Skip to main content

Comparison of Accuracy in Prediction of Radial Strain in Stone Columns Using AI Based Models

  • Conference paper
  • First Online:
Advances in Geoengineering along the Belt and Road (BRWSG 2021)

Abstract

Ground improvement of soft soil with construction of stone columns has been widely adopted. Lateral deformation of stone columns plays a significant role in behavior of columns. This study aims to explore the applicability of different AI techniques/mathematical models in predicting radial strain (ε) (change in radius/original radius of column) in stone columns as a function of significant input parameters viz. diameter (d) of stone column, l/d ratio, s/d (spacing/diameter) ratio, area ratio (Ar), λ (area of stone column/total area of loading), geosynthetic stiffness (k), β (clearance ratio). The radial strain (ε) in ordinary and encased columns is predicted with the help of linear regression, SVM, GPR and ANN models using Matlab software. The datasets of input parameters are obtained from already published literature. The values predicted by the models are compared to the corresponding true values of radial strain reported in the literature. A comparative analysis of the efficiency of all models is examined in terms of RMSE, R-squared, MSE and MAE values. It was observed that ANN models closely predicted the radial strain in columns with higher accuracy as compared to other models. ANN models may therefore be used to predict radial strain even in larger size columns in the field/in-situ conditions. However, these models are put forward as a complementary technique to evaluate the radial strain in columns and not as a substitute to field tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenwood, D.A.: Mechanical improvement of soils below ground surface. In: Ground Engineering Proceedings Conference, Institution of Civil Engineers, London, pp. 11–22 (1970)

    Google Scholar 

  2. Barksdale, R.D., Bachus, R.C.: Design and Construction of Stone Columns. Report No. FHWA/RD-83/026, Office of Engineering and Highway Operations Research and Development, Federal Highway Administration, Washington, DC (1983)

    Google Scholar 

  3. Murugesan, S., Rajagopal, K.: Geosynthetic-encased stone columns: numerical evaluation. Geotext. Geomembr. 24(6), 349–358 (2006)

    Article  Google Scholar 

  4. Ali, K., Shahu, J.T., Sharma, K.G.: Model tests on geosynthetic-reinforced stone columns: a comparative study. Geosynth. Int. 19(4), 292–305 (2012)

    Article  Google Scholar 

  5. Hasan, M., Samadhiya, N.K.: Experimental and numerical analysis of geosynthetic-reinforced floating granular piles in soft clays. Int. J. Geosynth. Ground Eng. 2(3), 1–13 (2016)

    Article  Google Scholar 

  6. Wood, D.W., Hu, W., Nash, D.F.: Group effects in stone column foundations: model tests. Geotechnique 50(6), 689–698 (2000)

    Article  Google Scholar 

  7. Murugesan, S., Rajagopal, K.: Studies on the behavior of single and group of geosynthetic encased stone columns. J. Geotech. Geoenviron. Eng. 136(1), 129–139 (2010)

    Article  Google Scholar 

  8. Dash, S.K., Bora, M.C.: Influence of geosynthetic encasement on the performance of stone columns floating in soft clay. Can. Geotech. J. 50(7), 754–765 (2013)

    Article  Google Scholar 

  9. Miranda, M., Fernández-Ruiz, J., Castro, J.: Critical length of encased stone columns. Geotext. Geomembr. 45(2), 68–80 (2021). https://doi.org/10.1016/j.geotexmem.2021.05.003

    Article  Google Scholar 

  10. Balaam, N.P., Booker, J.R.: Analysis of rigid rafts supported by granular piles. Int. J. Numer. Anal. Meth. Geomech. 5(4), 379–403 (1981)

    Article  Google Scholar 

  11. Priebe, H.J.: The design of vibro replacement. Ground Eng. 28(10), 31 (1995)

    Google Scholar 

  12. IS 15284: Design and Construction for Ground Improvement: Guidelines Part 1: Stone Columns. Bureau of Indian Standards, New Delhi, India (2003)

    Google Scholar 

  13. Hughes, J.M.O., Withers, N.J., Greenwood, D.A.: A field trial of the reinforcing effect of a stone column in soil. Geotechnique 25(1), 31–44 (1975)

    Article  Google Scholar 

  14. Rathod, D., Abid, M.S., Vanapalli, S.K.: Performance of polypropylene textile encased stone columns. Geotext. Geomembr. 49(1), 222–242 (2021)

    Article  Google Scholar 

  15. Malarvizhi, S.N., Ilamparuthi, K.: Comparative study on the behaviour of encased stone column and conventional stone column. Soils Found. 47(5), 873–885 (2007)

    Article  Google Scholar 

  16. Mazumder, T., Ayothiraman, R.: Numerical study on behaviour of encased stone columns with partial content of shredded tyre chips in soft clay bed. Int. J. Geosynth. Ground Eng. 7(2), 1–14 (2021). https://doi.org/10.1007/s40891-021-00280-z

    Article  Google Scholar 

  17. Mazumder, T., Rolaniya, A.K., Ayothiraman, R.: Experimental study on behaviour of encased stone column with tyre chips as aggregates. Geosynth. Int. 25(3), 259–270 (2018)

    Article  Google Scholar 

  18. Almeida, M.S., Hosseinpour, I., Lima, B.: Field studies of stone columns and geosynthetic-encased columns. In: From Research to Applied Geotechnics, pp. 166–180. IOS Press (2019)

    Google Scholar 

  19. Shivashankar, R., Babu, M.D., Nayak, S., Rajathkumar, V.: Experimental studies on behaviour of stone columns in layered soils. Geotech. Geol. Eng. 29(5), 749 (2011)

    Article  Google Scholar 

  20. Shahin, M.A.: State-of-the-art review of some artificial intelligence applications in pile foundations. Geosci. Front. 7(1), 33–44 (2016)

    Article  Google Scholar 

  21. Goh, A.T.: Nonlinear modelling in geotechnical engineering using neural networks. Trans. Inst. Eng. Aust. Civ. Eng. 36(4), 293–297 (1994)

    Google Scholar 

  22. Goh, A.T., Kulhawy, F.H., Chua, C.G.: Bayesian neural network analysis of undrained side resistance of drilled shafts. J. Geotech. Geoenviron. Eng. 131(1), 84–93 (2005)

    Article  Google Scholar 

  23. Das, M., Dey, A.K.: Prediction of bearing capacity of stone columns placed in soft clay using ANN model. Geotech. Geol. Eng. 36(3), 1845–1861 (2018)

    Article  Google Scholar 

  24. Chik, Z., Aljanabi, Q.A.: Intelligent prediction of settlement ratio for soft clay with stone columns using embankment improvement techniques. Neural Comput. Appl. 25(1), 73–82 (2013). https://doi.org/10.1007/s00521-013-1449-0

    Article  Google Scholar 

  25. Chik, Z., Aljanabi, Q.A., Kasa, A., Taha, M.R.: Tenfold cross validation artificial neural network modeling of the settlement behavior of a stone column under a highway embankment. Arab. J. Geosci. 7(11), 4877–4887 (2013). https://doi.org/10.1007/s12517-013-1128-6

    Article  Google Scholar 

  26. Dey, A.K., Debnath, P.: Empirical approach for bearing capacity prediction of geogrid-reinforced sand over vertically encased stone columns floating in soft clay using support vector regression. Neural Comput. Appl. 32(10), 6055–6074 (2019). https://doi.org/10.1007/s00521-019-04092-1

    Article  Google Scholar 

  27. Deb, K., Samadhiya, N.K., Namdeo, J.B.: Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay. Geotext. Geomembr. 29(2), 190–196 (2011)

    Article  Google Scholar 

  28. Elsawy, M.B.D.: Behaviour of soft ground improved by conventional and geogrid-encased stone columns, based on FEM study. Geosynth. Int. 20(4), 276–285 (2013)

    Article  Google Scholar 

  29. Gnandji, R.A., Kalumba, D.: Experimental and numerical analysis of the behaviour of rammed stone columns installed in a South African soft soil. Int. J. Eng. Sci. Innov. Technol. 3(6), 477–499 (2014)

    Google Scholar 

  30. Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C., Sloan, S.W.: Coupled discrete element–finite difference method for analysing the load-deformation behaviour of a single stone column in soft soil. Comput. Geotech. 63, 267–278 (2015)

    Article  Google Scholar 

  31. Gu, M., Zhao, M., Zhang, L., Han, J.: Effects of geogrid encasement on lateral and vertical deformations of stone columns in model tests. Geosynth. Int. 23(2), 100–112 (2016)

    Article  Google Scholar 

  32. Demir, A., Sarici, T.: Bearing capacity of footing supported by geogrid encased stone columns on soft soil. Geomech. Eng. 12(3), 417–439 (2017)

    Article  Google Scholar 

  33. Hong, Y.S., Wu, C.S., Kou, C.M., Chang, C.H.: A numerical analysis of a fully penetrated encased granular column. Geotext. Geomembr. 45(5), 391–405 (2017)

    Article  Google Scholar 

  34. Rajesh, S., Jain, P.: Influence of permeability of soft clay on the efficiency of stone columns and geosynthetic-encased stone columns–a numerical study. Int. J. Geotech. Eng. 9(5), 483–493 (2015)

    Article  Google Scholar 

  35. Pandey, B.K., Rajesh, S., Chandra, S.: 3-D finite element study of embankment resting on soft soil reinforced with encased stone column. In: Latha Gali, M., Raghuveer Rao, P. (eds.) Problematic Soils and Geoenvironmental Concerns. LNCE, vol. 88, pp. 451–465. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6237-2_38

    Chapter  Google Scholar 

  36. Xu, Z., Zhang, L., Zhou, S.: Influence of encasement length and geosynthetic stiffness on the performance of stone column: 3D DEM-FDM coupled numerical investigation. Comput. Geotech. 132, 103993 (2021)

    Article  Google Scholar 

  37. Matlab R2021a User Interface (2021). https://in.mathworks.com/help/stats/regression-and-anova.html?s_tid=CRUX_lftnav

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazumder, T., Garg, A. (2022). Comparison of Accuracy in Prediction of Radial Strain in Stone Columns Using AI Based Models. In: Zhu, HH., Garg, A., Zhussupbekov, A., Su, LJ. (eds) Advances in Geoengineering along the Belt and Road. BRWSG 2021. Lecture Notes in Civil Engineering, vol 230. Springer, Singapore. https://doi.org/10.1007/978-981-16-9963-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9963-4_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9962-7

  • Online ISBN: 978-981-16-9963-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics