Skip to main content

The Effects of Nitrogen Enrichment on Low-Nutrient Environments: Insights from Studies of Serpentine Soil-Plant Relations

  • Chapter
  • First Online:
Agrochemicals in Soil and Environment

Abstract

It is widely known that anthropogenic inputs, particularly from modern agriculture and fossil fuel combustion, are severely altering the nitrogen (N) cycle. Humans have doubled the amount of reactive N (NR) input into our environments, causing it to accumulate in ecosystems. However, N is anything but stationary. In various forms, NR enters the atmosphere where it can travel long distances and deposit back onto the biosphere. This chapter summarizes the process and effects of N deposition on low-nutrient environments (LNEs) which are significantly altered by nutrient addition. Using serpentine as a model environment, we conclude that primary effect of N deposition is an alteration in competition and invasion patterns. Excess N allows nitrophilous invasive plants to outcompete LNE-native plants. Other effects can further harm LNEs, including N deposition-caused soil acidification and toxicity that may be exceptionally detrimental to LNEs and their plants, animals, and fungi. To mitigate effects of N deposition on LNEs, certain strategies such as grazing and controlled burns have proven effective in the short term. However, it will take a dramatic reduction in anthropogenic NR input, particularly through changes to current agriculture methods, to protect Earth’s unique and diverse LNEs from change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci U S A 113(42):11770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aber JD, Goodale CL, Ollinger SV, Smith M-L, Magill AH, Martin ME et al (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53(4):375–389

    Article  Google Scholar 

  • Aerts R, Heil GW (2013) Heathlands: patterns and processes in a changing environment. Springer, Dordrecht

    Google Scholar 

  • Aerts R, Wallen B, Malmer N (1992) Growth-limiting nutrients in sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80(1):131–140

    Article  Google Scholar 

  • Ågren GI, Wetterstedt JÅM, Billberger MFK (2012) Nutrient limitation on terrestrial plant growth—modeling the interaction between nitrogen and phosphorus. New Phytol 194(4):953–960

    Article  PubMed  Google Scholar 

  • Alexander EB, Coleman RG, Keeler-Wolf T, Harrison S (2007) Serpentine geoecology of western North America geology, soils, and vegetation. Oxford University Press, New York

    Book  Google Scholar 

  • Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3(1):52–66

    Article  Google Scholar 

  • Anacker BL (2014) The nature of serpentine endemism. Am J Bot 101(2):219–224

    Article  PubMed  Google Scholar 

  • Aneja VP, Blunden J, James K, Schlesinger WH, Knighton R, Gilliam W et al (2008) Ammonia assessment from agriculture: U.S. status and needs. J Environ Qual 37(2):515–520

    Article  CAS  PubMed  Google Scholar 

  • Asman WA, Sutton MA, Schjørring JK (1998) Ammonia: emission, atmospheric transport and deposition. New Phytol 139(1):27–48

    Article  CAS  Google Scholar 

  • Ayres RU, Schlesinger WH, Socolow RH (1994) Human impacts on the carbon and nitrogen cycles. In: Andrews C, Berkhout F, Socolow R, Thomas V (eds) Industrial ecology and global change. Cambridge University Press, Cambridge, pp 121–156

    Chapter  Google Scholar 

  • Bähring A, Fichtner A, Ibe K, Schütze G, Temperton VM, von Oheimb G et al (2017) Ecosystem functions as indicators for heathland responses to nitrogen fertilisation. Ecol Indic 72:185–193

    Article  Google Scholar 

  • Baker HG (1989) Sources of the naturalized grasses and herbs in California grasslands. In: Huenneke LF, Mooney HA (eds) Grassland structure and function: California annual grassland. Springer, Dordrecht, pp 29–38

    Chapter  Google Scholar 

  • Balangoda A, Deepananda KHMA, Wegiriya HCE (2018) Effects of environmental contamination and acute toxicity of n-nitrate on early life stages of endemic arboreal frog, Polypedates cruciger (Blyth, 1852). Bull Environ Contam Toxicol 100(2):195–201

    Article  CAS  PubMed  Google Scholar 

  • Baldani J, Reis V, Baldani V, Döbereiner J (2002) A brief story of nitrogen fixation in sugarcane—reasons for success in Brazil. Funct Plant Biol 29(4):417–423

    Article  PubMed  Google Scholar 

  • Bayrakli F (1990) Ammonia volatilization losses from different fertilizers and effect of several urease inhibitors, CaCl2 and phosphogypsum on losses from urea. Fertil Res 23(3):147–150

    Article  CAS  Google Scholar 

  • Beck JJ, Hernández DL, Pasari JR, Zavaleta ES (2015) Grazing maintains native plant diversity and promotes community stability in an annual grassland. Ecol Appl 25(5):1259–1270

    Article  PubMed  Google Scholar 

  • Bell T, Tolhurst K, Wouters M (2005) Effects of the fire retardant Phos-Chek on vegetation in eastern Australian heathlands. Int J Wildland Fire 14(2):199–211

    Article  CAS  Google Scholar 

  • Bernhard A (2010) The nitrogen cycle: processes, players, and human impact. Nat Educ Knowl 3(10):1

    Google Scholar 

  • Besaw LM, Thelen GC, Sutherland S, Metlen K, Callaway RM (2011) Disturbance, resource pulses and invasion: short-term shifts in competitive effects, not growth responses, favour exotic annuals. J Appl Ecol 48(4):998–1006

    Article  Google Scholar 

  • Bhatia A, Jain N, Pathak H (2013) Methane and nitrous oxide emissions from Indian rice paddies, agricultural soils and crop residue burning. Greenhouse Gases Sci Technol 3(3):196–211

    Article  CAS  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16(1):363–392

    Article  Google Scholar 

  • Bobbink R, Hettelingh JP (eds) (2010a) Review and revision of empirical critical loads and dose-response relationships. Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM), www.rivm.nl/cce

    Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M et al (2010b) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20(1):30–59

    Article  CAS  PubMed  Google Scholar 

  • Bolan N, Adriano D, Curtin D (2003) Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv Agron 78:215–272

    Article  CAS  Google Scholar 

  • Boscutti F, Sigura M, De Simone S, Marini L (2018) Exotic plant invasion in agricultural landscapes: a matter of dispersal mode and disturbance intensity. Appl Veg Sci 21(2):250–257

    Article  Google Scholar 

  • Bouwman AF, Lee DS, Asman WAH, Dentener FJ, Van Der Hoek KW, Olivier JGJ (1997) A global high-resolution emission inventory for ammonia. Glob Biogeochem Cycles 11(4):561–587

    Article  CAS  Google Scholar 

  • Bowman W, Cleveland C, Halada L, Hreško J, Baron J (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1:767–770

    Article  CAS  Google Scholar 

  • Bradstock R, Sanders J, Tegart A (1987) Short-term effects on the foliage of a eucalypt forest after an aerial application of a chemical fire retardant. Aust For 50(2):71–80

    Article  Google Scholar 

  • Branco S, Ree RH (2010) Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One 5(7):e11757

    Article  PubMed  PubMed Central  Google Scholar 

  • BRIG (2011) Lowland dry acid grassland. In: UK biodiversity action plan—priority habitat descriptions. JNCC, Peterborough

    Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland

    Google Scholar 

  • Bubier JL, Moore TR, Bledzki LA (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob Chang Biol 13(6):1168–1186

    Article  Google Scholar 

  • Bubier JL, Smith R, Juutinen S, Moore TR, Minocha R, Long S et al (2011) Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs. Oecologia 167(2):355–368

    Article  PubMed  Google Scholar 

  • Burgess J, Szlavecz K, Rajakaruna N, Lev S, Swan C (2015) Vegetation dynamics and mesophication in response to conifer encroachment within an ultramafic system. Aust J Bot 63(4):292–307

    Article  CAS  Google Scholar 

  • Burns DA (2004) The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA—a critical review. Environ Pollut 127(2):257–269

    Article  CAS  PubMed  Google Scholar 

  • CalFire (2020) Current year statistics. State of California, https://www.fire.ca.gov/stats-events/

  • Campbell SA, Vallano DM (2018) Plant defences mediate interactions between herbivory and the direct foliar uptake of atmospheric reactive nitrogen. Nat Commun 9(1):4743

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapin FS, Matson PA, Vitousek PM (2011) Nutrient cycling. In: Chapin FS, Matson PA, Vitousek PM (eds) Principles of terrestrial ecosystem ecology. Springer, New York, pp 259–296

    Chapter  Google Scholar 

  • Chen S, Perathoner S, Ampelli C, Centi G (2019) Electrochemical dinitrogen activation: to find a sustainable way to produce ammonia. In: Albonetti S, Perathoner S, Quadrelli EA (eds) Studies in surface science and catalysis, vol 178. Elsevier, Amsterdam, pp 31–46

    Google Scholar 

  • Choudhary S, Blaud A, Osborn AM, Press MC, Phoenix GK (2016) Nitrogen accumulation and partitioning in a high arctic tundra ecosystem from extreme atmospheric N deposition events. Sci Total Environ 554–555:303–310

    Article  PubMed  Google Scholar 

  • Costa Leite J, Caldeira S, Watzl B, Wollgast J (2020) Healthy low nitrogen footprint diets. Glob Food Sec 24:100342

    Article  PubMed  PubMed Central  Google Scholar 

  • Crippa M, Oreggioni G, Guizzardi D, Muntean M, Schaaf E, Lo Vullo E et al (2019) Fossil CO2 and GHG emissions of all world countries. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Dari B, Rogers CW, Walsh OS (2019) Understanding factors controlling ammonia volatilization from fertilizer nitrogen applications. University of Idaho, Moscow

    Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14(4):419–431

    Article  PubMed  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88(3):528–534

    Article  Google Scholar 

  • Díaz-Álvarez EA, Lindig-Cisneros R, de la Barrera E (2015) Responses to simulated nitrogen deposition by the neotropical epiphytic orchid Laelia speciosa. PeerJ 3:e1021

    Article  PubMed  PubMed Central  Google Scholar 

  • van Diepen LT, Lilleskov EA, Pregitzer KS (2011) Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Mol Ecol 20(4):799–811

    Article  Google Scholar 

  • Doubková P, Kohout P, Sudová R (2013) Soil nutritional status, not inoculum identity, primarily determines the effect of arbuscular mycorrhizal fungi on the growth of Knautia arvensis plants. Mycorrhiza 23(7):561–572

    Article  PubMed  Google Scholar 

  • Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S et al (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3(10):e319

    Article  PubMed  PubMed Central  Google Scholar 

  • Elam DR, Goettle B, Wright DH, Fish US, 1 WSR (1998) Draft recovery plan for serpentine soil species of the San Francisco bay area. U.S. Fish and Wildlife Service, Pacific Region, Washington, DC

    Google Scholar 

  • Ellison AM (2006) Nutrient limitation and stoichiometry of carnivorous plants. Plant Biol 8(6):740–747

    Article  CAS  PubMed  Google Scholar 

  • van der Ent A, Sumail S, Clarke C (2015) Habitat differentiation of obligate ultramafic Nepenthes endemic to Mount Kinabalu and Mount Tambuyukon (Sabah, Malaysia). Plant Ecol 216(6):789–807

    Article  Google Scholar 

  • Ernst JW, Massey HF (1960) The effects of several factors on volatilization of ammonia formed from urea in the soil. Soil Sci Soc Am J 24(2):87–90

    Article  CAS  Google Scholar 

  • Esch EH, Hernández DL, Pasari JR, Kantor RSG, Selmants PC (2013) Response of soil microbial activity to grazing, nitrogen deposition, and exotic cover in a serpentine grassland. Plant Soil 366(1):671–682

    Article  CAS  Google Scholar 

  • Eskelinen A, Harrison SP (2015) Resource colimitation governs plant community responses to altered precipitation. Proc Natl Acad Sci U S A 112(42):13009–13014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ETC/ACC (2015) National emissions reported to the convention on long-range transboundary air pollution (LRTAP convention). European Environment Agency, Copenhagen

    Google Scholar 

  • Fenn LB, Feagley S (1999) Review of beneficial uses of calcium and ammonium salts for stimulating plant growth and metabolite translocation. Commun Soil Sci Plant Anal 30(19–20):2627–2641

    Article  CAS  Google Scholar 

  • Fenn LB, Hasanein B, Burks CM (1995) Calcium-ammonium effects on growth and yield of small grains. Agron J 87(6):1041–1046

    Article  Google Scholar 

  • Fenn ME, Allen EB, Weiss SB, Jovan S, Geiser LH, Tonnesen GS et al (2010) Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. J Environ Manag 91(12):2404–2423

    Article  CAS  Google Scholar 

  • Fenn ME, Bytnerowicz A, Schilling SL, Vallano DM, Zavaleta ES, Weiss SB et al (2018) On-road emissions of ammonia: an underappreciated source of atmospheric nitrogen deposition. Sci Total Environ 625:909–919

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Going BM, Anacker BL, Harrison SP (2012) Temporal variability in California grasslands: soil type and species functional traits mediate response to precipitation. Ecology 93(9):2104–2114

    Article  CAS  PubMed  Google Scholar 

  • Ferrero AL, Walsh PR, Rajakaruna N (2020) The ecophysiology, genetics, adaptive significance, and biotechnology of nickel hyperaccumulation in plants. In: Physiological and biotechnological aspects of extremophiles. Elsevier, Amsterdam, pp 327–347

    Chapter  Google Scholar 

  • Fowler D, Steadman CE, Stevenson D, Coyle M, Rees RM, Skiba UM et al (2015) Effects of global change during the 21st century on the nitrogen cycle. Atmos Chem Phys 15(24):13849–13893

    Article  CAS  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321(1):35–59

    Article  CAS  Google Scholar 

  • Franck VM, Hungate BA, Chapin FS, Field CB (1997) Decomposition of litter produced under elevated CO2: dependence on plant species and nutrient supply. Biogeochemistry 36(3):223–237

    Article  Google Scholar 

  • Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A et al (2020) Global carbon budget 2020. Earth Syst Sci Data 12(4):3269–3340

    Article  Google Scholar 

  • Funk JL (2013) The physiology of invasive plants in low-resource environments. Conserv Physiol 1(1):cot026

    Article  PubMed  PubMed Central  Google Scholar 

  • Galey ML, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Ultramafic geoecology of south and southeast Asia. Bot Stud 58(1):18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galloway JN, Schlesinger WH, Levy H II, Michaels A, Schnoor JL (1995) Nitrogen fixation: anthropogenic enhancement-environmental response. Glob Biogeochem Cycles 9(2):235–252

    Article  CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB et al (2003) The nitrogen cascade. Bioscience 53(4):341–356

    Article  Google Scholar 

  • Gaudnik C, Corcket E, Clément B, Delmas CEL, Gombert-Courvoisier S, Muller S et al (2011) Detecting the footprint of changing atmospheric nitrogen deposition loads on acid grasslands in the context of climate change. Glob Chang Biol 17(11):3351–3365

    Article  Google Scholar 

  • Gelbard JL, Harrison S (2003) Roadless habitats as refuges for native grasslands: interactions with soil, aspect, and grazing. Ecol Appl 13(2):404–415

    Article  Google Scholar 

  • Ghasemi R, Chavoshi ZZ, Boyd RS, Rajakaruna N (2015) Calcium : magnesium ratio affects environmental stress sensitivity in the serpentine-endemic Alyssum inflatum (Brassicaceae). Aust J Bot 63(2):39–46

    Article  CAS  Google Scholar 

  • Gillespie IG, Allen EB (2004) Fire and competition in a southern California grassland: impacts on the rare forb Erodium macrophyllum. J Appl Ecol 41(4):643–652

    Article  Google Scholar 

  • Giménez A, Pastor E, Zárate L, Planas E, Arnaldos J (2004) Long-term forest fire retardants: a review of quality, effectiveness, application and environmental considerations. Int J Wildland Fire 13(1):1–15

    Article  Google Scholar 

  • Gioacchini P, Nastri A, Marzadori C, Giovannini C, Vittori Antisari L, Gessa C (2002) Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea. Biol Fertil Soils 36(2):129–135

    Article  CAS  Google Scholar 

  • Givnish T, Burkhardt E, Happel R, Weintraub J (1984) Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am Nat 124(4):479–497

    Article  Google Scholar 

  • Gladish S, Frank J, Southworth D (2010) The serpentine syndrome below ground: ectomycorrhizas and hypogeous fungi associated with conifers. Can J For Res 40:1671–1679

    Article  CAS  Google Scholar 

  • Goldberg DE, Martina JP, Elgersma KJ, Currie WS (2017) Plant size and competitive dynamics along nutrient gradients. Am Nat 190(2):229–243

    Article  PubMed  Google Scholar 

  • Goyal SS, Huffaker RC (1984) Nitrogen toxicity in plants. In: Hauk RD (ed) Nitrogen in crop production. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 97–188

    Google Scholar 

  • Greaver TL, Clark CM, Compton JE, Vallano D, Talhelm AF, Weaver CP et al (2016) Key ecological responses to nitrogen are altered by climate change. Nat Clim Chang 6(9):836–843

    Article  CAS  Google Scholar 

  • Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184(2):195–205

    Article  CAS  Google Scholar 

  • Hanson PJ, Lindberg SE (1991) Dry deposition of reactive nitrogen compounds: a review of leaf, canopy and non-foliar measurements. Atmos Environ Part A 25(8):1615–1634

    Article  Google Scholar 

  • Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Glob Chang Biol 13(11):2341–2348

    Article  Google Scholar 

  • Harrison S, Rajakaruna N (2011) Serpentine: the evolution and ecology of a model system. University of California Press, Berkerley

    Google Scholar 

  • Harrison S, Inouye BD, Safford HD (2003) Ecological heterogeneity in the effects of grazing and fire on grassland diversity. Conserv Biol 17(3):837–845

    Article  Google Scholar 

  • van der Heijden MGA (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91(4):1163–1171

    Article  PubMed  Google Scholar 

  • Hernández DL, Vallano DM, Zavaleta ES, Tzankova Z, Pasari JR, Weiss S et al (2016) Nitrogen pollution is linked to US listed species declines. Bioscience 66(3):213–222

    Article  Google Scholar 

  • Hirel B, Tétu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3(9):1452–1485

    Article  CAS  Google Scholar 

  • Hiremath AJ (2000) Photosynthetic nutrient-use efficiency in three fast-growing tropical trees with differing leaf longevities. Tree Physiol 20(14):937–944

    Article  CAS  PubMed  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7(10):336–339

    Article  CAS  PubMed  Google Scholar 

  • Hopkins NA (1987) Mycorrhizae in a California serpentine grassland community. Can J Bot 65(3):484–487

    Article  Google Scholar 

  • Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322(1):49–86

    Article  CAS  Google Scholar 

  • Hopper SD, Silveira FAO, Fiedler PL (2016) Biodiversity hotspots and OCBIL theory. Plant Soil 403(1):167–216

    Article  CAS  Google Scholar 

  • Horswill P, O’Sullivan O, Phoenix GK, Lee JA, Leake JR (2008) Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ Pollut 155(2):336–349

    Article  CAS  PubMed  Google Scholar 

  • Hou E, Chen C, McGroddy ME, Wen D (2012) Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China. PLoS One 7(12):e52071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Bai Z, Lesschen JP, Staritsky IG, Sikirica N, Ma L et al (2016) Feed use and nitrogen excretion of livestock in EU-27. Agric Ecosyst Environ 218:232–244

    Article  CAS  Google Scholar 

  • Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8(1):14–20

    Article  CAS  Google Scholar 

  • Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71(2):478–491

    Article  Google Scholar 

  • Huettl RF, Zoettl HW (1993) Liming as a mitigation tool in Germany’s declining forests—reviewing results from former and recent trials. For Ecol Manag 61(3):325–338

    Article  Google Scholar 

  • Husna TFD, Arif A (2017) Arbuscular mycorrhizal fungi and plant growth on serpentine soils. In: Wu Q-S (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer Singapore, Singapore, pp 293–303

    Chapter  Google Scholar 

  • Huston MA (1995) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Jaeglé L, Steinberger L, Martin RV, Chance K (2005) Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss 130:407–423

    Article  PubMed  Google Scholar 

  • Jain N (2015) Complex effects of nitrogen pollution and grazing on nectar resources of the adult By Checkerspot butterfly (Euphydryas editha bayensis). San Jose State University, San Jose

    Book  Google Scholar 

  • Janssen B (1993) Integrated nutrient management: the use of organic and mineral fertilizers. In: Reuler HV, Prins WH (eds) The role of plant nutrients for sustainable food crop production in sub-Saharan Africa. Ver. Kunstmest Producenten, Leidschendam, pp 89–105

    Google Scholar 

  • Jat L, Singh Y, Meena S, Meena S, Parihar M, Jatav H et al (2015) Does integrated nutrient management (INM), enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jenny H (1980) The soil resource: origin and behavior. Springer, New York

    Book  Google Scholar 

  • Jones MLM, Wallace HL, Norris D, Brittain SA, Haria S, Jones RE et al (2004) Changes in vegetation and soil characteristics in coastal sand dunes along a gradient of atmospheric nitrogen deposition. Plant Biol 6(5):598–605

    Article  CAS  PubMed  Google Scholar 

  • Jules ES, Ellison AM, Gotelli NJ, Lillie S, Meindl GA, Sanders NJ et al (2011) Influence of fire on a rare serpentine plant assemblage: a 5-year study of Darlingtonia fens. Am J Bot 98(5):801–811

    Article  PubMed  Google Scholar 

  • Karlen D, Rice C (2015) Soil degradation: will humankind ever learn? Sustainability 7:12490–12501

    Article  CAS  Google Scholar 

  • Kelleghan DB, Hayes ET, Everard M, Curran TP (2019) Mapping ammonia risk on sensitive habitats in Ireland. Sci Total Environ 649:1580–1589

    Article  CAS  PubMed  Google Scholar 

  • Knecht MF, Göransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Physiol 24(4):447–460

    Article  CAS  PubMed  Google Scholar 

  • Kooijman AM (2012) ‘Poor rich fen mosses’: atmospheric N-deposition and P-eutrophication in base-rich fens. Lindbergia 35:42–52

    Google Scholar 

  • Kros H, de Haan D, Bobbink R, Jaarsveld JA, Roelofs J, Vries W (2008) Effecten van ammoniak op de Nederlandse natuur: achtergrondrapport. Alterra 1698, Wageningen

