, J. G., Navlakha, S., Panda, S., et al. (2020). Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metabolism, 31, 92–104e105.

    Article  CAS  PubMed  Google Scholar 

  162. Gabel, K., Hoddy, K. K., Haggerty, N., Song, J., Kroeger, C. M., Trepanowski, J. F., Panda, S., & Varady, K. A. (2018). Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutrition and Healthy Aging, 4, 345–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Pan, X., & Hussain, M. M. (2009). Clock is important for food and circadian regulation of macronutrient absorption in mice. Journal of Lipid Research, 50, 1800–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pan, X., Zhang, Y., Wang, L., & Hussain, M. M. (2010). Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metabolism, 12, 174–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Beauchamp, D., Guimont, C., Grenier, L., LeBrun, M., Tardif, D., Gourde, P., Bergeron, M. G., Thibault, L., & Labrecque, G. (1997). Time-restricted feeding schedules modify temporal variation of gentamicin experimental nephrotoxicity. Antimicrobial Agents and Chemotherapy, 41, 1468–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Toyama, K., Sugiyama, S., Oka, H., Sumida, H., & Ogawa, H. (2010). Exercise therapy correlates with improving renal function through modifying lipid metabolism in patients with cardiovascular disease and chronic kidney disease. Journal of Cardiology, 56, 142–146.

    Article  PubMed  Google Scholar 

  167. Epstein, M., & Vaziri, N. D. (2012). Statins in the management of dyslipidemia associated with chronic kidney disease. Nature Reviews. Nephrology, 8, 214–223.

    Article  CAS  PubMed  Google Scholar 

  168. Valeri, A., Gelfand, J., Blum, C., & Appel, G. B. (1986). Treatment of the hyperlipidemia of the nephrotic syndrome: a controlled trial. American Journal of Kidney Diseases, 8, 388–396.

    Article  CAS  PubMed  Google Scholar 

  169. Buyukcelik, M., Anarat, A., Bayazit, A. K., Noyan, A., Ozel, A., Anarat, R., Aydingulu, H., & Dikmen, N. (2002). The effects of gemfibrozil on hyperlipidemia in children with persistent nephrotic syndrome. The Turkish Journal of Pediatrics, 44, 40–44.

    PubMed  Google Scholar 

  170. Groggel, G. C., Cheung, A. K., Ellis-Benigni, K., & Wilson, D. E. (1989). Treatment of nephrotic hyperlipoproteinemia with gemfibrozil. Kidney International, 36, 266–271.

    Article  CAS  PubMed  Google Scholar 

  171. Reiner, Z. (2011). New ESC/EAS Guidelines for the management of dyslipidaemias—Any controversies behind the consensus? European Journal of Cardiovascular Prevention and Rehabilitation, 18, 724–727.

    Article  PubMed  Google Scholar 

  172. Herrera-Gomez, F., Chimeno, M. M., Martin-Garcia, D., Lizaraso-Soto, F., Maurtua-Briseno-Meiggs, A., Grande-Villoria, J., Bustamante-Munguira, J., Alamartine, E., Vilardell, M., Ochoa-Sangrador, C., et al. (2019). Cholesterol-lowering treatment in chronic kidney disease: Multistage pairwise and network meta-analyses. Scientific Reports, 9, 8951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Stanifer, J. W., Charytan, D. M., White, J., Lokhnygina, Y., Cannon, C. P., Roe, M. T., & Blazing, M. A. (2017). Benefit of Ezetimibe added to simvastatin in reduced kidney function. Journal of the American Society of Nephrology, 28, 3034–3043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Vlad, C. E., Foia, L., Popescu, R., Ivanov, I., Luca, M. C., Delianu, C., Toma, V., Statescu, C., Rezus, C., & Florea, L. (2019). Apolipoproteins A and B and PCSK9: Nontraditional cardiovascular risk factors in chronic kidney disease and in end-stage renal disease. Journal Diabetes Research, 2019, 6906278.

    Article  CAS  Google Scholar 

  175. Ko, C. W., Qu, J., Black, D. D., & Tso, P. (2020). Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nature Reviews. Gastroenterology & Hepatology, 17, 169–183.

    Article  CAS  Google Scholar 

  176. Wang, F., Kohan, A. B., Lo, C. M., Liu, M., Howles, P., & Tso, P. (2015). Apolipoprotein A-IV: A protein intimately involved in metabolism. Journal of Lipid Research, 56, 1403–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kronenberg, F., Konig, P., Neyer, U., Auinger, M., Pribasnig, A., Lang, U., Reitinger, J., Pinter, G., Utermann, G., & Dieplinger, H. (1995). Multicenter study of lipoprotein(a) and apolipoprotein(a) phenotypes in patients with end-stage renal disease treated by hemodialysis or continuous ambulatory peritoneal dialysis. Journal of the American Society of Nephrology, 6, 110–120.

    Article  CAS  PubMed  Google Scholar 

  178. Kronenberg, F., Kuen, E., Ritz, E., Konig, P., Kraatz, G., Lhotta, K., Mann, J. F. E., Muller, G. A., Neyer, U., Riegel, W., et al. (2002). Apolipoprotein A-IV serum concentrations are elevated in patients with mild and moderate renal failure. Journal of the American Society of Nephrology, 13, 461–469.

    Article  CAS  PubMed  Google Scholar 

  179. Lingenhel, A., Lhotta, K., Neyer, U., Heid, I. M., Rantner, B., Kronenberg, M. F., Konig, P., von Eckardstein, A., Schober, M., Dieplinger, H., et al. (2006). Role of the kidney in the metabolism of apolipoprotein A-IV: Influence of the type of proteinuria. Journal of Lipid Research, 47, 2071–2079.

    Article  CAS  PubMed  Google Scholar 

  180. Hussain, M. M., Fatma, S., Pan, X., & Iqbal, J. (2005). Intestinal lipoprotein assembly. Current Opinion in Lipidology, 16, 281–285.

    Article  CAS  PubMed  Google Scholar 

  181. Sniderman, A. D., Thanassoulis, G., Glavinovic, T., Navar, A. M., Pencina, M., Catapano, A., & Ference, B. A. (2019). Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiology, 4, 1287–1295.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Hussain, M. M., & Pan, X. (2009). Clock genes, intestinal transport and plasma lipid homeostasis. Trends in Endocrinology and Metabolism, 20, 177–185.

    Article  CAS  PubMed  Google Scholar 

  183. Cuchel, M., Bruckert, E., Ginsberg, H. N., Raal, F. J., Santos, R. D., Hegele, R. A., Kuivenhoven, J. A., Nordestgaard, B. G., Descamps, O. S., Steinhagen-Thiessen, E., et al. (2014). Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. European Heart Journal, 35, 2146–2157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rader, D. J., & Kastelein, J. J. (2014). Lomitapide and mipomersen: Two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation, 129, 1022–1032.

    Article  PubMed  Google Scholar 

  185. Feingold, K. R. (2019). Maximizing the benefits of cholesterol-lowering drugs. Current Opinion in Lipidology, 30, 388–394.

    Article  CAS  PubMed  Google Scholar 

  186. Wolfrum, C., Poy, M. N., & Stoffel, M. (2005). Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nature Medicine, 11, 418–422.

    Article  CAS  PubMed  Google Scholar 

  187. Beckerman, P., Bi-Karchin, J., Park, A. S., Qiu, C., Dummer, P. D., Soomro, I., Boustany-Kari, C. M., Pullen, S. S., Miner, J. H., Hu, C. A., et al. (2017). Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nature Medicine, 23, 429–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bruggeman, L. A., O'Toole, J. F., & Sedor, J. R. (2019). APOL1 polymorphisms and kidney disease: loss-of-function or gain-of-function? American Journal of Physiology. Renal Physiology, 316, F1–F8.

    Article  CAS  PubMed  Google Scholar 

  189. Duchateau, P. N., Pullinger, C. R., Orellana, R. E., Kunitake, S. T., Naya-Vigne, J., O'Connor, P. M., Malloy, M. J., & Kane, J. P. (1997). Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas. Identification, cloning, characterization, and plasma distribution of apolipoprotein L. The Journal of Biological Chemistry, 272, 25576–25582.

    Article  CAS  PubMed  Google Scholar 

  190. Bergeron, N., Phan, B. A., Ding, Y., Fong, A., & Krauss, R. M. (2015). Proprotein convertase subtilisin/kexin type 9 inhibition: a new therapeutic mechanism for reducing cardiovascular disease risk. Circulation, 132, 1648–1666.

    Article  CAS  PubMed  Google Scholar 

  191. Da Dalt, L., Ruscica, M., Bonacina, F., Balzarotti, G., Dhyani, A., Di Cairano, E., Baragetti, A., Arnaboldi, L., De Metrio, S., Pellegatta, F., et al. (2019). PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. European Heart Journal, 40, 357–368.

    Article  PubMed  CAS  Google Scholar 

  192. Pavlakou, P., Liberopoulos, E., Dounousi, E., & Elisaf, M. (2017). PCSK9 in chronic kidney disease. International Urology and Nephrology, 49, 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  193. Hennessy, E. J., van Solingen, C., Scacalossi, K. R., Ouimet, M., Afonso, M. S., Prins, J., Koelwyn, G. J., Sharma, M., Ramkhelawon, B., Carpenter, S., et al. (2019). The long noncoding RNA CHROME regulates cholesterol homeostasis in primate. Nature Metabolism, 1, 98–110.

