Skip to main content

Introduction and Classification of Endohedral Metallofullerenes

  • Reference work entry
  • First Online:
Handbook of Fullerene Science and Technology

Abstract

The cavities of the fullerene can provide nanometer-scale space to host a variety of metal(s) or otherwise unstable metal clusters to produce a new class of metallo-organic compounds, known as endohedral metallofullerenes (EMFs). These unique hybrid molecules are stabilized by charge transfer and subsequent coordination between the inner metallic units and the outer fullerene cages, which endow EMFs with characteristic physio-chemical properties and structures that differ from empty fullerenes. Compared with traditional empty fullerenes, the charge transfer and subsequent coordination between the inner metallic units and the outer fullerene cage make the formed molecules possess new structures and different physio-chemical properties. Accordingly, we believe that currently described and not yet discovered EMFs will demonstrate enormous potential related to the practical applications in the materials, biology, catalysis, photoelectric conversion, etc. Herein, a systematic and comprehensive summary of the new structures and unprecedented properties of EMFs are presented according to the categories of monometallofullerenes, dimetallofullerenes, trimetallofullerenes, and clusterfullerenes. Finally, perspectives regarding the novel structures and potential applications of EMFs are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318(6042):162–163

    CAS  Google Scholar 

  2. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347(6291):354–358

    Google Scholar 

  3. Giacalone F, Martín N (2006) Fullerene polymers: synthesis and properties. Chem Rev 106(12):5136–5190

    CAS  PubMed  Google Scholar 

  4. Guldi M, Fullerenes D (2000) Three dimensional electron acceptor materials. Chem Commun 5:321–327

    Google Scholar 

  5. Popov AA, Yang S, Dunsch L (2013) Endohedral Fullerenes. Chem Rev 113(8):5989–6113

    CAS  PubMed  Google Scholar 

  6. Yang S, Wei T, Jin F (2017) When metal clusters meet carbon cages: endohedral Clusterfullerenes. Chem Soc Rev 46(16):5005–5058

    CAS  PubMed  Google Scholar 

  7. Lu X, Feng L, Akasaka T, Nagase S (2012) Current status and future developments of endohedral Metallofullerenes. Chem Soc Rev 41(23):7723–7760

    PubMed  Google Scholar 

  8. Rodríguez-Fortea A, Balch L, Poblet AM (2011) Endohedral metallofullerenes: a unique host–guest association. Chem Soc Rev 40(7):3551–3563

    PubMed  Google Scholar 

  9. Komatsu K, Murata M, Murata Y (2005) Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 307(5707):238–240

    CAS  PubMed  Google Scholar 

  10. Murata M, Murata Y, Komatsu K (2006) Synthesis and properties of endohedral C60 encapsulating molecular hydrogen. J Am Chem Soc 128(24):8024–8033

    CAS  PubMed  Google Scholar 

  11. Li Y, Lou N, Xu D, Pan C, Lu X, Gan L (2018) Oxygen-delivery materials: synthesis of an open-cage fullerene derivative suitable for encapsulation of H2O2 and O2. Angew Chem Int Ed 57(43):14144–14148

    CAS  Google Scholar 

  12. Heath JR, O’Brien SC, Zhang Q, Liu Y, Curl RF, Tittel FK, Smalley RE (1985) Lanthanum complexes of spheroidal carbon shells. J Am Chem Soc 107(25):7779–7780

    CAS  Google Scholar 

  13. Chai Y, Guo T, Jin C, Haufler RE, Chibante LPF, Fure J, Wang L, Alford JM, Smalley RE (1991) Fullerenes with metals inside. J Phys Chem 95(20):7564–7568

    CAS  Google Scholar 

  14. Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H (2010) A layered ionic crystal of polar Li@C-60 Superatoms. Nat Chem 2(8):678–683

    CAS  PubMed  Google Scholar 

  15. Shen W, Hu S, Lu X (2020) Endohedral metallofullerenes: new structures and unseen phenomena. Chem Eur J 26(26):5748–5757

    CAS  PubMed  Google Scholar 

  16. Lu X, Nikawa H, Feng L, Tsuchiya T, Maeda Y, Akasaka T, Mizorogi N, Slanina Z, Nagase S (2009) Location of the yttrium atom in Y@C82 and its influence on the reactivity of cage carbons. J Am Chem Soc 131(34):12066–12067

    CAS  PubMed  Google Scholar 

  17. Yang H, Jin H, Wang X, Liu Z, Yu M, Zhao F, Mercado BQ, Olmstead MM, Balch AL (2012) X-Ray crystallographic characterization of new soluble endohedral Fullerenes utilizing the popular C82 Bucky cage. Isolation and structural characterization of Sm@C3v(7)-C82, Sm@Cs(6)-C82, and Sm@C2(5)-C82. J Am Chem Soc 134(34):14127–14136

    CAS  PubMed  Google Scholar 

  18. Roy M, Olmstead MM, Balch AL (2019) Metal ion effects on fullerene/porphyrin cocrystallization. Cryst Growth Des 19(11):6743–6751

    CAS  Google Scholar 

  19. Olmstead MM, Costa DA, Maitra K, Noll BC, Phillips SL, Van Calcar PM, Balch AL (1999) Interaction of curved and flat molecular surfaces. The structures of crystalline compounds composed of fullerene (C60, C60O, C70, and C120O) and metal octaethylporphyrin units. J Am Chem Soc 121(30):7090–7097

    CAS  Google Scholar 

  20. Baldauf LM, Ghiassi KB, Olmstead MM, Balch AL (2020) Fullerene nanostructures: how the oblong shape of C70 forms a cocrystal with an enormous asymmetric unit and related cocrystals. Nanoscale 12(39):20356–20363

    CAS  PubMed  Google Scholar 

  21. Bao L, Pan C, Slanina Z, Uhlik F, Akasaka T, Lu X (2016) Isolation and crystallographic characterization of the labile isomer of Y@C82 cocrystallized with Ni(OEP): unprecedented dimerization of pristine metallofullerenes. Angew Chem Int Ed 55(32):9234–9238

    CAS  Google Scholar 

  22. Hu S, Liu T, Shen W, Slanina Z, Akasaka T, Xie Y, Uhlik F, Huang W, Lu X (2019) Isolation and structural characterization of Er@C2v(9)-C82 and Er@Cs(6)-C82: regioselective dimerization of a pristine endohedral metallofullerene induced by cage symmetry. Inorg Chem 58(3):2177–2182

    CAS  PubMed  Google Scholar 

  23. Guo T, Diener MD, Chai Y, Alford MJ, Haufler RE, McClure SM, Ohno T, Weaver JH, Scuseria GE, Smalley RE (1992) Uranium stabilization of C28: a tetravalent fullerene. Science 257(5077):1661–1664

    CAS  PubMed  Google Scholar 

  24. Wang Y, Morales-Martínez R, Zhang X, Yang W, Wang Y, Rodríguez-Fortea A, Poblet JM, Feng L, Wang S, Chen N (2017) Unique four-electron metal-to-cage charge transfer of Th to a C82 fullerene cage: complete structural characterization of Th@C3v(8)-C82. J Am Chem Soc 139(14):5110–5116

    CAS  PubMed  Google Scholar 

  25. Cai W, Morales-Martínez R, Zhang X, Najera D, Romero L, Metta-Magaña A, Rodríguez-Fortea A, Fortier S, Chen N, Poblet M, Echegoyen L (2017) Single crystal structures and theoretical calculations of uranium endohedral Metallofullerenes (U@C2n, 2n = 74, 82) show cage isomer dependent oxidation states for U. Chem Sci 8(8):5282–5290

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cai W, Abella L, Zhuang J, Zhang X, Feng L, Wang Y, Morales-Martínez R, Esper R, Boero M, Metta-Magaña A, Rodríguez-Fortea A, Poblet JM, Echegoyen L, Chen N (2018) Synthesis and characterization of non-isolated-pentagon-rule actinide endohedral metallofullerenes U@C1(17418)-C76, U@C1(28324)-C80, and Th@C1(28324)-C80: low-symmetry cage selection directed by a tetravalent ion. J Am Chem Soc 140(51):18039–18050

    CAS  PubMed  Google Scholar 

  27. Cai W, Alvarado J, Metta-Magaña A, Chen N, Echegoyen L (2020) Interconversions between uranium mono-Metallofullerenes: mechanistic implications and role of asymmetric cages. J Am Chem Soc 142(30):13112–13119

    CAS  PubMed  Google Scholar 

  28. Wang Y, Morales-Martínez R, Cai W, Zhuang J, Yang W, Echegoyen L, Poblet M, Rodríguez-Fortea A, Chen N (2019) Th@C1(11)-C86 : an actinide encapsulated in an unexpected C86 fullerene cage. Chem Commun 55(63):9271–9274

    CAS  Google Scholar 

  29. Che Y, Yang H, Wang Z, Jin H, Liu Z, Lu C, Zuo T, Dorn HC, Beavers CM, Olmstead MM, Balch AL (2009) Isolation and structural characterization of two very large, and largely empty, endohedral fullerenes: tm@C3v-C94 and ca@C3v-C94. Inorg Chem 48(13):6004–6010

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin H, Yang H, Yu M, Liu Z, Beavers CM, Olmstead MM, Balch AL (2012) Single samarium atoms in large fullerene cages. Characterization of two isomers of Sm@C92 and four isomers of Sm@C94 with the X-Ray crystallographic identification of Sm@C1(42)-C92, Sm@Cs(24)-C92, and Sm@C3v(134)-C94. J Am Chem Soc 134(26):10933–10941

    CAS  PubMed  Google Scholar 

  31. Alvarez MM, Gillan EG, Holczer K, Kaner RB, Min KS, Whetten RL (1991) Lanthanum carbide (La2C80): a soluble dimetallofullerene. J Phys Chem 95(26):10561–10563

    CAS  Google Scholar 

  32. Akasaka T, Nagase S, Kobayashi K, Walchli M, Yamamoto K, Funasaka H, Kako M, Hoshino T, Erata T (1997) 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes. Angew Chem Int Ed 36(15):1643–1645

    CAS  Google Scholar 

  33. Yamada M, Kurihara H, Suzuki M, Guo JD, Waelchli M, Olmstead MM, Balch AL, Nagase S, Maeda Y, Hasegawa T, Lu X, Akasaka T (2014) Sc2@C66 revisited: an endohedral fullerene with scandium ions nestled within two unsaturated linear Triquinanes. J Am Chem Soc 136(21):7611–7614

    CAS  PubMed  Google Scholar 

  34. Zhao Y, Yu H, Lian Y (2016) Experimental and theoretical evaluation of structures of Pr2@C72 and its functionalized adduct with adamantylidene carbene. RSC Adv 6(116):115113–115119

    CAS  Google Scholar 

  35. Lu X, Nikawa H, Nakahodo T, Tsuchiya T, Ishitsuka MO, Maeda Y, Akasaka T, Toki M, Sawa H, Slanina Z, Mizorogi N, Nagase S (2008) Chemical understanding of a non-IPR metallofullerene: stabilization of encaged metals on fused-pentagon bonds in La2@C72. J Am Chem Soc 130(28):9129–9136

    CAS  PubMed  Google Scholar 

  36. Suzuki M, Mizorogi N, Yang T, Uhlik F, Slanina Z, Zhao X, Yamada M, Maeda Y, Hasegawa T, Nagase S, Lu X, Akasaka T (2013) La2@Cs(17 490)-C76: a new non-IPR dimetallic metallofullerene featuring unexpectedly weak metal–pentalene interactions. Chem Eur J 19(50):17125–17130

    CAS  PubMed  Google Scholar 

  37. Beavers CM, Jin H, Yang H, Wang ZM, Wang X, Ge H, Liu Z, Mercado BQ, Olmstead MH, Balch AL (2011) Very large, soluble endohedral fullerenes in the series La2C90 to La2C138: isolation and crystallographic characterization of La2@D5(450)-C100. J Am Chem Soc 133(39):15338–15341

    CAS  PubMed  Google Scholar 

  38. Mercado BQ, Jiang A, Yang H, Wang Z, Jin H, Liu Z, Olmstead MM, Balch AL (2009) Isolation and structural characterization of the molecular nanocapsule Sm2@D3d(822)-C104. Angew Chem Int Ed 121(48):9278–9280

    Google Scholar 

  39. Yang H, Jin H, Hong B, Liu Z, Beavers CM, Zhen H, Wang Z, Mercado BQ, Olmstead MM, Balch AL (2011) Large endohedral fullerenes containing two metal ions, Sm2@D2(35)-C88, Sm2@C1(21)-C90, and Sm2@D3(85)-C92, and their relationship to endohedral fullerenes containing two gadolinium ions. J Am Chem Soc 133(42):16911–16919

