Skip to main content

Terahertz VCO Design for High-Speed Wireless Communication Systems

  • Chapter
  • First Online:

Abstract

The enormous evolution of the IoT and its applications requires highly secure communication with high data rates and high bandwidth. However, current wireless communication systems, based on microwave and millimeter frequencies, are not able to meet these requirements. For this reason, several actors propose the migration to terahertz frequencies. In this chapter, we present the THz domain and its potential applications, we present the impact of the use of THz in 6G, and finally we propose the study and design of a terahertz VCO for the THz band applications. The circuit is designed based on the pHEMT transistor from the United Monolithic Semiconductors foundry. Simulation results show that the oscillation frequency is around 104 GHz, the output power is −11.127 dBm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, T. Kurner, Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments. IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008)

    Article  ADS  Google Scholar 

  2. C. Jansen et al., Diffuse scattering from rough surfaces in THz communication channels. IEEE Trans. Terahertz Sci. Technol. 1(2), 462–472 (2011)

    Article  ADS  Google Scholar 

  3. A. Hirata et al., 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission. IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006)

    Article  ADS  Google Scholar 

  4. D. Dragoman, M. Dragoman, Terahertz fields and applications. Prog. Quantum Electron. (2004)

    Google Scholar 

  5. M.S. Shur, J.-Q. Lu, Terahertz sources and detectors using two-dimensional electronic fluid in high electron-mobility transistors. IEEE Trans. Microw. Theory Tech. 48(4), 750–756 (2000)

    Article  ADS  Google Scholar 

  6. T.W. Crowe, P.W. Porterfield, J.L. Hesler, W.L. Bishop, D.S. Kurtz, K. Hui, Terahertz Sources and Detectors (Orlando, Florida, USA, 2005)

    Google Scholar 

  7. H. Drexler, J.S. Scott, S.J. Allen, K.L. Campman, A.C. Gossard, Photon-assisted tunneling in a resonant tunneling diode: stimulated emission and absorption in the THz range. Appl. Phys. Lett. 67, 2816–2818 (1995)

    Article  ADS  Google Scholar 

  8. R. Izumi, S. Suzuki, M. Asada, in 1.98 THz Resonant-Tunneling-Diode Oscillator with Reduced Conduction Loss by Thick Antenna Electrode. 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (Cancun, Mexico, 2017), pp. 1–2

    Google Scholar 

  9. K. Kasagi, S. Suzuki, M. Asada, Large-scale array of resonant-tunneling-diode terahertz oscillators for high output power at 1 THz. J. Appl. Phys. 125(15) (2019)

    Google Scholar 

  10. R. Safian, G. Ghazi, N. Mohammadian, Review of photomixing continuous-wave terahertz systems and current application trends in terahertz domain. Opt. Eng. 58 (2019)

    Google Scholar 

  11. X. Li, W. Yin, S. Khamas, An efficient photomixer based slot fed terahertz dielectric resonator antenna. Sensors 21 (2021)

    Google Scholar 

  12. A. Jumaah, S. Al-Daffaie, O. Yilmazoglu, F. Kuppers, in Graphene—Nanowire Hybrid Photomixer for Continuous-Wave Terahertz Generation. 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (Cancun, Mexico, 2017), pp. 1–2

    Google Scholar 

  13. M. Alibakhshikenari et al., Study on improvement of the performance parameters of a novel 0.41–0.47 THz on-chip antenna based on metasurface concept realized on 50 μm GaAs-layer. Sci Rep 10, 11034 (2020)

    Google Scholar 

  14. Z. Vilagosh, A. Lajevardipour, A. Wood, in Imaging and Lesion Ablation Modeling in Skin Using Freezing to Enhance Penetration Depth of Terahertz Radiation. Photonics in Dermatology and Plastic Surgery 2019 (San Francisco, United States, 2019)

    Google Scholar 

  15. S.K. Mathanker, P.R. Weckler, N. Wang, Terahertz (THz) applications in food and agriculture: a review. Trans. ASABE 56(3), 1213–1226 (2013)

    Google Scholar 

  16. Z. Zhou et al., Multicolor T‐ray imaging using multispectral metamaterials. Adv. Sci. 5(7) (2018)

    Google Scholar 

  17. K. Rudakov et al., in Low-Noise THz-Range Nb Based SIS Receivers for Radio Astronomy. 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (Buffalo, NY, USA, 2020), pp. 1–2

    Google Scholar 

  18. Y. Takashima, S. Sirsi, H. Choi, W.J. Arenberg, D.W. Kim, S.K. Walker, in All Reflective THz Telescope Design with an Inflatable Primary Antenna for Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) Mission. Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems III (San Diego, United States, 2021)

    Google Scholar 

  19. J.F. Lampin, G. Mouret, S. Dhillon, J. Mangeney, THz spectroscopy for fundamental science and applications. Photoniques 101, 33–38 (2020)

    Article  ADS  Google Scholar 

  20. F. Sebastiani et al., Probing local electrostatics of glycine in aqueous solution by THz spectroscopy. Angew. Chem. Int. Ed. 60(7), 3768–3772 (2021)

    Article  Google Scholar 

  21. H.-J. Song et al., 8 Gbit/s wireless data transmission at 250 GHz. Electron. Lett. 45(22) (2009)

    Google Scholar 

  22. T. Nagatsuma et al., in Giga-Bit Wireless Link Using 300–400 GHz Bands. 2009 International Topical Meeting on Microwave Photonics (2009)

    Google Scholar 

  23. S. Koenig et al., Wireless sub-THz communication system with high data rate. Nat. Photonics 7(12), 977–981 (2013)

    Article  ADS  Google Scholar 

  24. M.S. Shamim, M.S., Uddin, M.R. Hasan, M. Samad, Design and implementation of miniaturized wideband microstrip patch antenna for high-speed terahertz applications. J. Comput. Electron. 20(1), 604–610 (2021)

    Google Scholar 

  25. A. Khalatpour, A.C. Paulsen, C. Deimert, Z.R. Wasilewski, Q. Hu, High-power portable terahertz laser systems. Nat. Photonics 15(1), 16–20 (2021)

    Article  ADS  Google Scholar 

  26. H.-J. Song, T. Nagatsuma, Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011)

    Article  ADS  Google Scholar 

  27. M.S. Shur, Terahertz Technology for Space Exploration and Data Communications (Boston, MA, 2007)

    Google Scholar 

  28. A.G. Davies, E.H. Linfield, M.B. Johnston, The development of terahertz sources and their applications. Phys. Med. Biol. 47(21), 3679–3689 (2002)

    Article  Google Scholar 

  29. D.D. Abdelhamid, H. Halima, Images térahertz et infrarouges pour le contrôle de la qualité intérieure du fruits de dattier (2020)

    Google Scholar 

  30. T. Taniuchi, S. Okada, H. Nakanishi, Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application. J. Appl. Phys. 95(11), 5984–5988 (2004)

    Article  ADS  Google Scholar 

  31. T.R. Globus et al., THz-spectroscopy of biological molecules. Spectrosc. Biol. Mol. 29, 89–100 (2003)

    Google Scholar 

  32. Z. Wang et al., Qualitative and quantitative recognition of chiral drugs based on terahertz spectroscopy. Analyst 12, 1–12 (2021)

    Google Scholar 

  33. G. Soylu, E. Hérault, B. Boulanger, F. Laurell, J.-L. Coutaz, Sub-wavelength THz imaging of the domains in periodically poled crystals through optical rectification. J. Infrared Millim. Terahertz Waves 41(9), 1144–1154 (2020)

    Article  Google Scholar 

  34. A. Ramundo-Orlando, G.P. Gallerano, Terahertz radiation effects and biologic al applications. J. Infrared Milli. Terahz Waves 30, 1308–1318 (2009)

    Google Scholar 

  35. K. Ahi, S. Shahbazmohamadi, N. Asadizanjani, Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Opt. Lasers Eng. 104, 274–284 (2018)

    Article  Google Scholar 

  36. L. Juery, Communication térahertz sans fil à haut débit avec un transistor à haute mobilité électronique comme détecteur. Université Montpellier II—Sciences et Techniques du Languedoc (2014)

    Google Scholar 

  37. N.A. Kramarova et al., Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements. Atmos. Meas. Tech. 11(5), 2837–2861 (2018)

    Google Scholar 

  38. P.H. Siegel, THz instruments for space. IEEE Trans. Antennas Propag. 55(11), 2957–2965 (2007)

    Article  ADS  Google Scholar 

  39. A. Es-Saqy et al., 28 GHz balanced pHEMT VCO with low phase noise and high output power performance for 5G mm-wave systems. Int. J. Electr. Comput. Eng. 10(5), 4623–4630 (2020)

    Google Scholar 

  40. A. Es-Saqy et al., 5G mm-wave band pHEMT VCO with ultralow PN. Adv. Sci. Technol. Eng. Syst. J. 5(3), 487–492 (2020)

    Article  Google Scholar 

  41. International Telecommunication Union, Key outcomes of the World Radiocommunication Conference 2019. ITU News MAGAZINE 6 (2019)

    Google Scholar 

  42. L. Rao, M. Pant, L. Malviya, A. Parmar, S.V. Charhate, 5G beamforming techniques for the coverage of intended directions in modern wireless communication: In-depth review. Int. J. Microw. Wirel. Technol. 1–24 (2020)

    Google Scholar 

  43. B. Aghoutane, M. El Ghzaoui, H. El Faylali, Spatial characterization of propagation channels for terahertz band. SN Appl. Sci. 3, 233 (2021). https://doi.org/10.1007/s42452-021-04262-8

    Article  Google Scholar 

  44. S. Nayak, R. Patgiri, 6G communication: envisioning the key issues and challenges. EAI Endorsed Trans. Internet Things 6(24) (2021)

    Google Scholar 

  45. Z. Zhang et al., 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 14(3), 28–41 (2019)

    Article  Google Scholar 

  46. T. Nakamura, in 5G Evolution and 6G. 2020 IEEE Symposium on VLSI Technology (2020)

    Google Scholar 

  47. M. Kokkonen, S. Myllymäki, H. Jantunen, Focal length of a low permittivity plano-convex lens at frequencies 30–600 GHz. Electron. Lett. 56(5), 223–225 (2020)

    Article  ADS  Google Scholar 

  48. United Monolithic Semiconductors, Take Advantage of Wideband, Low Noise Medium Power UMS PH15 GaAs Process. Shared Foundry Offer (2018)

    Google Scholar 

  49. M. Abata, M. Mehdi, S. Mazer, M. El Bekkali, C. Algani, A V-band two pole high-pass filter for frequency quadrupler design. Int. J. Commun. Antenna Propag. IRECAP 6(1), 56–60 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhafid Es-Saqy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Es-Saqy, A. et al. (2022). Terahertz VCO Design for High-Speed Wireless Communication Systems. In: El Ghzaoui, M., Das, S., Lenka, T.R., Biswas, A. (eds) Terahertz Wireless Communication Components and System Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-9182-9_1

Download citation

Publish with us

Policies and ethics