Skip to main content

Therapeutic Applications of CRISPR/Cas9 Technology for Infectious Diseases

  • Chapter
  • First Online:
Nanotechnology for Infectious Diseases

Abstract

The concept of genome alteration in both plant and animal kingdom has come a long way and has transformed medicinal research in the modern era. The predetermined gene expression may be modulated (i.e., upregulated or downregulated) as a result of the specific genetic change. CRISPR/Cas9 is a hopeful gene editing technique that can modify DNA sequences, correcting the genes for gain-of-function or loss-of-functions mutation to treat genetic illnesses. Although other gene editing techniques are also known, CRISPR/Cas9 is the most efficient and precise technique to gene correction. In the last decade, CRISPR/Cas9 has entered under clinical trials and very soon it might enter into clinics. In this chapter we discuss the origins of CRISPR-Cas9 systems and their biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAVs:

Adeno-associated virus

AIDS:

Acquired immunodeficiency syndrome

APOBEC3G:

Apolipoprotein B mRNA editing enzyme

APP:

Amyloid precursor protein

BCL-2:

B-cell lymphoma 2

BLs:

Burkitt lymphoma

Cas9:

CRISPR-associated protein 9

cccDNAs:

covalently closed circular DNAs

CDKs:

Cyclin-dependent kinases

CFTR:

Cystic fibrosis transmembrane conductance regulator

CRISPR:

Clustered regulatory interspaced short palindromic repeats

DSB:

Double stranded break

EGFR:

Epidermal growth factor receptor

EphA2:

Ephrin receptor tyrosine kinase A2

FA:

Fanconi anemia

HAART:

Highly active antiretroviral therapy

HbS:

Hemoglobin-S

HDR:

Homology-directed repair

HITI:

Homology-independent targeted insertion

HTT:

Huntingtin

JAK3:

Janus family kinase3

KLHL:

Kelch-like

LCLs:

Lymphoblastoid cell lines

LTRs:

Long terminal repeats

LV:

Lentivirus

MCL-1:

Myeloid cell leukemia-1

MDR:

Multidrug resistance

NHEJ:

Non-homologous end joining

NK:

Natural killer

PCSK9:

Proprotein convertase subtilisin/Kexin type 9

PD-1:

Programmed death-1

RNAi:

RNA interference

SC:

Sickle cell

sgRNA:

Single guide RNA

SHCBP1:

SHC SH2-binding protein 1

STDs:

Sexually transmitted disease

TNBC:

Triple-negative breast cancer

XHIGM:

X-linked hyper immunoglobulin M syndrome

References

  • Alateeq S, Ovchinnikov D, Tracey T, Whitworth D, Al-Rubaish A, Al-Ali A, Wolvetang E (2018) Identification of on-target mutagenesis during correction of a beta-thalassemia splice mutation in iPS cells with optimised CRISPR/Cas9-double nickase reveals potential safety concerns. APL Bioeng 2(4):046103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubrey BJ, Kelly GL, Kueh AJ, Brennan MS, O’Connor L, Milla L, Wilcox S, Tai L, Strasser A, Herold MJ (2015) An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor-promoting mutations in vivo. Cell Rep 10(8):1422–1432

    Article  CAS  PubMed  Google Scholar 

  • Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, Levy R, Akhtar AA, Breunig JJ, Svendsen CN, Wang S (2016) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24(3):556–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Baylis F, McLeod M (2017) First-in-human phase 1 CRISPR gene editing cancer trials: are we ready? Curr Gene Ther 17(4):309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergeron N, Phan BA, Ding Y, Fong A, Krauss RM (2015) Proprotein convertase subtilisin/kexin type 9 inhibition: a new therapeutic mechanism for reducing cardiovascular disease risk. Circulation 132(17):1648–1666

    Article  CAS  PubMed  Google Scholar 

  • Bogerd HP, Kornepati AV, Marshall JB, Kennedy EM, Cullen BR (2015) Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators. Proc Natl Acad Sci U S A 112:E7249–E7256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52

    Article  CAS  PubMed  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273(5278):1058–1073

    Article  CAS  PubMed  Google Scholar 

  • Cao A, Galanello R (2010) Beta-thalassemia. Genet Med 12(2):61–76

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty C, Teoh SL, Das S (2017) The smart programmable CRISPR technology: a next generation genome editing tool for investigators. Curr Drug Targets 18(14):1653–1663

    Article  CAS  PubMed  Google Scholar 

  • Chang CW, Lai YS, Westin E, Khodadadi-Jamayran A, Pawlik KM, Lamb LS Jr, Goldman FD, Townes TM (2015) Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep 12(10):1668–1677

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Sathiyamoorthy K, Zhang X, Schaller S, Perez White BE, Jardetzky TS et al (2018) Ephrin receptor A2 is a functional entry receptor for Epstein-Barr virus. Nat Microbiol 3:172–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong TC, Compagno M, Chiarle R (2016) Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nat Commun 7:10934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu HW, Rios C, Huang C, Wesolowska-Andersen A, Burchard EG, O’Connor BP, Fingerlin TE, Nichols D, Reynolds SD, Seibold MA (2015) CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18. Gene Ther 22(10):822–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane AM, Kramer P, Bui JH, Chung WJ, Li XS, Gonzalez-Garay ML, Hawkins F, Liao W, Mora D, Choi S, Wang J, Sun HC, Paschon DE, Guschin DY, Gregory PD, Kotton DN, Holmes MC, Sorscher EJ, Davis BR (2015) Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports 4(4):569–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyranoski D (2016) Chinese scientists to pioneer first human CRISPR trial. Nature 535(7613):476–477

    Article  CAS  PubMed  Google Scholar 

  • Dhanoa BS, Cogliati T, Satish AG, Bruford EA, Friedman JS (2013) Update on the Kelch-like (KLHL) gene family. Hum Genomics 7:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z, Perisse IV, Cotton CU, Regouski M, Meng Q, Domb C, Van Wettere AJ, Wang Z, Harris A, White KL, Polejaeva IA (2018) A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 3(19):e123529

    Article  PubMed Central  Google Scholar 

  • Feng Y, Sassi S, Shen JK, Yang X, Gao Y, Osaka E, Zhang J, Yang S, Yang C, Mankin HJ, Hornicek FJ, Duan Z (2015) Targeting CDK11 in osteosarcoma cells using the CRISPR-Cas9 system. J Orthop Res 33(2):199–207

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Li HC, Xu K, Chen YF, Pan LY, Mei Y, Cai H, Jiang YM, Chen T, Feng DX (2016) SHCBP1 is over-expressed in breast cancer and is important in the proliferation and apoptosis of the human malignant breast cancer cell line. Gene 587(1):91–97

    Article  CAS  PubMed  Google Scholar 

  • Gratz SJ, Rubinstein CD, Harrison MM, Wildonger J, O’Connor-Giles KM (2015) CRISPR-Cas9 genome editing in Drosophila. Curr Protoc Mol Biol 111:31.32.31–31.32.20

    Google Scholar 

  • Gyorgy B, Loov C, Zaborowski MP, Takeda S, Kleinstiver BP, Commins C, Kastanenka K, Mu D, Volak A, Giedraitis V, Lannfelt L, Maguire CA, Joung JK, Hyman BT, Breakefield XO, Ingelsson M (2018) CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol Ther Nucleic Acids 11:429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hartweger H, McGuire AT, Horning M, Taylor JJ, Dosenovic P, Yost D et al (2019) HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells. J Exp Med 216:1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermans PW, van Soolingen D, Bik EM, de Haas PE, Dale JW, van Embden JD (1991) Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun 59(8):2695–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoban MD, Lumaquin D, Kuo CY, Romero Z, Long J, Ho M, Young CS, Mojadidi M, Fitz-Gibbon S, Cooper AR, Lill GR, Urbinati F, Campo-Fernandez B, Bjurstrom CF, Pellegrini M, Hollis RP, Kohn DB (2016) CRISPR/Cas9-mediated correction of the sickle mutation in human CD34+ cells. Mol Ther 24(9):1561–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultquist JF, Hiatt J, Schumann K, McGregor MJ, Roth TL, Haas P et al (2019) CRISPR-Cas9 genome engineering of primary CD4(+) T cells for the interrogation of HIV-host factor interactions. Nat Protoc 14:1–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Jarrett KE, Lee C, De Giorgi M, Hurley A, Gillard BK, Doerfler AM, Li A, Pownall HJ, Bao G, Lagor WR (2018) Somatic editing of Ldlr with adeno-associated viral-CRISPR is an efficient tool for atherosclerosis research. Arterioscler Thromb Vasc Biol 38(9):1997–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Mei M, Li B, Zhu X, Zu W, Tian Y, Wang Q, Guo Y, Dong Y, Tan X (2017) A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res 27(3):440–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo CY, Hoban MD, Joglekar AV, Kohn DB (2015) Site specific gene correction of defects in CD40 ligand using the Crispr/Cas9 genome editing platform. J Allergy Clin Immunol 135(2):AB17

    Article  Google Scholar 

  • Kuske MD, Johnson JP (1999) Assignment of the human melanoma cell adhesion molecule gene (MCAM) to chromosome 11 band q23.3 by radiation hybrid mapping. Cytogenet Cell Genet 87(3–4):258

    Article  CAS  PubMed  Google Scholar 

  • Lara-Pezzi E, Dopazo A, Manzanares M (2012) Understanding cardiovascular disease: a journey through the genome (and what we found there). Dis Model Mech 5(4):434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, Bird TD, Schellenberg GD (1995) A familial Alzheimer’s disease locus on chromosome 1. Science 269(5226):970–973

    Article  CAS  PubMed  Google Scholar 

  • Lian YF, Yuan J, Cui Q, Feng QS, Xu M, Bei JX, Zeng YX, Feng L (2016) Upregulation of KLHDC4 predicts a poor prognosis in human nasopharyngeal carcinoma. PLoS One 11(3):e0152820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zeng Y, Liu L, Zhuang C, Fu X, Huang W, Cai Z (2014) Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat Commun 5:5393

    Article  CAS  PubMed  Google Scholar 

  • Liu YC, Cai ZM, Zhang XJ (2016a) Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes. Asian J Androl 18:475–479

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Shen JK, Li Z, Choy E, Hornicek FJ, Duan Z (2016b) Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Lett 373(1):109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhou Y, Qi X, Chen J, Chen W, Qiu G, Wu Z, Wu N (2017) CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Hum Genet 136(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Walsh MJ, Bernhardt K, Ashbaugh CW, Trudeau SJ, Ashbaugh IY et al (2017) CRISPR/Cas9 screens reveal Epstein-Barr virus-transformed B cell host dependency factors. Cell Host Microbe 21:580–591.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909):1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojica FJ, Ferrer C, Juez G, Rodriguez-Valera F (1995) Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17(1):85–93

    Article  CAS  PubMed  Google Scholar 

  • Monteys AM, Ebanks SA, Keiser MS, Davidson BL (2017) CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 25(1):12–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow G, Tanguay RM (2017) Biochemical and clinical aspects of hereditary tyrosinemia type 1. Adv Exp Med Biol 959:9–21

    Article  CAS  PubMed  Google Scholar 

  • Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D (2012) Myeloid malignancies: mutations, models and management. BMC Cancer 12:304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasrallah F, Hammami MB, Ben Rhouma H, Fradj SH, Azzouz H, Omar S, Feki M, Ben Youssef IT, Messaoud T, Tebib N, Kaabachi N (2015) Clinical and biochemical profile of tyrosinemia type 1 in Tunisia. Clin Lab 61(5–6):487–492

    CAS  PubMed  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399(6734):323–329

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Xu J, Sun T (2019) Cyclin-dependent kinases 4/6 inhibitors in breast cancer: current status, resistance, and combination strategies. J Cancer 10(22):5504–5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng R, Lin G, Li J (2016) Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J 283(7):1218–1231

    Article  CAS  PubMed  Google Scholar 

  • Pires C, Schmid B, Petraeus C, Poon A, Nimsanor N, Nielsen TT, Waldemar G, Hjermind LE, Nielsen JE, Hyttel P, Freude KK (2016) Generation of a gene-corrected isogenic control cell line from an Alzheimer’s disease patient iPSC line carrying a A79V mutation in PSEN1. Stem Cell Res 17(2):285–288

