Skip to main content

Improvement of Plant Survival and Expediting Acclimatization Process

  • Chapter
  • First Online:
Commercial Scale Tissue Culture for Horticulture and Plantation Crops

Abstract

Plant propagation by tissue culture is one of the crucial modern breeding technologies and an efficient method of clonal plant propagation which allows for increased production of horticulture and forest crops. The success of plant tissue culture depends on its potential to transfer plants out of culture vessels into the field conditions for large-scale production with a high survival rate. Micropropagated plants lack cuticle layer, stomata closure and have poorly developed roots leading to transpiration losses when transferred to ex vitro conditions. This chapter focuses on the diverse methods that can be used for the improvement of the tissue-cultured plant’s survival and for accelerating the acclimatization process. In vitro priming of propagules done with the help of growth regulators, simple changes to the growing environment and in vitro and ex vitro biotization with competent plant growth-promoting microorganisms (PGPMs) for improving plant survival/performance under the acclimatization process and consequently enhancing yield are some of the approaches which have been dealt upon in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, S., A. Sharma, B. Bhushan, V.K. Wali, P. Bakshi, and A.K. Singh. 2014. Studies on hardening and acclimatization of micropropagated plantlets of Banana cv. Grand Naine. The Bioscan 9 (3): 965–967.

    Google Scholar 

  • Akin-Idowu, P.E., D.O. Ibitoye, and O.T. Ademoyegun. 2009. Tissue culture as a plant production technique for horticultural crops. African Journal of Biotechnology 8: 3782–3788.

    Google Scholar 

  • Al-Ani, L.K.T. 2019. Secondary metabolites of nonpathogenic fusarium spp.; scope in agriculture. In Secondary metabolites of plant growth promoting rhizomicroorganisms: Discovery and applications, ed. H.B. Singh, C. Keswani, M.S. Reddy, E.S. Royano, and C. García-Estrada, 125–143. Singapore: Springer.

    Chapter  Google Scholar 

  • Amara, U., R. Khalid, and R. Hayat. 2015. Soil bacteria and phytohormones for sustainable crop production in bacterial metabolites in sustainable agroecosystem. In Sustainable development and biodiversity, ed. D.K. Maheshwari, vol. Vol. 12, 87–103. Cham: Springer.

    Google Scholar 

  • Amaregouda, A., M.B. Chetti, P.M. Salimath, and S.S. Kulkarni. 1994. Effect of antitranspirants on stomatal resistance and frequency, relative water content and pod yield in summer groundnut (Arachis hypogaea L.). Annual Review of Plant Physiology 8: 18–23.

    Google Scholar 

  • Asayesh, Z.M., K. Vahdatia, S. Aliniaeifard, and N. Askarib. 2017. Enhancement of ex vitro acclimation of walnut plantlets through modification of stomatal characteristics in vitro. Scientia Horticulturae 220: 114–121.

    Article  Google Scholar 

  • Aswath, C., and M.L. Choudhury. 2002. Mass propagation of gerbera (Gerbera jamesonii) through shoot culture. Indian Journal of Horticulture 59: 95–99.

    Google Scholar 

  • Ba, A.M., A.G. Diedhiou, Y. Prin, A. Galiana, and R. Duponnois. 2010. Management of ectomycorrhizal symbionts associated to useful exotic tree species to improve reforestation programme performances in tropical Africa. Annals of Forest Science 67: 1–9.

    Article  Google Scholar 

  • Bezerra, G.A., A.V.M.D. Gabriel, E.D. Mariano, and J.C. Cardoso. 2020. In vitro culture and greenhouse acclimatization of Oncidium varicosum (Orchidaceae) with microorganisms isolated from its roots. Ornamental Horticulture 25: 407–416.

    Article  Google Scholar 

  • Bolar, J.P., J.L. Norelli, and H.S. Aldwinckle. 1998. An efficient method of rooting and acclimatization of micropropagated apple cultivars. HortScience 33: 1251–1252.

    Article  Google Scholar 

  • Chen, M., M. Arato, L. Borghi, E. Nouri, and D. Reinhardt. 2018. Beneficial services of arbuscular mycorrhizal fungi: From ecology to application. Frontiers in Plant Science 9: 1270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dev, R., S.K. Singh, V. Dayal, K. Kumar, and T. Singh. 2019. Standardization of in vitro hardening strategies for tissue cultured wine grape (Vitis vinifera L) genotypes. International Journal of Current Microbiology and Applied Sciences 8: 2108–2117.

    Article  CAS  Google Scholar 

  • Diez, J., J.L. Manjon, G.M. Kovacs, C. Celestino, and M. Toribio. 2000. Mycorrhization of vitroplants raised from somatic embryos of cork oak (Quercus suber L.). Applied Soil Ecology 15: 119–123.

    Article  Google Scholar 

  • Digat, B., P. Brochard, V. Hermelin, and M. Tozet. 1987. Interest of bacterized synthetic substrates MILCAP for in vitro culture. Acta Horticulturae 212: 375–378.

    Article  Google Scholar 

  • Di-Gaudio, A.V., E. Tubert, L.E. Laino, J.M. Chaín, S.I. Pitta-Alvarez, and G. Amodeo. 2020. New and rapid micropropagation protocol for Eucalyptus grandis hill ex maiden. Forest Systems 29 (1): eSCO4.

    Article  Google Scholar 

  • Douglas, G.C., C.B. Rutledge, A.D. Casey, and D.H.S. Richardson. 1989. Micropropagation of floribunda ground cover and miniature roses. Plant Cell, Tissue and Organ Culture 19: 55–64.

    Article  Google Scholar 

  • Elmeskaoui, A., J. Damont, M. Poulin, Y. Piche, and Y. Desjardins. 1995. A tripartite culture system for endomycorrhizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza 5: 313–319. https://doi.org/10.1007/BF00207403.

    Article  Google Scholar 

  • Enebak, S.A., G. Wei, and J.W. Kloepper. 1998. Effects of plant growth-promoting Rhizobacteria on loblolly and slash pine seedlings. Forest Science 44: 139–144.

    Google Scholar 

  • Hazarika, B.N., V.A. Parthasarathy, and V. Nagaraju. 2000a. Paclobutrazol induced biochemical changes in microshoots of citrus species. Folia Horticulturae 12: 69–77.

    Google Scholar 

  • ———. 2000b. Effect of reduced humidity and antitranspirants in acclimatizing micropropagated citrus plantlets. Agrotropica 12: 163–166.

    Google Scholar 

  • ———. 2001. Influence of in vitro preconditioning of citrus microshoots with paclobutrazol on ex vitro survival. Acta Botanica Croatica 60: 25–29.

    CAS  Google Scholar 

  • Hazarika, B.N., J.A. Teixeira da Silva, and J. Talukdar. 2006. Effective acclimatization of in vitro cultured plants: Methods, physiology and genetics. In Floriculture, ornamental and plant biotechnology, vol. Vol. II. UK: Global Science Books.

    Google Scholar 

  • Hronkova, M., H. Zahradnickova, M. Simkova, P. Simek, and A. Heydova. 2003. The role of abscisic acid in acclimation of plants cultivated in vitro to ex vitro conditions. Biologia Plantarum 46: 535–541.

    Article  CAS  Google Scholar 

  • Kozai, T. 1988. High technology in protected cultivation from environmental control engineering point of view. In Horticulture in high technology era, 1–43. Tokyo: Special Lecture.

    Google Scholar 

  • Kozai, T., Oki, H., Fujiwara, K., 1987. Effect of CO2 enrichment and sucrose concentration under high photosynthetic photon fluxes on growth of tissue cultured cymbidium plantlet during the preparation stage in plant micropropagation in horticulture industries. In: Ducate G, Jacobs M, Simpson A (eds) Proc. Symp. Plant micropropagation in horticultural industries. Arlon, University Press, Liege, Belgium, pp. 135–141.

    Google Scholar 

  • Kumar, K., A.S. Dhatt, and M.I.S. Gill. 2001. In vitro plant regeneration in kinnow mandarin (Citrus nobilis). Indian Journal of Horticulture 58: 299–302.

    Google Scholar 

  • Leshem, B. 1983. Growth of carnation meristem in vitro: Anatomical structure of abnormal plantlets and the effect of agar concentration in the media in their formation. Annals of Botany 52: 413–415.

    Article  Google Scholar 

  • Lubraco, G., A. Schubert, and A. Previati. 2000. Micropropagation and mycorrhization of Allium sativum. Acta Horticulturae 530: 339–344.

    Article  Google Scholar 

  • Martins, A. 2008. In In vitro mycorrhization of micropropagated plants: Studies on Castanea sativa mill in mycorrhizae: Sustainable agriculture and forestry, ed. Z.A. Siddiqui, M.S. Akhtar, and K. Futai, 321–336. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mehta, U.J., K.V. Krishnamurthy, and S. Hazra. 2000. Regeneration of plants via adventitious bud formation from zygotic embryo axis of tamarind (Tamarindus indica L.). Current Science 78: 123–1234.

    Google Scholar 

  • Misra, P., and S.K. Dutta. 2001. Acclimatization of Asiatic hybrid lilies under stress condition after propagation through tissue culture. Current Science 81: 153–1533.

    Google Scholar 

  • Molla, M.M.H., M.D. Khanam, M.M. Khatun, M.A. Amin, and M.A. Malek. 2004. In vitro rooting and ex vitro plantlet establishment of Bari Banana 1 (Musa sp.) as influenced by different concentration of IBA (Indole-3-butyric acid). Asian Journal of Plant Sciences 3: 196–199.

    Article  Google Scholar 

  • Morte, M.A., A. Cano, M. Honrubia, and P. Torres. 1994. In vitro mycorrhization of micropropagated Helianthemum almeriense plantlets with Terfezia claveryi (desert truffle). Agricultural and Food Science 3: 309–314.

    Article  Google Scholar 

  • Murphy, J., L. Mark, C. Periappuram, C. Walsh, and A.C. Cassells. 1997. Microbial characterisation and preparation of inoculum for in vitro mycorrhization of strawberry in autotrophic culture. In Pathogen and microbial contamination management in micropropagation, ed. A.L. Cassells, 345–350. Dordrecht: Kluwer Acad. Pub.

    Google Scholar 

  • Nguyen, Q.T., T. Kozai, J. Heo, and D.X. Thai. 2001. Photoautotrophic growth response of in vitro cultured coffee plantlets to ventilation methods and photosynthetic photon fluxes under carbon dioxide enriched conditions. Plant Cell, Tissue and Organ Culture 66: 217–225.

    Article  Google Scholar 

  • Niemi, K., and C. Scagel. 2007. In Root induction of Pinus sylvestris L. hypocotyl cuttings using specific ectomycorrhizal fungi in vitro in protocols for micropropagation of woody trees and fruits, ed. S.M. Jain and H. Häggman. Dordrecht: Springer.

    Google Scholar 

  • Nowak, J. 1998. Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cellular & Developmental Biology. Plant 34: 122–130.

    Article  Google Scholar 

  • Nowak, J., S. Bensalim, C.D. Smith, C. Dunbar, S.K. Asiedu, A. Madani, G. Lazarovits, D. Northcott, and A.V. Sturz. 1999. Behaviour of plant material issued from in vitro bacterization. Potato Research 42: 505–519.

    Article  Google Scholar 

  • Paula, M.A., V.M. Reis, and J. Dobereiner. 1991. Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and sweet sorghum (Sorghum vulgare). Biology and Fertility of Soils 11: 111–115.

    Article  Google Scholar 

  • Pospisilova, J., H. Synkova, D. Haisel, and S. Semoradova. 2007. Acclimation of plantlets to ex vitro conditions: Effects of air humidity, irradiance, CO2 concentration and abscisic acid. Acta Horticulturae 748: 29–38.

    Article  CAS  Google Scholar 

  • Quatrini, P., M. Gentile, F. Carimi, F.D. Pasquale, and A.M. Puglia. 2003. Effect of native arbuscular mycorrhizal fungi and Glomus mosseae on acclimatization and development of micropropagated Citrus limon (L.) Burm. The Journal of Horticultural Science and Biotechnology 78: 39–45.

    Article  Google Scholar 

  • Rao, N.K.S. 1985. The effect of antitranspirants on stomatal opening, proline and relative water content in tomato. Journal of Horticultural Sciences 61: 369–372.

    Google Scholar 

  • Rout, G.R., B.K. Debata, and P. Das. 1989a. In vitro mass-scale propagation of Rosa hybrida cv Landora. Current Science 58: 876–878.

    Google Scholar 

  • ———. 1989b. Micropropagation of Rosa hybrida cv. Queen Elizabeth through in vitro culture of axillary buds. The Orissa Journal of Horticulture 16: 1–9.

    Google Scholar 

  • Sahay, N.S., and A. Varma. 2000. A biological approach towards increasing the rates of survival of micropropagated plants. Current Science 78: 126–129.

    Google Scholar 

  • Selvapandiyan, A., J. Subramani, P.N. Bhatt, and A.R. Mehta. 1988. A simple method for direct transplantation of cultured plants to the field. Plant Science 56: 81–83.

    Article  Google Scholar 

  • Shimada, N., F. Danka, and T. Kozai. 1988. Effect of low oxygen concentration on net photosynthesis of C3 plantlets in vitro. Acta Horticulturae 230: 171–187.

    Article  Google Scholar 

  • Short, K.C., J. Warburton, and A.V. Roberts. 1987. In vitro hardening of cultured cauliflower and chrysanthemum to humidity. Acta Horticulturae 212: 329–340.

    Article  Google Scholar 

  • Smith, E.F., A.V. Roberts, J. Mottley, and S. Denness. 1991. The preparation in vitro of chrysanthemum for transplantation to soil. Plant Cell, Tissue and Organ Culture 27: 309–313.

    Article  Google Scholar 

  • Soares, B.D.O., and V.S. Miranda. 2016. Rooting in vitro and ex vitro acclimatization of citrus cultivars. Revista de Ciencias Agrarias/Amazonian Journal of Agricultural and Environmental Sciences 59 (2): 144–151.

    Google Scholar 

  • Soumare, A., A.G. Diedhiou, N.K. Arora, L.K.T. Al-Ani, M. Ngom, S. Fall, M. Hafidi, Y. Ouhdouch, L. Kouisni, and M.O. Sy. 2021. Potential role and utilization of plant growth promoting microbes in plant tissue culture. Frontiers in Microbiology 12: 649878.

    Article  PubMed  PubMed Central  Google Scholar 

  • Streletskii, R.A., A.V. Kachalkin, A.M. Glushakova, A.M. Yurkov, and V.V. Demin. 2019. Yeasts producing zeatin. PeerJ 7: 6474. https://doi.org/10.7717/peerj.6474.

    Article  CAS  Google Scholar 

  • Tanaka, K., K. Fujiwara, and T. Kozai. 1992. Effects of relative humidity in the culture vessel on the transpiration and net photosynthetic rates of potato plantlets in vitro. Acta Horticulturae 319 (3): 59–64.

    Article  Google Scholar 

  • Teixeira da Silva, J.A., D.T.T. Giang, and M. Tanaka. 2006. Novel photoautotrophic micropropagation of Spathiphyllum. Photosynthetica 44 (1): 53–61.

    Article  Google Scholar 

  • Thomas, P., and M.B. Ravindra. 2002. Use of natural acclimatizing environments for the ex vitro establishment of micropropagated grapes (Vitis vinifera L.). Tropical Agriculture 79: 182–185.

    Google Scholar 

  • Uzaribara, E., H. Ansari, V. Nachegowda, A. Taj, and B.N. Sathyanarayana. 2015. Acclimatization of in vitro propagated red banana (Musa acuminata) plantlets. Bioscan 10: 221–224.

    Google Scholar 

  • Varma, A., and H. Schuepp. 1994. Infectivity and effectiveness of glomus intraradices in micropropagated plants. Mycorrhiza 5: 29–37.

    Article  Google Scholar 

  • Vosatka, M., M. Gryndler, J. Jansa, and M. Vohnik. 2000. Post vitro mycorrhization and bacterization of micropropagated strawberry, potato and azalea. Acta Horticulturae 530: 313–324.

    Article  Google Scholar 

  • Voyiatzis, D.G., and G.H. McGranahan. 1994. An improved method for acclimatizing tissue cultured walnut plantlets using an antitranspirant. HortScience 29: 42.

    Article  Google Scholar 

  • Wainwright, H., and J. Scrace. 1989. Influence of in vitro conditioning with carbohydrates during rooting of microcuttings on in vivo establishment. Scientia Horticulturae 38: 261–267.

    Article  CAS  Google Scholar 

  • Wang, S.Y., and G.L. Steffens. 1987. Effect of paclobutrazol on water stress induced abscisic acid in apple seedlings leaves. Plant Physiology 84: 1051–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardle, K., A. Quinlan, and I. Simpkins. 1979. Abscisic acid and the regulation of water loss in plantlets of Brasicca oleraceae L. var. botrytis regenerated through apical meristem culture. Annals of Botany 43: 745–752.

    Article  CAS  Google Scholar 

  • Zakharchenko, N.S., V.V. Kochetkov, Y.I. Buryanov, and A.M. Boronin. 2011. Effect of rhizosphere bacteria Pseudomonas aureofaciens on the resistance of micropropagated plants to phytopathogens. Applied Biochemistry and Microbiology 47: 661–666.

    Article  CAS  Google Scholar 

  • Zein El Din, A.F.M., M.F.M. Ibrahim, F. Reham, H.G. Abd El-Gawad, A. El-Banhawy, I.A. Alaraidh, Y.M. Rashad, L. Islam, A. Abou El-Yazied, A. Elkelish, and O.H. Abd Elbar. 2020. Influence of polyethylene glycol on leaf anatomy, stomatal behaviour, water loss, and some physiological traits of date palm plantlets grown in vitro and ex vitro. Plants 9: 1440.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiwani, K., Sharma, D., Kumar, A. (2022). Improvement of Plant Survival and Expediting Acclimatization Process. In: Gupta, S., Chaturvedi, P. (eds) Commercial Scale Tissue Culture for Horticulture and Plantation Crops . Springer, Singapore. https://doi.org/10.1007/978-981-19-0055-6_12

Download citation

Publish with us

Policies and ethics