Skip to main content

Molecular Mechanisms of Antimicrobial Resistance

  • Living reference work entry
  • First Online:
Handbook on Antimicrobial Resistance

Abstract

Antibiotics were the biggest discovery in the twentieth century and have positively impacted infection treatment in human and animal health. After several decades of use and misuse of antibiotics, the world is now racing toward pre-antibiotic era with the development of resistance in bacteria to the maximum number of antibiotics. The development and spread of resistance are mediated through several mechanisms evolved due to the immense genetic plasticity of bacteria. Understanding the underlying molecular basis of antimicrobial resistance (AMR) is pertinent to develop new drugs or design appropriate strategies to prevent the emergence of resistance. The present chapter is a ready reckoner for the mode of action of antibiotics, mechanism of AMR, and transfer of its resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alekshun, M. N., & Levy, S. B. (2007). Molecular mechanisms of antibacterial multidrug resistance. Cell, 128(6), 1037–1050.

    Article  CAS  PubMed  Google Scholar 

  • Ali, J., Rafiq, Q. A., & Ratcliffe, E. (2018). Antimicrobial resistance mechanisms and potential synthetic treatments. Future Science OA, 4(4), FSO290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambler, R. P. (1980). The structure of β-lactamases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 289, 321.

    CAS  PubMed  Google Scholar 

  • Arzanlou, M., Chai, W. C., & Venter, H. (2017). Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays in Biochemistry, 61(1), 49–59.

    Article  PubMed  Google Scholar 

  • Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., & Salamat, M. K. F. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beceiro, A., Tomas, M., & Bou, G. (2013). Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clinical Microbiology Reviews, 26, 185–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benveniste, P., & Davies, J. (1973). Mechanisms of antibiotic resistance in bacteria. Annual Review of Biochemistry, 42, 471–506.

    Article  CAS  PubMed  Google Scholar 

  • Bhatt, P., Sahni, A. K., Praharaj, A. K., Grover, N., Kumar, M., Chaudhari, C. N., & Khajuria, A. (2015). Detection of glycopeptide resistance genes in enterococci by multiplex PCR. Medical Journal Armed Forces India, 71(1), 43–47.

    Article  PubMed  Google Scholar 

  • Blair, J., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51.

    Article  CAS  PubMed  Google Scholar 

  • Bush, K., & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 54, 969–976. https://doi.org/10.1128/AAC.01009-09

    Article  CAS  PubMed  Google Scholar 

  • Cepas, V., López, Y., Muñoz, E., Rolo, D., Ardanuy, C., Martí, S., & Soto, S. M. (2019). Relationship between biofilm formation and antimicrobial resistance in gram-negative bacteria. Microbial Drug Resistance, 25(1), 72–79.

    Article  CAS  PubMed  Google Scholar 

  • Ciesielczuk, H., Hornsey, M., Choi, V., Woodford, N., & Wareham, D. W. (2013). Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. Journal of Medical Microbiology, 62(12), 1823–1827.

    Article  CAS  PubMed  Google Scholar 

  • Coates, A. R., Halls, G., & Hu, Y. (2011). Novel classes of antibiotics or more of the same? British Journal of Pharmacology, 163(1), 184–194. https://doi.org/10.1111/j.1476-5381.2011.01250.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, G., & Wright, G. D. (2013). Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. International Journal of Medical Microbiology, 303(6–7), 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Dallenne, C., Da Costa, A., Decre, D., Favier, C., & Arlet, G. (2010). Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. The Journal of Antimicrobial Chemotherapy, 65, 490–495.

    Article  CAS  PubMed  Google Scholar 

  • Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74, 417–433. https://doi.org/10.1128/MMBR.00016-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi, Y., Wachino, J. I., & Arakawa, Y. (2016). Aminoglycoside resistance: The emergence of acquired 16S ribosomal RNA methyltransferases. Infectious Disease Clinics, 30(2), 523–537.

    PubMed  Google Scholar 

  • Drawz, S. M., & Bonomo, R. A. (2010). Three decades of β-lactamase inhibitors. Clinical Microbiology Reviews, 23(1), 160–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellington, M. J., Kistler, J., Livermore, D. M., & Woodford, N. (2007). Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. Journal of Antimicrobial Chemotherapy, 59(2), 321–322.

    Article  CAS  PubMed  Google Scholar 

  • Frank, T., Gautier, V., Talarmin, A., Bercion, R., & Arlet, G. (2007). Characterization of sulphonamide resistance genes and class 1 integron gene cassettes in Enterobacteriaceae, Central African Republic (CAR). Journal of Antimicrobial Chemotherapy, 59(4), 742–745.

    Article  CAS  PubMed  Google Scholar 

  • Garneau-Tsodikova, S., & Labby, K. J. (2016). Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives. Medchemcomm, 7(1), 11–27.

    Article  CAS  PubMed  Google Scholar 

  • Gerzova, L., Videnska, P., Faldynova, M., Sedlar, K., Provaznik, I., Cizek, A., & Rychlik, I. (2014). Characterization of microbiota composition and presence of selected antibiotic resistance genes in carriage water of ornamental fish. PLoS One, 9(8), e103865.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goh, S., Loeffler, A., Lloyd, D. H., Nair, S. P., & Good, L. (2015). Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro. BMC Microbiology, 15(1), 1–10.

    Article  CAS  Google Scholar 

  • Gomaa, A. A., Klumpe, H. E., Luo, M. L., Selle, K., Barrangou, R., & Beisel, C. L. (2014). Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio, 5(1), e00928–e00913.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goudarzi, M., & Fazeli, M. (2017). Quinolone resistance determinants qnr, qep, and aac (6′)-Ib-cr in extended-spectrum B-lactamase producing Escherichia coli isolated from urinary tract infections in Tehran, Iran. Medical Journal, 18, 1–7.

    Google Scholar 

  • Gray, D. A., & Wenzel, M. (2020). Multitarget approaches against multi-resistant superbugs. ACS Infectious Diseases, 6(6), 1346–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman, T. H. (2016). Tetracycline antibiotics and resistance. Cold Spring Harbor Perspectives in Medicine, 6(4), a025387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall, B. G., & Barlow, M. (2005). Revised Ambler classification of β-lactamases. Journal of Antimicrobial Chemotherapy, 55(6), 1050–1051.

    Article  CAS  PubMed  Google Scholar 

  • Hall, C. W., & Mah, T. F. (2017). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 41(3), 276–301.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, G., Saigal, S., & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology, Clinical Pharmacology, 33(3), 300–305. https://doi.org/10.4103/joacp.JOACP_349_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Jeon, S., Rhie, H., Lee, B., Park, M., Lee, H., & Kim, S. (2009). Rapid detection of extended spectrum β-lactamase (ESBL) for Enterobacteriaceae by use of a multiplex PCR-based method. Infection and Chemotherapy, 41(3), 181–184.

    Article  Google Scholar 

  • Kostyanev, T., & Can, F. (2017). The global crisis of antimicrobial resistance. In Antimicrobial Stewardship (pp. 3–12). Academic Press.

    Google Scholar 

  • Li, X. Z., & Nikaido, H. (2009). Efflux-mediated drug resistance in bacteria. Drugs, 69(12), 1555–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, J., Nishino, K., Roberts, M. C., Tolmasky, M., Aminov, R., & Zhang, L. (2015). Mechanisms of antibiotic resistance. Frontiers in Microbiology, 6, 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, J., Zhou, D., Steitz, T. A., Polikanov, Y. S., & Gagnon, M. G. (2018). Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annual Review of Biochemistry, 87, 451–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López, E., Elez, M., Matic, I., & Blázquez, J. (2007). Antibiotic-mediated recombination: Ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli. Molecular Microbiology, 64(1), 83–93.

    Article  PubMed  Google Scholar 

  • Markley, J. L., & Wencewicz, T. A. (2018). Tetracycline-inactivating enzymes. Frontiers in Microbiology, 9, 1058.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Microbiology spectrum, 4(2), 4–2.

    Article  Google Scholar 

  • Ng, L. K., Martin, I., Alfa, M., & Mulvey, M. (2001). Multiplex PCR for the detection of tetracycline resistant genes. Molecular and Cellular Probes, 15, 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Nordmann, P., Dortet, L., & Poirel, L. (2012). Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends in Molecular Medicine, 18(5), 263–272.

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer, Y., Cullik, A., & Witte, W. (2010). Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. International Journal of Medical Microbiology, 300(6), 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Poirel, L., Walsh, T. R., Cuvillier, V., & Nordmann, P. (2011). Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Disease, 70(1), 119–123.

    Article  CAS  PubMed  Google Scholar 

  • Poole, K. (2005). Efflux-mediated antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 56(1), 20–51.

    Article  CAS  PubMed  Google Scholar 

  • Preena, P. G., Swaminathan, T. R., Rejish Kumar, V. J., & Bright Singh, I. S. (2020). Unravelling the menace: detection of antimicrobial resistance in aquaculture. Letters in Applied Microbiology, 71(1), 26–38.

    Google Scholar 

  • Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309–318. https://doi.org/10.1179/2047773215Y.0000000030

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez, M. S., Nikolaidis, N., & Tolmasky, M. (2013). Rise and dissemination of aminoglycoside resistance: The aac (6′)-Ib paradigm. Frontiers in Microbiology, 4, 121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts, M. C. (1996). Tetracycline resistance determinants: Mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiology Reviews, 19(1), 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, M. C. (2005). Update on acquired tetracycline resistance genes. FEMS Microbiology Letters, 245(2), 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Schindler, B. D., & Kaatz, G. W. (2016). Multidrug efflux pumps of Gram-positive bacteria. Drug Resistance Updates, 27, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, A. S., Bruun, M. S., Dalsgaard, I., & Larsen, J. L. (2001). Characterization of class 1 integrons associated with R-plasmids in clinical Aeromonas salmonicida isolates from various geographical areas. The Journal of Antimicrobial Chemotherapy, 47, 735–743.

    Article  CAS  PubMed  Google Scholar 

  • Seyfried, E. E., Newton, R. J., Rubert, K. F., Pedersen, J. A., & McMahon, K. D. (2010). Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microbial Ecology, 59, 799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strommenger, B., Kettlitz, C., Werner, G., & Witte, W. (2003). Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. Journal of Clinical Microbiology, 41(9), 4089–4094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, 453, 254–267.

    Article  CAS  PubMed  Google Scholar 

  • van Hoek, A. H., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. (2011). Acquired antibiotic resistance genes: An overview. Frontiers in Microbiology, 2, 203. https://doi.org/10.3389/fmicb.2011.00203

    Article  PubMed  PubMed Central  Google Scholar 

  • Volokhov, D., Chizhikov, V., Chumakov, K., & Rasooly, A. (2003). Microarray analysis of erythromycin resistance determinants. Journal of Applied Microbiology, 95(4), 787–798.

    Article  CAS  PubMed  Google Scholar 

  • Webb, V., & Davies, J. (1993). Antibiotic preparations contain DNA: A source of drug resistance genes? Antimicrobial Agents and Chemotherapy, 37, 2379–2384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webber, M. A., & Piddock, L. J. V. (2003). The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Chemotherapy, 51, 9–11.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization. (2020). Lack of new antibiotics threatens global efforts to contain drug-resistant infections. New release Geneva.

    Google Scholar 

  • Wright, G. D. (2005). Bacterial resistance to antibiotics: Enzymatic degradation and modification. Advanced Drug Delivery Reviews, 57(10), 1451–1470.

    Article  CAS  PubMed  Google Scholar 

  • Wright, G. D. (2016). Antibiotic adjuvants: Rescuing antibiotics from resistance. Trends in Microbiology, 24(11), 862–871.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H., Duan, G., Zhu, J., Zhang, W., Xi, Y., & Fan, Q. (2013). Prevalence and characterisation of plasmid mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes among Shigella isolates from Henan, China, between 2001 and 2008. International Journal of Antimicrobial Agents, 42, 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Zimdahl, R. L. (2015). Six chemicals that changed agriculture. Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusudana Rao Badireddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vaiyapuri, M., Kusunur, A.B., Badireddy, M.R. (2023). Molecular Mechanisms of Antimicrobial Resistance. In: Mothadaka, M.P., Vaiyapuri, M., Rao Badireddy, M., Nagarajrao Ravishankar, C., Bhatia, R., Jena, J. (eds) Handbook on Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-9723-4_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9723-4_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9723-4

  • Online ISBN: 978-981-16-9723-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics