Skip to main content

Omics Tools to Understand Abiotic Stress Response and Adaptation in Rye, Oat and Barley

  • Chapter
  • First Online:
Omics Approach to Manage Abiotic Stress in Cereals

Abstract

Rye, oat and barley are one of the most highly consumed cereals in the world after wheat and rice. Their demand in the food industries has enormously increased; however, despite high productivity, continuous supply as per the market demand is hard to achieve, mostly because of periodic crop losses occurring due to abiotic stresses such as drought, salinity, heavy metal toxicity and non-uniform temperature. Generation of abiotic stress-tolerant crops is one of the most serious challenges that need to be addressed by the scientific communities. In this regard, efforts are being made to understand the stress tolerance mechanism, gene discovery and interaction of genetic and environmental factors. Several omics tools and approaches have recently been used for the development of stress-tolerant crops having better grain quality. Modern sequencing technologies have greatly accelerated the genomics and transcriptomics studies in the above-mentioned species. In contrast, limited efforts have been made in other omics branches like proteomics and metabolomics. Extensive cataloguing of omics resources has highlighted the need for integration of omics approaches for efficient utilization of resources and a better understanding of the molecular mechanism. The information provided in this chapter will be helpful to understand the plant responses and genetic regulatory networks involved in abiotic stress tolerance and efficient utilization of omics resources for improvement in performances of rye, oat and barley.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai J, Liu J, Jiao W, Sa R, Zhang N, Jia R (2016a) Proteomic analysis of salt-responsive proteins in oat roots (Avena sativa L.). J Sci Food Agric 96:3867–3875

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Qin Y, Liu J, Wang Y, Sa R, Zhang N, Jia R (2016b) Proteomic response of oat leaves to long-term salinity stress. Environ Sci Pollut Res 24:3387–3399

    Article  CAS  Google Scholar 

  • Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhizae reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoš J, Paux E, Kofler R, Havránková M, Kopecký D, Suchánková P, Safar J, Simkova H, Town CD, Lelley T, Feuillet C, Doležel J (2008) A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC Plant Biol 8:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayat F, Shiran B, Belyaev DV, Yur’eva NO, Sobol’kova GI, Alizadeh H, Khodambashi M, Babakov AV (2010) Potato plants bearing a vacuolar Na+/H+ antiporter HvNHX2 from barley are characterized by improved salt tolerance. Russian J Plant Physiol 57:696–706

    Article  CAS  Google Scholar 

  • Bayat F, Shiran B, Belyaev DV (2011) Overexpression of HvNHX2, a vacuolar Na+/H+ antiporter gene from barley, improves salt tolerance in Arabidopsis thaliana. Aust J Crop Sci 5:428–432

    CAS  Google Scholar 

  • Brunetti SC, Arseneault MKM, Gulick PJ (2018) Characterization of the Esi3/RCI2/PMP3 gene family in the Triticeae. BMC Plant Biol 19:898

    CAS  Google Scholar 

  • Busko M, Jeleń H, Góral T, Chmielewski J, Stuper K, Szwajkowska-Michałek L, Tyrakowska B, Perkowski J (2010) Volatile metabolites in various cereal grains. Food Addit Contam Part A 27:1574–1581

    Article  CAS  Google Scholar 

  • Cao D, Lutz A, Hill CB, Callahan DL, Roessner U (2017) A quantitative profiling method of phytohormones and other metabolites applied to barley roots subjected to salinity stress. Front Plant Sci 7:2070

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Chen Q, Kong L, Xia F, Yan H, Zhu Y, Mao P (2016) Proteomic and physiological analysis of the response of oat (Avena sativa) seeds to heat stress under different moisture conditions. Front Plant Sci 7:896

    PubMed  PubMed Central  Google Scholar 

  • Crespo-Herrera LA, Garkava-Gustavsson L, Ahman I (2017) A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas 154:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Shabala S, Ma YL, Xu RG, Zhou MX (2015) Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 16(1):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW)—managing systems at risk. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik PC (2012) The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep 39:6387–6397

    Article  CAS  PubMed  Google Scholar 

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269

    Article  CAS  PubMed  Google Scholar 

  • Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernández-Riquer MV, Gallego FJ (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 114:249–260

    Article  CAS  PubMed  Google Scholar 

  • Fukusaki E, Kobayashi A (2005) Plant metabolomics: potential for practical operation. J Biosci Bioeng 100:347–354

    Article  CAS  PubMed  Google Scholar 

  • Ghabooli M, Khatabi B, Ahmadi FS, Sepehri M, Mirzaei M, Amirkhani A, Jorrín-Novo JV, Salekdeh GH (2013) Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Proteome 94:289–301

    Article  CAS  Google Scholar 

  • Gulvady AA, Brown RC, Bell JA (2013) Nutritional comparison of oats and other commonly consumed whole grains. In: Chu Y (ed) Oats nutrition and technology. Chichester, Wiley, pp 71–93

    Chapter  Google Scholar 

  • Han L, Eneji AE, Steinberger Y, Wang W, Yu S, Liu H, Liu J (2014) Comparative biomass production of six oat varieties in a saline soil ecology. Commun Soil Sci Plant Anal 45:2552–2564

    Article  CAS  Google Scholar 

  • Haseneyer G, Schmutzer T, SeidelM ZR, Mascher M, Schön C-C, Taudien S, Scholz U, Stein N, Mayer KFX, Bauer E (2011) From RNA-seq to large-scale genotyping—genomics resources for rye (Secale cereale L.). BMC Plant Biol 11:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henson CA, Duke SH, Livingston DP (2014) Metabolic changes in Avena sativa crowns recovering from freezing. PLoS One 9:e93085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hlaváčková I, Vítámvás P, Šantrůček J, Kosová K, Zelenková S, Prášil IT, Ovesná J, Hynek R, Kodíček M (2013) Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor. Int J Mol Sci 14:8000–8024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • International Barley Sequencing Consortium (IBSC) (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Article  CAS  Google Scholar 

  • Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J, Szarejko I (2018) No time to waste: transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Front Plant Sci 8:2212

    Article  PubMed  PubMed Central  Google Scholar 

  • Jinqiu Y, Bing L, Tingting S, Jinglei H, Zelai K, Lu L, Wenhua H, Tao H, Xinyu H, Zengqing L, Guowen C, Yajun C (2021) Integrated physiological and transcriptomic analyses responses to altitude stress in oat (Avena sativa L.). Front Genet 12:638683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kale M, Hamaker B, Bordenave N (2013) Oat b-glucans: physicochemistry and nutritional properties. In: Chu Y (ed) Oats nutrition and technology. Wiley, Chichester, pp 123–169

    Chapter  Google Scholar 

  • Kamiyama M, Shibamoto T (2012) Flavonoids with potent antioxidant activity found in young green barley leaves. J Agric Food Chem 60:6260–6267

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Huo H, Mao P (2015) Antioxidant response and related gene expression in aged oat seed. Front Plant Sci 6:1–9

    CAS  Google Scholar 

  • Korycinska M, Czelna K, Jaromin A, Kozubek A (2009) Antioxidant activity of rye bran alkylresorcinols and extracts from whole grain cereal products. Food Chem 116:1013–1018

    Article  CAS  Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-M, Han S-I, Song BC, Yeum K-J (2015) Bioactives in commonly consumed cereal grains: implications for oxidative stress and inflammation. J Med Food 18:1179–1186

    Article  PubMed  Google Scholar 

  • Ligaba A, Katsuhara M (2010) Insights into the salt tolerance mechanism in barley (Hordeum vulgare) from comparisons of cultivars that differ in salt sensitivity. J Plant Res 123:105–118

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Saneoka H (2019) Effects of NaHCO3 acclimation on rye (Secale cereale) growth under sodic-alkaline stress. Plan Theory 8:314

    CAS  Google Scholar 

  • Luan H, Shen H, Pan Y, Guo B, Lv C, Xu R (2018) Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: a proteomics approach. Sci Rep 8:9655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  CAS  PubMed  Google Scholar 