    Article  CAS  PubMed  Google Scholar 

  194. Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery, 16, 203–222.

    Article  CAS  PubMed  Google Scholar 

  195. Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., & Stoffel, M. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438, 685–689.

    Article  PubMed  CAS  Google Scholar 

  196. Wolfrum, C., Shi, S., Jayaprakash, K. N., Jayaraman, M., Wang, G., Pandey, R. K., Rajeev, K. G., Nakayama, T., Charrise, K., Ndungo, E. M., et al. (2007). Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotechnology, 25, 1149–1157.

    Article  CAS  PubMed  Google Scholar 

  197. Fujii, R., Yamada, H., Munetsuna, E., Yamazaki, M., Ohashi, K., Ishikawa, H., Maeda, K., Hagiwara, C., Ando, Y., Hashimoto, S., et al. (2020). Associations of circulating MicroRNAs (miR-17, miR-21, and miR-150) and chronic kidney disease in a Japanese population. Journal of Epidemiology, 30, 177–182.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Fujii, R., Yamada, H., Yamazaki, M., Munetsuna, E., Ando, Y., Ohashi, K., Ishikawa, H., Shimoda, H., Sakata, K., Ogawa, A., et al. (2019). Circulating microRNAs (miR-126, miR-197, and miR-223) are associated with chronic kidney disease among elderly survivors of the Great East Japan Earthquake. BMC Nephrology, 20, 474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rayner, K. J., Sheedy, F. J., Esau, C. C., Hussain, F. N., Temel, R. E., Parathath, S., van Gils, J. M., Rayner, A. J., Chang, A. N., Suarez, Y., et al. (2011). Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. The Journal of Clinical Investigation, 121, 2921–2931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rayner, K. J., Suarez, Y., Davalos, A., Parathath, S., Fitzgerald, M. L., Tamehiro, N., Fisher, E. A., Moore, K. J., & Fernandez-Hernando, C. (2010). MiR-33 contributes to the regulation of cholesterol homeostasis. Science, 328, 1570–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhou, L., Irani, S., Sirwi, A., & Hussain, M. M. (2016). MicroRNAs regulating apolipoprotein B-containing lipoprotein production. Biochimica et Biophysica Acta, 1861, 2062–2068.

    Article  CAS  PubMed  Google Scholar 

  202. Esau, C., Davis, S., Murray, S. F., Yu, X. X., Pandey, S. K., Pear, M., Watts, L., Booten, S. L., Graham, M., McKay, R., et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism, 3, 87–98.

    Article  CAS  PubMed  Google Scholar 

  203. Hsu, S. H., Wang, B., Kota, J., Yu, J., Costinean, S., Kutay, H., Yu, L., Bai, S., La Perle, K., Chivukula, R. R., et al. (2012). Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. The Journal of Clinical Investigation, 122, 2871–2883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Soh, J., Iqbal, J., Queiroz, J., Fernandez-Hernando, C., & Hussain, M. M. (2013). MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nature Medicine, 19, 892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Tsai, W. C., Hsu, S. D., Hsu, C. S., Lai, T. C., Chen, S. J., Shen, R., Huang, Y., Chen, H. C., Lee, C. H., Tsai, T. F., et al. (2012). MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. The Journal of Clinical Investigation, 122, 2884–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Xu, Y., Zalzala, M., Xu, J., Li, Y., Yin, L., & Zhang, Y. (2015). A metabolic stress-inducible miR-34a-HNF4alpha pathway regulates lipid and lipoprotein metabolism. Nature Communications, 6, 7466.

    Article  CAS  PubMed  Google Scholar 

  207. Hong, D. S., Kang, Y. K., Borad, M., Sachdev, J., Ejadi, S., Lim, H. Y., Brenner, A. J., Park, K., Lee, J. L., Kim, T. Y., et al. (2020). Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. British Journal of Cancer, 122, 1630–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Irani, S., Pan, X., Peck, B. C., Iqbal, J., Sethupathy, P., & Hussain, M. M. (2016). MicroRNA-30c mimic mitigates hypercholesterolemia and atherosclerosis in mice. The Journal of Biological Chemistry, 291, 18397–18409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wu, J., Nagy, L. E., Liangpunsakul, S., & Wang, L. (2021). Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1867, 166083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kalogirou, C., Linxweiler, J., Schmucker, P., Snaebjornsson, M. T., Schmitz, W., Wach, S., Krebs, M., Hartmann, E., Puhr, M., Muller, A., et al. (2021). MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer. Nature Communications, 12, 5066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kato, M., Wang, M., Chen, Z., Bhatt, K., Oh, H. J., Lanting, L., Deshpande, S., Jia, Y., Lai, J. Y., O'Connor, C. L., et al. (2016). An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nature Communications, 7, 12864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hu, Y. W., Yang, J. Y., Ma, X., Chen, Z. P., Hu, Y. R., Zhao, J. Y., Li, S. F., Qiu, Y. R., Lu, J. B., Wang, Y. C., et al. (2014). A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis. Journal of Lipid Research, 55, 681–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Li, H., Han, S., Sun, Q., Yao, Y., Li, S., Yuan, C., Zhang, B., Jing, B., Wu, J., Song, Y., et al. (2019a). Long non-coding RNA CDKN2B-AS1 reduces inflammatory response and promotes cholesterol efflux in atherosclerosis by inhibiting ADAM10 expression. Aging (Albany NY), 11, 1695–1715.

    Article  CAS  Google Scholar 

  214. Li, Y., Sun, T., Shen, S., Wang, L., & Yan, J. (2019b). LncRNA DYNLRB2-2 inhibits THP-1 macrophage foam cell formation by enhancing autophagy. Biological Chemistry, 400, 1047–1057.

    Article  CAS  Google Scholar 

  215. Yuan, H., Lanting, L., Xu, Z. G., Li, S. L., Swiderski, P., Putta, S., Jonnalagadda, M., Kato, M., & Natarajan, R. (2008). Effects of cholesterol-tagged small interfering RNAs targeting 12/15-lipoxygenase on parameters of diabetic nephropathy in a mouse model of type 1 diabetes. American Journal of Physiology. Renal Physiology, 295, F605–F617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sallam, T., Jones, M. C., Gilliland, T., Zhang, L., Wu, X., Eskin, A., Sandhu, J., Casero, D., Vallim, T. Q., Hong, C., et al. (2016). Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature, 534, 124–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Vickers, K. C., & Remaley, A. T. (2014). HDL and cholesterol: Life after the divorce? Journal of Lipid Research, 55, 4–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., et al. (2004). Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 432, 173–178.

    Article  CAS  PubMed  Google Scholar 

  219. Puri, V., Jefferson, J. R., Singh, R. D., Wheatley, C. L., Marks, D. L., & Pagano, R. E. (2003). Sphingolipid storage induces accumulation of intracellular cholesterol by stimulating SREBP-1 cleavage. The Journal of Biological Chemistry, 278, 20961–20970.

    Article  CAS  PubMed  Google Scholar 

  220. Chen, X., Sun, A., Mansoor, A., Zou, Y., Ge, J., Lazar, J. M., & Jiang, X. C. (2009). Plasma PLTP activity is inversely associated with HDL-C levels. Nutrition & Metabolism (London), 6, 49.

    Article  CAS  Google Scholar 

  221. Schlitt, A., Blankenberg, S., Bickel, C., Lackner, K. J., Heine, G. H., Buerke, M., Werdan, K., Maegdefessel, L., Raaz, U., Rupprecht, H. J., et al. (2009). PLTP activity is a risk factor for subsequent cardiovascular events in CAD patients under statin therapy: The AtheroGene study. Journal of Lipid Research, 50, 723–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Song, G., Zong, C., Shao, M., Yu, Y., Liu, Q., Wang, H., Qiu, T., Jiao, P., Guo, Z., Lee, P., et al. (2019). Phospholipid transfer protein (PLTP) deficiency attenuates high fat diet induced obesity and insulin resistance. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1864, 1305–1313.

    Article  CAS  PubMed  Google Scholar 

  223. Yazdanyar, A., Yeang, C., & Jiang, X. C. (2011). Role of phospholipid transfer protein in high-density lipoprotein-mediated reverse cholesterol transport. Current Atherosclerosis Reports, 13, 242–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Zhang, K., Zheng, J., Chen, Y., Dong, J., Li, Z., Chiang, Y. P., He, M., Huang, Q., Tang, H., & Jiang, X. C. (2021). Inducible phospholipid transfer protein deficiency ameliorates atherosclerosis. Atherosclerosis, 324, 9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Jiang, X. C. (2020). Impact of phospholipid transfer protein in lipid metabolism and cardiovascular diseases. Advances in Experimental Medicine and Biology, 1276, 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Jiang, X. C., & Yu, Y. (2021). The role of phospholipid transfer protein in the development of atherosclerosis. Current Atherosclerosis Reports, 23, 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by NIH National Heart, Lung, and Blood Institute Grant R56 HL137912-01 and American Heart Association Grant-In-Aid 16GRNT30960027 to X. Pan.

The author declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyue Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, X. (2022). Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. In: Jiang, XC. (eds) Sphingolipid Metabolism and Metabolic Disease. Advances in Experimental Medicine and Biology, vol 1372. Springer, Singapore. https://doi.org/10.1007/978-981-19-0394-6_9

Download citation

Publish with us

Policies and ethics