    Article  CAS  PubMed  Google Scholar 

  • Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F (2014) CRISPR-Cas9 knock in mice for genome editing and cancer modeling. Cell 159(2):440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon A, Schmid B, Pires C, Nielsen TT, Hjermind LE, Nielsen JE, Holst B, Hyttel P, Freude KK (2016) Generation of a gene-corrected isogenic control hiPSC line derived from a familial Alzheimer’s disease patient carrying a L150P mutation in presenilin 1. Stem Cell Res 17(3):466–469

    Article  CAS  PubMed  Google Scholar 

  • Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci U S A 112:6164–6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts R, Marian AJ, Dandona S, Stewart AFR (2013) Genomics in cardiovascular disease. J Am Coll Cardiol 61(20):2029–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rub U, Seidel K, Heinsen H, Vonsattel JP, den Dunnen WF, Korf HW (2016) Huntington’s disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol 26(6):726–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan OW, Poddar S, Cate JH (2016) CRISPR-Cas9 genome engineering in Saccharomyces cerevisiae cells. Cold Spring Harb Protoc 2016(6)

    Google Scholar 

  • Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS (2013) A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Rivera FJ, Jacks T (2015) Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 15(7):387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saudou F, Humbert S (2016) The biology of huntingtin. Neuron 89(5):910–926

    Article  CAS  PubMed  Google Scholar 

  • Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13(6):653–658

    Article  CAS  PubMed  Google Scholar 

  • Seidah NG (2013) Proprotein convertase subtilisin kexin 9 (PCSK9) inhibitors in the treatment of hypercholesterolemia and other pathologies. Curr Pharm Des 19(17):3161–3172

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Alexaki A, Pirrone V, Dahiya S, Nonnemacher MR, Wigdahl B (2014) Functional properties of the HIV-1 long terminal repeat containing single nucleotide polymorphisms in Sp site III and CCAAT/enhancer binding protein site I. Virol J 11:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Y, Wang L, Guo N, Wang S, Yang L, Li Y, Wang M, Yin S, Han H, Zeng L, Zhang L, Hui L, Ding Q, Zhang J, Geng H, Liu M, Li D (2019) Correction: Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats. J Biol Chem 294(21):8348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiels A, Hejtmancik JF (2007) Genetic origins of cataract. Arch Ophthalmol 125(2):165–173

    Article  CAS  PubMed  Google Scholar 

  • Shiels A, Hejtmancik JF (2017) Mutations and mechanisms in congenital and age-related cataracts. Exp Eye Res 156:95–102

    Article  CAS  PubMed  Google Scholar 

  • Shin JW, Kim KH, Chao MJ, Atwal RS, Gillis T, MacDonald ME, Gusella JF, Lee JM (2016) Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25(20):4566–4576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shintani K, Shechtman DL, Gurwood AS (2009) Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry 80(7):384–401

    Article  PubMed  Google Scholar 

  • Singh K, Evens H, Nair N, Rincon MY, Sarcar S, Samara-Kuko E, Chuah MK, VandenDriessche T (2018) Efficient in vivo liver-directed gene editing using CRISPR/Cas9. Mol Ther 26(5):1241–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skov M, Hansen CR, Pressler T (2019) Cystic fibrosis—an example of personalized and precision medicine. APMIS 127(5):352–360

    Article  PubMed  Google Scholar 

  • Skvarova Kramarzova K, Osborn MJ, Webber BR, DeFeo AP, McElroy AN, Kim CJ, Tolar J (2017) CRISPR/Cas9-mediated correction of the FANCD1 gene in primary patient cells. Int J Mol Sci 18(6):1269

    Article  CAS  PubMed Central  Google Scholar 

  • Su S, Hu B, Shao J, Shen B, Du J, Du Y, Zhou J, Yu L, Zhang L, Chen F, Sha H, Cheng L, Meng F, Zou Z, Huang X, Liu B (2016) CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 6(1):20070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Izpisua Belmonte JC (2018) In vivo genome editing via the HITI method as a tool for gene therapy. J Hum Genet 63(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nunez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Belmonte JC (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Shrager JB (2016) CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy. EMBO Mol Med 8(2):83–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tessadori F, Roessler HI, Savelberg SMC, Chocron S, Kamel SM, Duran KJ, van Haelst MM, van Haaften G, Bakkers J (2018) Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders. Dis Model Mech 11(10):dmm035469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valletta S, Dolatshad H, Bartenstein M, Yip BH, Bello E, Gordon S, Yu Y, Shaw J, Roy S, Scifo L, Schuh A, Pellagatti A, Fulga TA, Verma A, Boultwood J (2015) ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget 6(42):44061–44071

    Article  PubMed  PubMed Central  Google Scholar 

  • VanLith C, Guthman R, Nicolas CT, Allen K, Du Z, Joo DJ, Nyberg SL, Lillegard JB, Hickey RD (2018) Curative ex vivo hepatocyte-directed gene editing in a mouse model of hereditary tyrosinemia type 1. Hum Gene Ther 29(11):1315–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezinaw CM, Fishman GA, McAnany JJ (2019) Visual impairment in retinitis pigmentosa. Retina 40(8):1630–1633

    Article  Google Scholar 

  • Villiger L, Grisch-Chan HM, Lindsay H, Ringnalda F, Pogliano CB, Allegri G, Fingerhut R, Haberle J, Matos J, Robinson MD, Thony B, Schwank G (2018) Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med 24(10):1519–1525

    Article  CAS  PubMed  Google Scholar 

  • Wang DY, Chan WM, Tam PO, Baum L, Lam DS, Chong KK, Fan BJ, Pang CP (2005) Gene mutations in retinitis pigmentosa and their clinical implications. Clin Chim Acta 351(1–2):5–16

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang T, Kwiatkowski N, Abraham BJ, Lee TI, Xie S, Yuzugullu H, Von T, Li H, Lin Z, Stover DG, Lim E, Wang ZC, Iglehart JD, Young RA, Gray NS, Zhao JJ (2015) CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell 163(1):174–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen R, Zhang R, Ding S, Zhang T, Yuan Q et al (2017) The gRNA miRNA-gRNA ternary cassette combining CRISPR/Cas9 with RNAi approach strongly inhibits hepatitis B virus replication. Theranostics 7:3090–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen J, Tao W, Hao S, Zu Y (2017) Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. J Hematol Oncol 10(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams TN, Thein SL (2018) Sickle cell anemia and its phenotypes. Annu Rev Genomics Hum Genet 19:113–147

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW (2014) Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24(9):1526–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu CL, Ruan MZC, Mahajan VB, Tsang SH (2019) Viral delivery systems for CRISPR. Viruses 11(1):28

    Article  CAS  PubMed Central  Google Scholar 

  • Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, Yu H, Xu C, Morizono H, Musunuru K, Batshaw ML, Wilson JM (2016) A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34(3):334–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, Sun X, Qin Z, Jin P, Li S, Li XJ (2017) CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 127(7):2719–2724

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32(6):551–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshiba T, Saga Y, Urabe M, Uchibori R, Matsubara S, Fujiwara H et al (2019) CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol Lett 17:2197–2206

    CAS  PubMed  Google Scholar 

  • Yuan L, Sui T, Chen M, Deng J, Huang Y, Zeng J, Lv Q, Song Y, Li Z, Lai L (2016) CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci Rep 6:22024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Yao H, Xu Y, Chen M, Deng J, Song Y, Sui T, Wang Y, Huang Y, Li Z, Lai L (2017) CRISPR/Cas9-mediated mutation of alphaA-crystallin gene induces congenital cataracts in rabbits. Invest Ophthalmol Vis Sci 58(6):BIO34–BIO41

    Article  CAS  PubMed  Google Scholar 

  • Yuen KS, Chan CP, Wong NM, Ho CH, Ho TH, Lei T et al (2015) CRISPR/Cas9-mediayoungted genome editing of Epstein-Barr virus in human cells. J Gen Virol 96:626–636

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Han C, Li D, Yu Z, Li F, An Q, Bai H, Zhang X, Duan Z, Kan Q (2015) Cyclin-dependent kinase 11(p110) (CDK11(p110)) is crucial for human breast cancer cell proliferation and growth. Sci Rep 5:10433

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Zhou Y, Wei W (2017) Genome-wide CRISPR/Cas9 screening for high-throughput functional genomics in human cells. Methods Mol Biol 1656:175–181

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, G., Rehman, S., Sharma, A.R. (2022). Therapeutic Applications of CRISPR/Cas9 Technology for Infectious Diseases. In: Hameed, S., Rehman, S. (eds) Nanotechnology for Infectious Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-9190-4_25

Download citation

Publish with us

Policies and ethics