    Google Scholar 

  • Kruckeberg AR (1984) California serpentines: flora, vegetation, geology, soils, and management problems. University of California Press, Berkeley

    Google Scholar 

  • Kruckeberg AR (1986) An essay: the stimulus of unusual geologies for plant speciation. Syst Bot 11(3):455–463

    Article  Google Scholar 

  • Krupa SV (2003) Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environ Pollut 124(2):179–221

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, Reddy CK, Padre AT, van Kessel C (2011) Role of nitrogen fertilization in sustaining organic matter in cultivated soils. J Environ Qual 40:1756–1766

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2009) Challenges and opportunities in soil organic matter research. Eur J Soil Sci 60:158–169

    Article  CAS  Google Scholar 

  • Lamb EG, Shore BH, Cahill JF (2007) Water and nitrogen addition differentially impact plant competition in a native rough fescue grassland. Plant Ecol 192(1):21–33

    Article  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98(4):693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamont BB (2003) Structure, ecology and physiology of root clusters—a review. Plant Soil 248(1):1–19

    Article  CAS  Google Scholar 

  • Larmola T, Bubier JL, Kobyljanec C, Basiliko N, Juutinen S, Humphreys E et al (2013) Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Glob Chang Biol 19(12):3729–3739

    Article  PubMed  Google Scholar 

  • Larson JR, Duncan DA (1982) Annual grassland response to fire retardant and wildfire. J Range Manag 35(6):700–703

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379

    Article  PubMed  Google Scholar 

  • Leip A, Achermann B, Billen G, Bleeker A, Bouwman AF, de Vries W et al (2011) Integrating nitrogen fluxes at the European scale. In: Bleeker A, Grizzetti B, Howard CM et al (eds) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge, pp 345–376

    Chapter  Google Scholar 

  • Li Y, Schichtel BA, Walker JT, Schwede DB, Chen X, Lehmann CMB et al (2016) Increasing importance of deposition of reduced nitrogen in the United States. Proc Natl Acad Sci U S A 113(21):5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebig J (1840) Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Friedrich Vieweg und Sohn Publ Co, Braunschweig

    Google Scholar 

  • Liebig J (1855) Die Grundsätze der Agrikultur-Chemie mit Rücksicht auf die in England angestellten Untersuchungen, 1st and, 2nd edn. Friedrich Vieweg und Sohn Publ Co, Braunschweig

    Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83(1):104–115

    Article  Google Scholar 

  • Lithourgidis A, Dordas C, Damalas C, Vlachostergios D (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5:396–410

    Google Scholar 

  • Liu H (2014) Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge. Chin J Catal 35(10):1619–1640

    Article  CAS  Google Scholar 

  • Liu TQ, Fan DJ, Zhang XX, Chen J, Li CF, Cao CG (2015) Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crop Res 184:80–90

    Article  Google Scholar 

  • Lu X, Mao Q, Gilliam FS, Luo Y, Mo J (2014) Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob Chang Biol 20(12):3790–3801

    Article  PubMed  Google Scholar 

  • Luna B, Moreno J, Cruz A, Fernández-González F (2007) Effects of a long-term fire retardant chemical (Fire-Trol 934) on seed viability and germination of plants growing in a burned Mediterranean area. Int J Wildland Fire 16:349–359

    Article  CAS  Google Scholar 

  • Malan M (2009) The effect of atmospheric nitrogen deposition on fynbos soils and plants in the Cape Town metropolitan area. University of Cape Town, Cape Town

    Google Scholar 

  • Manning J (2018) Field guide to fynbos. Penguin Random House, Parkwood

    Google Scholar 

  • Mansberg L, Wentworth TR (1984) Vegetation and soils of a serpentine barren in western North Carolina. Bull Torrey Bot Club 111(3):273–286

    Article  Google Scholar 

  • Maron JL, Connors PG (1996) A native nitrogen-fixing shrub facilitates weed invasion. Oecologia 105(3):302–312

    Article  PubMed  Google Scholar 

  • Maron JL, Jefferies RL (1999) Bush lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80(2):443–454

    Article  Google Scholar 

  • Marshall A, Waller L, Lekberg Y (2016) Cascading effects of fire retardant on plant–microbe interactions, community composition, and invasion. Ecol Appl 26(4):996–1002

    Article  PubMed  Google Scholar 

  • Martin RV, Jacob DJ, Chance K, Kurosu TP, Palmer PI, Evans MJ (2003) Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. J Geophys Res Atmos 108(D17)

    Google Scholar 

  • Marx E (2007) Vegetation dynamics of the Buck Creek Serpentine Barrens, Clay County. University of North Carolina, Chapel Hill

    Google Scholar 

  • Maskell LC, Smart SM, Bullock JM, Thompson KEN, Stevens CJ (2010) Nitrogen deposition causes widespread loss of species richness in British habitats. Glob Chang Biol 16(2):671–679

    Article  Google Scholar 

  • Matson PA, Billow C, Hall S, Zachariassen J (1996) Fertilization practices and soil variations control nitrogen oxide emissions from tropical sugar cane. J Geophys Res Atmos 101(D13):18533–18545

    Article  CAS  Google Scholar 

  • Maun MA (2009) The biology of coastal sand dunes. Oxford University Press, Oxford

    Book  Google Scholar 

  • Milbau A, Shevtsova A, Osler N, Mooshammer M, Graae BJ (2013) Plant community type and small-scale disturbances, but not altitude, influence the invasibility in subarctic ecosystems. New Phytol 197(3):1002–1011

    Article  PubMed  Google Scholar 

  • Moore PA Jr (2011) Improving the sustainability of animal agriculture by treating manure with alum. In: He Z (ed) Environmental chemistry of animal manure. Nova Science, Hauppauge, pp 349–381

    Google Scholar 

  • Moore PA Jr (2016) Development of a new manure amendment for reducing ammonia volatilization and phosphorus runoff from poultry litter. J Environ Qual 45(4):1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Moore TR, Zimmermann RC (1977) Establishment of vegetation on serpentine asbestos mine wastes, southeastern Quebec, Canada. J Appl Ecol 14(2):589–599

    Article  CAS  Google Scholar 

  • Moser AM, Carolyn AP, D'Allura JA, Southworth D (2005) Comparison of ectomycorrhizas of Quercus garryana (Fagaceae) on serpentine and nonserpentine soils in southwestern Oregon. Am J Bot 92(2):224–230

    Article  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  CAS  PubMed  Google Scholar 

  • Nielsen RL, James JJ, Drenovsky RE (2019) Functional traits explain variation in chaparral shrub sensitivity to altered water and nutrient availability. Front Plant Sci 10(505)

    Google Scholar 

  • Nijssen ME, WallisDeVries MF, Siepel H (2017) Pathways for the effects of increased nitrogen deposition on fauna. Biol Conserv 212:423–431

    Article  Google Scholar 

  • O’Dell RE, Claassen VP (2006) Relative performance of native and exotic grass species in response to amendment of drastically disturbed serpentine substrates. J Appl Ecol 43(5):898–908

    Article  Google Scholar 

  • Ochoa-Hueso R, Allen EB, Branquinho C, Cruz C, Dias T, Fenn ME et al (2011) Nitrogen deposition effects on Mediterranean-type ecosystems: an ecological assessment. Environ Pollut 159(10):2265–2279

    Article  CAS  PubMed  Google Scholar 

  • Olivier JGJ, Bouwman AF, Van der Hoek KW, Berdowski JJM (1998) Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990. Environ Pollut 102(1 Suppl 1):135–148

    Article  CAS  Google Scholar 

  • Ordonez A, Olff H (2013) Do alien plant species profit more from high resource supply than natives? A trait-based analysis. Glob Ecol Biogeogr 22(6):648–658

    Article  Google Scholar 

  • Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159(12):3730–3738

    Article  PubMed  Google Scholar 

  • Overrein LN, Moe PG (1967) Factors affecting urea hydrolysis and ammonia volatilization in soil. Soil Sci Soc Am J 31(1):57–61

    Article  CAS  Google Scholar 

  • Pan B, Lam SK, Mosier A, Luo Y, Chen D (2016) Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agric Ecosyst Environ 232:283–289

    Article  CAS  Google Scholar 

  • Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB et al (2011) Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol Appl 21(8):3049–3082

    Article  Google Scholar 

  • Pasari JR, Hernández DL, Zavaleta ES (2014) Interactive effects of nitrogen deposition and grazing on plant species composition in a serpentine grassland. Rangel Ecol Manag 67(6):693–700

    Article  Google Scholar 

  • Payne RJ, Dise NB, Stevens CJ, Gowing DJ (2013) Impact of nitrogen deposition at the species level. Proc Natl Acad Sci U S A 110(3):984–987

    Article  CAS  PubMed  Google Scholar 

  • Payne RJ, Campbell C, Stevens CJ, Pakeman RJ, Ross LC, Britton AJ et al (2020) Disparities between plant community responses to nitrogen deposition and critical loads in UK semi-natural habitats. Atmos Environ 239:117478

    Article  CAS  Google Scholar 

  • Phillips ML, Weber SE, Andrews LV, Aronson EL, Allen MF, Allen EB (2019) Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. Fungal Ecol 40:107–117

    Article  Google Scholar 

  • Phos-Chek (2019) Fire retardants toxicological and environmental frequently asked questions. Perimeter Solutions, St. Louis

    Google Scholar 

  • Rajakaruna N (2004) The edaphic factor in the origin of plant species. Int Geol Rev 46(5):471–478

    Article  Google Scholar 

  • Rajakaruna N (2018) Lessons on evolution from the study of edaphic specialization. Bot Rev 84(1):39–78

    Article  Google Scholar 

  • Rajakaruna N, Boyd R (2008) Edaphic factor, vol 46. In: Jorgensen SE, Fath B (eds) The encyclopedia of ecology, vol 2. Elsevier, Oxford, pp 1201–1207

    Chapter  Google Scholar 

  • Rajakaruna N, Harris TB, Alexander EB (2009) Serpentine geoecology of eastern North America: a review. Rhodora 111(945):21–108, 188

    Article  Google Scholar 

  • Rajakaruna N, Boyd RS, Harris TB (2014) Synthesis and future directions: what have harsh environments taught us about ecology, evolution, conservation and restoration. In: Rajakaruna N, Boyd RS, Harris TB (eds) Plant ecology and evolution in harsh environments. Nova Science, Hauppauge, pp 393–409

    Google Scholar 

  • Rawluk CDL, Grant CA, Racz GJ (2001) Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT. Can J Soil Sci 81(2):239–246

    Article  CAS  Google Scholar 

  • Reddy PP (2016) Cover/green manure crops. In: Reddy PP (ed) Sustainable intensification of crop production. Springer Singapore, Singapore, pp 55–67

    Chapter  Google Scholar 

  • Reddy PM, James EK, Ladha JK (2002) Nitrogen fixation in rice. In: Leigh GJ (ed) Nitrogen fixation at the millennium. Elsevier Science, Amsterdam, pp 421–445

    Chapter  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci U S A 94(25):13730–13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis S, Pinder R, Zhang M, Lijie G, Sutton M (2009) Reactive nitrogen in atmospheric emission inventories. Atmos Chem Phys 9(19):7657–7677

    Article  CAS  Google Scholar 

  • Remke E, Brouwer E, Kooijman A, Blindow I, Esselink H, Roelofs JGM (2009) Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea. Environ Pollut 157(3):792–800

    Article  CAS  PubMed  Google Scholar 

  • Ren G-Q, Li Q, Li Y, Li J, Opoku Adomako M, Dai Z-C et al (2019) The enhancement of root biomass increases the competitiveness of an invasive plant against a co-occurring native plant under elevated nitrogen deposition. Flora 261:151486

    Article  Google Scholar 

  • Ridding LE, Bullock JM, Pescott OL, Hawes P, Walls R, Pereira MG et al (2020) Long-term change in calcareous grassland vegetation and drivers over three time periods between 1970 and 2016. Plant Ecol 221(5):377–394

    Article  Google Scholar 

  • Rochette P, Angers DA, Chantigny MH, Gasser MO, MacDonald JD, Pelster DE et al (2013) Ammonia volatilization and nitrogen retention: how deep to incorporate urea? J Environ Qual 42(6):1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Rowe EC, Jones L, Dise NB, Evans CD, Mills G, Hall J et al (2017) Metrics for evaluating the ecological benefits of decreased nitrogen deposition. Biol Conserv 212:454–463

    Article  Google Scholar 

  • Safford HD, Harrison SP (2001) Grazing and substrate interact to affect native vs. exotic diversity in roadside grasslands. Ecol Appl 11(4):1112–1122

    Article  Google Scholar 

  • Safford H, Miller J (2020) An updated database of serpentine endemism in the California flora. Madrono 67(2):85–104

    Article  Google Scholar 

  • Safford H, Viers J, Harrison S (2009) Serpentine endemism in the California flora: a database of serpentine affinity. Madrono 52:222–257

    Article  Google Scholar 

  • San Francisco S, Urrutia O, Martin V, Peristeropoulos A, Garcia-Mina JM (2011) Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching. J Sci Food Agric 91(9):1569–1575

    Article  CAS  PubMed  Google Scholar 

  • Santiago LS (2007) Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology 88(5):1126–1131

    Article  PubMed  Google Scholar 

  • Sianta SA, Kay KM (2019) Adaptation and divergence in edaphic specialists and generalists: serpentine soil endemics in the California flora occur in barer serpentine habitats with lower soil calcium levels than serpentine tolerators. Am J Bot 106(5):690–703

    Article  PubMed  Google Scholar 

  • Singh HB (1987) Reactive nitrogen in the troposphere. Environ Sci Technol 21(4):320–327

    Article  CAS  PubMed  Google Scholar 

  • Smil V (1999) Nitrogen in crop production: an account of global flows. Glob Biogeochem Cycles 13(2):647–662

    Article  CAS  Google Scholar 

  • Smil V (2002) Nitrogen and food production: proteins for human diets. AMBIO 31(2):126–131

    Article  PubMed  Google Scholar 

  • Smits NAC, Willems JH, Bobbink R (2008) Long-term after-effects of fertilisation on the restoration of calcareous grasslands. Appl Veg Sci 11(2):279–286

    Article  Google Scholar 

  • Southworth D, Tackaberry MH (2014) Mycorrhizal ecology on serpentine soils. Plant Ecol Divers 7(3):445–455

    Article  Google Scholar 

  • Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A et al (2011) The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe. Environ Pollut 159(10):2243–2250

    Article  CAS  PubMed  Google Scholar 

  • Stewart WDP (1967) Nitrogen-fixing plants. Science 158(3807):1426–1432

    Article  CAS  PubMed  Google Scholar 

  • Sullivan P (2003) Overview of cover crops and green manures. In: Williams P (ed) Fundamentals of sustainable agriculture. ATTRA, Fayetteville, pp 1–16

    Google Scholar 

  • Sun K, Tao L, Miller DJ, Pan D, Golston LM, Zondlo MA et al (2017) Vehicle emissions as an important urban ammonia source in the United States and China. Environ Sci Technol 51(4):2472–2481

    Article  CAS  PubMed  Google Scholar 

  • Teptina A, Paukov A, Rajakaruna N (2018) Ultramafic vegetation and soils in the circumboreal region of the northern hemisphere. Ecol Res 33(3):609–628

    Article  Google Scholar 

  • Ti C, Xia L, Chang SX, Yan X (2019) Potential for mitigating global agricultural ammonia emission: a meta-analysis. Environ Pollut 245:141–148

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Niu S (2015) A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10(2):024019

    Article  Google Scholar 

  • USFWS (2009) Bay checkerspot butterfly (Euphydryas editha bayensis) 5-year review: summary and evaluation. U.S. Fish and Wildlife Service, Sacramento Fish and Wildlife Office, Sacramento

    Google Scholar 

  • Vallano DM, Selmants PC, Zavaleta ES (2012) Simulated nitrogen deposition enhances the performance of an exotic grass relative to native serpentine grassland competitors. Plant Ecol 213(6):1015–1026

    Article  Google Scholar 

  • Van Den Berg LJL, Vergeer P, Rich TCG, Smart SM, Guest DAN, Ashmore MR (2011) Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Glob Chang Biol 17(5):1871–1883

    Article  Google Scholar 

  • Verhoeven JTA, Beltman B, Dorland E, Robat SA, Bobbink R (2011) Differential effects of ammonium and nitrate deposition on fen phanerogams and bryophytes. Appl Veg Sci 14(2):149–157

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13(2):87–115

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750

    Google Scholar 

  • Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc B Biol Sci 368(1621):20130119

    Article  Google Scholar 

  • Vivas A, Biró B, Németh T, Barea JM, Azcón R (2006) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38(9):2694–2704

    Article  CAS  Google Scholar 

  • Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139(1):169–187

    Article  CAS  Google Scholar 

  • Wang J, Zhou W, Chen H, Zhan J, He C, Wang Q (2019) Ammonium nitrogen tolerant Chlorella strain screening and its damaging effects on photosynthesis. Front Microbiol 9:3250

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Ryu K, Kita K, Takagi K, Koike T (2012) Effect of nitrogen load on growth and photosynthesis of seedlings of the hybrid larch F1 (Larix gmelinii var. japonica×L. kaempferi) grown on serpentine soil. Environ Exp Bot 83:73–81

    Article  CAS  Google Scholar 

  • Watt M, Evans JR (1999) Proteoid roots. Physiology and development. Plant Physiol 121(2):317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber SE, Diez JM, Andrews LV, Goulden ML, Aronson EL, Allen MF (2019) Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol 40:62–71

    Article  Google Scholar 

  • Wedin D, Tilman D (1993) Competition among grasses along a nitrogen gradient: initial conditions and mechanisms of competition. Ecol Monogr 63(2):199–229

    Article  Google Scholar 

  • Weiss SB (1999) Cars, cows, and checkerspot butterflies: nitrogen deposition and management of nutrient-poor grasslands for a threatened species. Conserv Biol 13(6):1476–1486

    Article  Google Scholar 

  • Weiss SB, Wright DH, Niederer C (2007) Serpentine vegetation management project 2007 final report. Creekside Center for Earth Observation, Menlo Park

    Google Scholar 

  • Weiss S, Niederer C, Quenelle J, Rottenborn S, Boursier P, Hardwicke K et al (2011) VTA-coyote ridge property year 4 (2010) monitoring report. CCEO/H. T. Harvey & Associates, Los Gatos

    Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313(5789):940–943

    Article  CAS  PubMed  Google Scholar 

  • WHO (2000) Effects of airborne nitrogen pollutants on vegetation: critical loads. In: Air quality guidelines for Europe, vol 2, 2nd edn. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • Wieder RK, Vitt DH, Vile MA, Graham JA, Hartsock JA, Popma JMA et al (2020) Experimental nitrogen addition alters structure and function of a boreal poor fen: implications for critical loads. Sci Total Environ 733:138619

    Article  CAS  PubMed  Google Scholar 

  • Wilkins K, Aherne J (2016) Vegetation community change in Atlantic oak woodlands along a nitrogen deposition gradient. Environ Pollut 216:115–124

    Article  CAS  PubMed  Google Scholar 

  • Wilkins K, Aherne J, Bleasdale A (2016) Vegetation community change points suggest that critical loads of nutrient nitrogen may be too high. Atmos Environ 146:324–331

    Article  CAS  Google Scholar 

  • Williams AP, Abatzoglou JT, Gershunov A, Guzman-Morales J, Bishop DA, Balch JK et al (2019) Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future 7(8):892–910

    Article  Google Scholar 

  • Witkowski ETF (1988) Response to nutrient additions by the plant growth forms of sand-plain lowland fynbos, South Africa. Vegetation 79(1):89–97

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al (2004) The worldwide leaf economics spectrum. Nature 428(6985):821–827

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Blodau C (2015) Vegetation composition in bogs is sensitive to both load and concentration of deposited nitrogen: a modeling analysis. Ecosystems 18(2):171–185

    Article  CAS  Google Scholar 

  • Wu W, Ma B (2015) Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: a review. Sci Total Environ 512–513:415–427

    Article  PubMed  Google Scholar 

  • Xing J, Pleim J, Mathur R, Pouliot G, Hogrefe C, Gan CM et al (2013) Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010. Atmos Chem Phys 13(15):7531–7549

    Article  Google Scholar 

  • Yang X, Yang Z, Tan J, Li G, Wan S, Jiang L (2018a) Nitrogen fertilization, not water addition, alters plant phylogenetic community structure in a semi-arid steppe. J Ecol 106(3):991–1000

    Article  Google Scholar 

  • Yang X-d, Ni K, Shi Y-z, Yi X-y, Zhang Q-f, Fang L et al (2018b) Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric Ecosyst Environ 252:74–82

    Article  CAS  Google Scholar 

  • Zavaleta ES, Shaw MR, Chiariello NR, Mooney HA, Field CB (2003) Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc Natl Acad Sci U S A 100(13):7650–7654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Gao P, Tong Y, Norse D, Lu Y, Powlson D (2015a) Overcoming nitrogen fertilizer over-use through technical and advisory approaches: a case study from Shaanxi Province, northwest China. Agric Ecosyst Environ 209:89–99

    Article  CAS  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015b) Managing nitrogen for sustainable development. Nature 528(7580):51–59

    Article  CAS  PubMed  Google Scholar 

  • Zhao RF, Chen XP, Zhang FS, Zhang H, Schroder J, Römheld V (2006) Fertilization and nitrogen balance in a wheat–maize rotation system in North China. Agron J 98(4):938–945

    Article  CAS  Google Scholar 

  • Zong S, Jin Y, Xu J, Wu Z, He H, Du H et al (2016) Nitrogen deposition but not climate warming promotes Deyeuxia angustifolia encroachment in alpine tundra of the Changbai Mountains, Northeast China. Sci Total Environ 544:85–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Bill and Linda Frost and the Frost Fund for funding the writing of this chapter. We also would like to thank Dr. Robert Boyd (Auburn University, AL, USA) and Ryan O’Dell (Bureau of Land Management, California Department of the Interior, Region 10) for their help reviewing the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishanta Rajakaruna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samojedny, T.J., Devlin, M., Shane, R., Rajakaruna, N. (2022). The Effects of Nitrogen Enrichment on Low-Nutrient Environments: Insights from Studies of Serpentine Soil-Plant Relations. In: Naeem, M., Bremont, J.F.J., Ansari, A.A., Gill, S.S. (eds) Agrochemicals in Soil and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-9310-6_13

Download citation

Publish with us

Policies and ethics