  • Masojc P, Kosmala A (2012) Proteomic analysis of preharvest sprouting in rye using two-dimensional electrophoresis and mass spectrometry. Mol Breed 30:1355–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milla MA, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol 130:1706–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minella E, Sorrells ME (1992) Aluminum tolerance in barley: genetic relationships among genotypes of diverse origin. Crop Sci 32:593–598

    Article  CAS  Google Scholar 

  • Minella E, Sorrells ME (1997) Inheritance and chromosome location of Alp, a gene controlling aluminium tolerance in ‘Dayton’ barley. Plant Breed 116:465–469

    Article  CAS  Google Scholar 

  • Nakabayashi R, Saito K (2013) Metabolomics for unknown plant metabolites. Anal Bioanal Chem 405:5005–5011

    Article  CAS  PubMed  Google Scholar 

  • Oraby H, Ahmad R (2012) Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress. Plant Sci 185–186:331–339

    Article  PubMed  CAS  Google Scholar 

  • Osthoff A, Donàdalle Rose P, Baldauf JA, Piepho H-P, Hochholdinger F (2019) Transcriptomic reprogramming of barley seminal roots by combined water deficit and salt stress. BMC Genomics 20:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Othman RA, Moghadasian MH, Jones PJ (2011) Cholesterol-lowering effects of oat beta-glucan. Nutr Rev 69:299–309

    Article  PubMed  Google Scholar 

  • Parikka K, Rowland IR, Welch RW, Wahala K (2006) In vitro antioxidant activity and antigenotoxicity of 5-n-alkylresorcinols. J Agric Food Chem 54:1646–1650

    Article  CAS  PubMed  Google Scholar 

  • Pretorius CJ, Tugizimana F, Steenkamp PA, Piater LA, Dubery IA (2021) Metabolomics for biomarker discovery: key signatory metabolic profiles for the identification and discrimination of oat cultivars. Metabolites 11:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putri SP, Yamamoto S, Tsugawa H, Fukusaki E (2013) Current metabolomics: technological advances. J Biosci Bioeng 116:9–16

    Article  CAS  PubMed  Google Scholar 

  • Rabanus-Wallace MT, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, Baez M, Houben A, Mayer KFX, Guo L, Poland J, Pozniak CJ, Walkowiak S, Melonek J, Praz CR, Schreiber M, Budak H, Heuberger M, Steuernagel B, Wulff B, Börner A, Byrns B, Čížková J, Fowler DB, Fritz A, Himmelbach A, Kaithakottil G, Keilwagen J, Keller B, Konkin D, Larsen J, Li Q, Myśków B, Padmarasu S, Rawat N, Sesiz U, Biyiklioglu-Kaya S, Sharpe A, Šimková H, Small I, Swarbreck D, Toegelová H, Tsvetkova N, Voylokov AV, Vrána J, Bauer E, Bolibok-Bragoszewska H, Doležel J, Hall A, Jia J, Korzun V, Laroche A, Ma X-F, Ordon F, Özkan H, Rakoczy-Trojanowska M, Scholz U, Schulman AH, Siekmann D, Stojałowski S, Tiwari VK, Spannagl M, Stein N (2021) Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet 53:564–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM, Negrão S, Pillen K, Tester M (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:32586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saade S, Negrão S, Plett D, Garnett T, Tester M (2018) Genomic and genetic studies of abiotic stress tolerance in barley. In: Stein N, Muehlbauer G (eds) The barley genome. Springer, Cham, pp 259–286

    Chapter  Google Scholar 

  • Sánchez-Martín J, Heald J, Kingston-Smith A, WintersA RD, Sanz M, Mur LAJ, Prats E (2015) A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ 38:1434–1452

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Parra B, Figueiras AM, Abd El-Moneim D, Contreras R, Rouco R, Gallego FJ, Benito C (2015) The role of two superoxide dismutase mRNAs in rye aluminium tolerance. Plant Biol (Stuttg) 17:694–702

    Article  CAS  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32

    Article  CAS  PubMed  Google Scholar 

  • Shelden MC, Dias DA, Jayasinghe NS, Bacic A, Roessner U (2016) Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress. J Exp Bot 67:3731–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi B, Collins N-C, Langridge P, Gustafson J (2007) Construction of a rye cv. Blanco BAC library, and progress towards cloning the rye Alt3 aluminium tolerance gene. VortrPflanzenzuchtg 71:205–209

    Google Scholar 

  • Sur R, Nigam A, Grote D, Liebel F, Southall MD (2008) Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Dermatol Res 300:569–574

    Article  CAS  PubMed  Google Scholar 

  • Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct Integr Genomics 8:387–405

    Article  CAS  PubMed  Google Scholar 

  • Wang C-S, Jiang Q-T, Ma J, Wang X-Y, Wang J-R, Chen G-Y, Qi P-F, Peng Y-Y, Lan X-J, Zheng Y-L, Wei Y-M (2016) Characterization and expression analyses of the H+-pyrophosphatase gene in rye. J Genet 95:565–572

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lysøe E, Armarego-Marriott T, Erban A, Paruch L, van Eerde A, Bock R, Liu-Clarke J (2018) Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat. J Exp Bot 69:3759–3771

    CAS  PubMed  Google Scholar 

  • Wendelboe-Nelson C, Morris PC (2012) Proteins linked to drought tolerance revealed by DIGE analysis of drought resistant and susceptible barley varieties. Proteomics 12:3374–3385

    Article  CAS  PubMed  Google Scholar 

  • Witzel K, Matros A, Strickert M, Kaspar S, Peukert M, Mühling KH, Börner A, Mock H-P (2014) Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins. Mol Plant 7:336–355

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Hu Y, Huo P, Zhang Q, Chen X, Zhang Z (2017) Transcriptome analysis of hexaploid hulless oat in response to salinity stress. PLoS One 12:e0171451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu B, Munkhtuya Y, Li J, Hu Y, Zhang Q, Zhang Z (2018) Comparative transcriptional profiling and physiological responses of two contrasting oat genotypes under salt stress. Sci Rep 8:16248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Z, Chen X, Lu X, Zhao B, Yang Y, Liu J (2021) Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Plant Physiol Biochem 160:315–328

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Zeng X, Shi J, Xu Q, Wang Y, Jabu D, Sang Z, Nyima T (2018) Time-course comparative metabolite profiling under osmotic stress in tolerant and sensitive Tibetan hulless barley. Biomed Res Int 2018:1–12

    Google Scholar 

  • Zeng J, Quan X, He X, Cai S, Ye Z, Chen G, Zhang G (2018) Root and leaf metabolite profiles analysis reveals the adaptive strategies to low potassium stress in barley. BMC Plant Biol 18:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Liu J, Jia R, Bao S, Haixia CX (2019) Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. J Proteome 193:10–26

    Article  CAS  Google Scholar 

  • Zhao H, Ni S, Cai S, Zhang G (2021) Comprehensive dissection of primary metabolites in response to diverse abiotic stress in barley at seedling stage. Plant Physiol Biochem 161:54–64

    Article  CAS  PubMed  Google Scholar 

  • Zhou GF, Delhaize E, Zhou MX, Ryan PR (2013) The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley. Ann Bot 112:603–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Tong L, Liu L (2019) Oats. In: Wang J, Sun B, Cao R (eds) Bioactive factors and processing technology for cereal foods. Springer, Singapore, pp 185–206

    Chapter  Google Scholar 

Download references

Acknowledgements

Financial assistance from Science and Engineering Research Board, Government of India, through the grant [EMR/2016/004799] and the Department of Higher Education, Science and Technology and Biotechnology, Government of West Bengal, through the grant [264(Sanc.)/ST/P/S&T/1G-80/2017] to Dr. Aryadeep Roychoudhury is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Roychoudhury, A. (2022). Omics Tools to Understand Abiotic Stress Response and Adaptation in Rye, Oat and Barley. In: Roychoudhury, A., Aftab, T., Acharya, K. (eds) Omics Approach to Manage Abiotic Stress in Cereals. Springer, Singapore. https://doi.org/10.1007/978-981-19-0140-9_21

Download citation

Publish with us

Policies and ethics