    CAS  PubMed  Google Scholar 

  40. Shen W, Bao L, Wu Y, Pan C, Zhao S, Fang H, Xie Y, Jin P, Peng P, Li F-F, Lu X (2017) Lu2@C2n (2n = 82, 84, 86): crystallographic evidence of direct Lu–Lu bonding between two divalent lutetium ions inside fullerene cages. J Am Chem Soc 139(29):9979–9984

    CAS  PubMed  Google Scholar 

  41. Bao L, Peng P, Lu X (2018) Bonding inside and outside fullerene cages. Acc Chem Res 51(3):810–815

    CAS  PubMed  Google Scholar 

  42. Liu F, Spree L, Krylov DS, Velkos G, Avdoshenko SM, Popov AA (2019) Single-electron lanthanide-lanthanide bonds inside Fullerenes toward robust redox-active molecular magnets. Acc Chem Res 52(10):2981–2993

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Popov A, Avdoshenko S, Martín Pendás A, Dunsch L (2012) Bonding between strongly repulsive metal atoms: an oxymoron made real in a confined space of endohedral metallofullerenes. Chem Commun 48(65):8031–8050

    CAS  Google Scholar 

  44. Yamada M, Kurihara H, Suzuki M, Saito M, Slanina Z, Uhlik F, Aizawa T, Kato T, Olmstead MM, Balch AL, Maeda Y, Nagase S, Lu X, Akasaka T (2015) Hiding and recovering electrons in a dimetallic endohedral fullerene: air-stable products from radical additions. J Am Chem Soc 137(1):232–238

    CAS  PubMed  Google Scholar 

  45. Wang Z, Kitaura R, Shinohara H (2014) Metal-dependent stability of pristine and functionalized unconventional dimetallofullerene M2@Ih-C80. J Phys Chem C 118(25):13953–13958

    CAS  Google Scholar 

  46. Hu S, Shen W, Yang L, Duan G, Jin P, Xie Y, Akasaka T, Lu X (2019) Crystallographic and theoretical investigations of Er2@C2n (2n = 82, 84, 86): indication of distance-dependent metal–metal bonding nature. Chem Eur J 25(49):11538–11544

    CAS  PubMed  Google Scholar 

  47. Zhang X, Wang Y, Morales-Martínez R, Zhong J, de Graaf C, Rodríguez-Fortea A, Poblet JM, Echegoyen L, Feng L, Chen N (2018) U2@Ih(7)-C80: crystallographic characterization of a long-sought dimetallic actinide endohedral fullerene. J Am Chem Soc 140(11):3907–3915

    CAS  PubMed  Google Scholar 

  48. Liu F, Velkos G, Krylov DS, Spree L, Zalibera M, Ray R, Samoylova NA, Chen C-H, Rosenkranz M, Schiemenz S, Ziegs F, Nenkov K, Kostanyan A, Greber T, Wolter AUB, Richter M, Büchner B, Avdoshenko SM, Popov AA (2019) Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal–metal bond. Nat Commun 10(1):571

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pan C, Shen W, Yang L, Bao L, Wei Z, Jin P, Fang H, Xie Y, Akasaka T, Lu X (2019) Crystallographic characterization of Y2C2n (2n = 82, 88–94): direct Y–Y bonding and cage-dependent cluster evolution. Chem Sci 10(17):4707–4713

    CAS  Google Scholar 

  50. Yang S, Dunsch L (2006) Di- and tridysprosium endohedral metallofullerenes with cages from C94 to C100. Angew Chem Int Ed 45(8):1299–1302

    CAS  Google Scholar 

  51. Tagmatarchis N, Aslanis E, Prassides K, Shinohara H (2001) Mono-, Di- and Trierbium endohedral Metallofullerenes: production, separation, isolation, and spectroscopic study. Chem Mater 13(7):2374–2379

    CAS  Google Scholar 

  52. Popov AA, Zhang L, Dunsch L (2010) A Pseudoatom in a cage: Trimetallofullerene Y3@C80 mimics Y3N@C80 with nitrogen substituted by a Pseudoatom. ACS Nano 4(2):795–802

    CAS  PubMed  Google Scholar 

  53. Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu MTH, Mizorogi N, Kobayashi K, Nagase S (2005) Structural determination of Metallofullerene Sc3C82 revisited: a surprising finding. J Am Chem Soc 127(36):12500–12501

    CAS  PubMed  Google Scholar 

  54. Xu W, Feng L, Calvaresi M, Liu J, Liu Y, Niu B, Shi Z, Lian Y, Zerbetto F (2013) An experimentally observed Trimetallofullerene Sm3@Ih-C80: encapsulation of three metal atoms in a cage without a nonmetallic mediator. J Am Chem Soc 135(11):4187–4190

    CAS  PubMed  Google Scholar 

  55. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Small-bandgap endohedral Metallofullerenes in high yield and purity. Nature 401(6748):55–57

    CAS  Google Scholar 

  56. Wei T, Wang S, Liu F, Tan Y, Zhu X, Xie S, Yang S (2015) Capturing the long-sought small-bandgap endohedral fullerene Sc3N@C82 with low kinetic stability. J Am Chem Soc 137(8):3119–3123

    CAS  PubMed  Google Scholar 

  57. Olmstead MM, Lee HM, Duchamp JC, Stevenson S, Marciu D, Dorn HC, Balch AL (2003) Sc3N@C68: folded Pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule. Angew Chem Int Ed 115(8):928–931

    Google Scholar 

  58. Yang S, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. Angew Chem Int Ed 46(8):1256–1259

    CAS  Google Scholar 

  59. Olmstead MM, de Bettencourt-Dias A, Duchamp JC, Stevenson S, Marciu D, Dorn HC, Balch AL (2001) Isolation and structural characterization of the endohedral fullerene Sc3N@C78. Angew Chem Int Ed 40(7):1223–1225

    CAS  Google Scholar 

  60. Krause M, Dunsch L (2004) Isolation and characterisation of two Sc3N@C80 isomers. ChemPhysChem 5(9):1445–1449

    CAS  PubMed  Google Scholar 

  61. Stevenson S, Rothgeb AJ, Tepper KR, Duchamp J, Dorn HC, Powers XB, Roy M, Olmstead MM, Balch AL (2019) Isolation and crystallographic characterization of two, nonisolated pentagon endohedral Fullerenes: Ho3N@C2(22010)-C78 and Tb3N@C2(22010)-C78. Chem. – Eur. J. 25(54):12545–12551

    CAS  Google Scholar 

  62. Melin F, Chaur MN, Engmann S, Elliott B, Kumbhar A, Athans AJ, Echegoyen L (2007) The large Nd3N@C2n (40≤n≤49) cluster fullerene family: preferential templating of a C88 cage by a Trimetallic nitride cluster. Angew Chem Int Ed 46(47):9032–9035

    CAS  Google Scholar 

  63. Chaur MN, Athans AJ, Echegoyen L (2008) Metallic nitride endohedral Fullerenes: synthesis and electrochemical properties. Tetrahedron 64(50):11387–11393

    CAS  Google Scholar 

  64. Chaur MN, Melin F, Ashby J, Elliott B, Kumbhar A, Rao AM, Echegoyen L (2008) Lanthanum nitride endohedral Fullerenes La3N@C2n (43≤n≤55): preferential formation of La3N@C96. Chem Eur J 14(27):8213–8219

    CAS  PubMed  Google Scholar 

  65. Beavers CM, Chaur MN, Olmstead MM, Echegoyen L, Balch AL (2009) Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C2(22010)-C78 departs from the isolated pentagon rule. J Am Chem Soc 131(32):11519–11524

    CAS  PubMed  Google Scholar 

  66. Olmstead MM, Zuo T, Dorn HC, Li T, Balch AL (2017) Metal ion size and the Pyramidalization of Trimetallic nitride units inside a fullerene cage: comparisons of the crystal structures of M3N@Ih-C80 (M=Gd, Tb, Dy, Ho, Er, tm, Lu, and Sc) and some mixed metal counterparts. Inorganica Chim Acta 468:321–326

    CAS  Google Scholar 

  67. Stevenson S, Paige Phillips J, Reid J, Olmstead M, Prasad Rath SL, Balch A (2004) Pyramidalization of Gd3N inside a C80 cage. The synthesis and structure of Gd3N@C80. Chem Commun 24:2814–2815

    Google Scholar 

  68. Schlesier C, Liu F, Dubrovin V, Spree L, Büchner B, Avdoshenko SM, Popov AA (2019) Mixed dysprosium-lanthanide nitride clusterfullerenes DyM2N@C80-Ih and Dy2MN@C80-Ih (M = Gd, Er, Tm, and Lu): synthesis, molecular structure, and quantum motion of the endohedral nitrogen atom. Nanoscale 11(27):13139–13153

    CAS  PubMed  Google Scholar 

  69. Stevenson S, Rose CB, Maslenikova JS, Villarreal JR, Mackey MA, Mercado BQ, Chen K, Olmstead MM, Balch AL (2012) Selective synthesis, isolation, and crystallographic characterization of LaSc2N@Ih-C80. Inorg Chem 51(24):13096–13102

    CAS  PubMed  Google Scholar 

  70. Dreiser J, Westerström R, Zhang Y, Popov AA, Dunsch L, Krämer K, Liu S-X, Decurtins S, Greber T (2014) The Metallofullerene field-induced single-ion magnet HoSc2N@C80. Chem Eur J 20(42):13536–13540

    CAS  PubMed  Google Scholar 

  71. Stevenson S, Thompson HR, Arvola KD, Ghiassi KB, Olmstead MM, Balch AL (2015) Isolation of CeLu2N@Ih-C80 through a non-chromatographic, two-step chemical process and crystallographic characterization of the Pyramidalized CeLu2N within the icosahedral cage. Chem Eur J 21(29):10362–10368

    CAS  PubMed  Google Scholar 

  72. Stevenson S, Chancellor CJ, Lee HM, Olmstead MM, Balch AL (2008) Internal and external factors in the structural organization in cocrystals of the mixed-metal endohedrals (GdSc2N@Ih-C80, Gd2ScN@Ih-C80, and TbSc2N@Ih-C80) and nickel(II) octaethylporphyrin. Inorg Chem 47(5):1420–1427

    CAS  PubMed  Google Scholar 

  73. Nie M, Xiong J, Zhao C, Meng H, Zhang K, Han Y, Li J, Wang B, Feng L, Wang C, Wang T (2019) Luminescent single-molecule magnet of Metallofullerene DyErScN@Ih-C80. Nano Res 12(7):1727–1731

    CAS  Google Scholar 

  74. Yang S, Chen C, Li X, Wei T, Liu F, Wang S (2013) Bingel–Hirsch Monoadducts of TiSc2N@Ih-C80 versus Sc3N@Ih-C80: reactivity improvement via internal metal atom substitution. Chem Commun 49(92):10844

    CAS  Google Scholar 

  75. Wei T, Wang S, Lu X, Tan Y, Huang J, Liu F, Li Q, Xie S, Yang S (2016) Entrapping a group-VB transition metal, vanadium, within an endohedral Metallofullerene: VxSc3–xN@Ih-C80 (x = 1, 2). J Am Chem Soc 138(1):207–214

    CAS  PubMed  Google Scholar 

  76. Wei T, Jin F, Guan R, Huang J, Chen M, Li Q, Yang S (2018) Blending non-Group-3 transition metal and rare-earth metal into a C80 fullerene cage with D5h symmetry. Angew Chem Int Ed 57(32):10273–10277

    CAS  Google Scholar 

  77. Li X, Roselló Y, Yao Y-R, Zhuang J, Zhang X, Rodríguez-Fortea A, de Graaf C, Echegoyen L, Poblet JM, Chen N (2021) U2N@Ih(7)-C80: fullerene cage encapsulating an unsymmetrical U(IV)=N=U(V) cluster. Chem Sci 12(1):282–292

    CAS  Google Scholar 

  78. Lu X, Akasaka T, Nagase S (2013) Carbide cluster Metallofullerenes: structure, properties, and possible origin. Acc Chem Res 46(7):1627–1635

    CAS  PubMed  Google Scholar 

  79. Wang C-R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2001) A scandium carbide endohedral Metallofullerene: (Sc2C2)@C84. Angew Chem Int Ed 40(2):397–399

    CAS  Google Scholar 

  80. Lu X, Nakajima K, Iiduka Y, Nikawa H, Tsuchiya T, Mizorogi N, Slanina Z, Nagase S, Akasaka T (2012) The Long-Believed Sc2@C2v(17)-C84 Is Actually Sc2C2@C2v(9)-C82 : Unambiguous Structure Assignment and Chemical Functionalization. Angew Chem Int Ed 51(24):5889–5892

    CAS  Google Scholar 

  81. Lu X, Nakajima K, Iiduka Y, Nikawa H, Mizorogi N, Slanina Z, Tsuchiya T, Nagase S, Akasaka T (2011) Structural elucidation and regioselective functionalization of an unexplored carbide cluster metallofullerene Sc2C2@Cs(6)-C82. J Am Chem Soc 133(48):19553–19558

    CAS  PubMed  Google Scholar 

  82. Wang Y, Tang Q, Feng L, Chen N (2017) Sc2C2@D3h(14246)-C74: a missing piece of the clusterfullerene puzzle. Inorg Chem 56(4):1974–1980

    CAS  PubMed  Google Scholar 

  83. Fang H, Cong H, Suzuki M, Bao L, Yu B, Xie Y, Mizorogi N, Olmstead MM, Balch AL, Nagase S, Akasaka T, Lu X (2014) Regioselective benzyl radical addition to an open-shell cluster metallofullerene. Crystallographic studies of cocrystallized Sc3C2@Ih-C80 and its singly bonded derivative. J Am Chem Soc 136(29):10534–10540

    CAS  PubMed  Google Scholar 

  84. Chen C-H, Ghiassi KB, Cerón MR, Guerrero-Ayala MA, Echegoyen L, Olmstead MM, Balch AL (2015) Beyond the butterfly: Sc2C2@C2v (9)-C86, an endohedral fullerene containing a planar, twisted Sc2C2 unit with remarkable crystalline order in an unprecedented carbon cage. J Am Chem Soc 137(32):10116–10119

    CAS  PubMed  Google Scholar 

  85. Chen C-H, Abella L, Cerón MR, Guerrero-Ayala MA, Rodríguez-Fortea A, Olmstead MM, Powers XB, Balch AL, Poblet JM, Echegoyen L (2016) Zigzag Sc2C2 carbide cluster inside a [88]fullerene cage with one heptagon, Sc2C2@Cs(Hept)-C88: a kinetically trapped fullerene formed by C2 insertion? J Am Chem Soc 138(39):13030–13037

    CAS  PubMed  Google Scholar 

  86. Shen W, Bao L, Yu P, Yang L, Li B, Yu P, Jin P, Lu X (2020) Isolation and crystallographic characterization of Lu2C2@C2n (2n = 88–92): internal cluster stretching upon outer cage expansion. Carbon 164:157–163

    CAS  Google Scholar 

  87. Hu S, Zhao P, Shen W, Ehara M, Xie Y, Akasaka T, Lu X (2020) Crystallographic characterization of Er2C2@C80–88: cluster stretching with cage elongation. Inorg Chem 59(3):1940–1946

    CAS  PubMed  Google Scholar 

  88. Zhao S, Zhao P, Cai W, Bao L, Chen M, Xie Y, Zhao X, Lu X (2017) Stabilization of Giant Fullerenes C2(41)-C90, D3(85)-C92, C1(132)-C94, C2(157)-C96, and C1(175)-C98 by encapsulation of a large La2C2 cluster: the importance of cluster–cage matching. J Am Chem Soc 139(13):4724–4728

    CAS  PubMed  Google Scholar 

  89. Cai W, Bao L, Zhao S, Xie Y, Akasaka T, Lu X (2015) Anomalous compression of D5(450)-C100 by encapsulating La2C2 cluster instead of La2. J Am Chem Soc 137(32):10292–10296

    CAS  PubMed  Google Scholar 

  90. Shen W, Bao L, Hu S, Yang L, Jin P, Xie Y, Akasaka T, Lu X (2019) Crystallographic characterization of Lu2C2n (2n = 76–90): cluster selection by cage size. Chem Sci 10(3):829–836

    CAS  PubMed  Google Scholar 

  91. Pan C, Bao L, Yu X, Fang H, Xie Y, Akasaka T, Lu X (2018) Facile access to Y2C2n (2n = 92–130) and crystallographic characterization of Y2C2@C1(1660)-C108: a giant nanocapsule with a linear carbide cluster. ACS Nano 12(2):2065–2069

    CAS  PubMed  Google Scholar 

  92. Zhang X, Li W, Feng L, Chen X, Hansen A, Grimme S, Fortier S, Sergentu D-C, Duignan TJ, Autschbach J, Wang S, Wang Y, Velkos G, Popov AA, Aghdassi N, Duhm S, Li X, Li J, Echegoyen L, Schwarz WHE, Chen N (2018) A diuranium carbide cluster stabilized inside a C80 fullerene cage. Nat Commun 9(1):2753

    PubMed  PubMed Central  Google Scholar 

  93. Zhuang J, Abella L, Sergentu D-C, Yao Y-R, Jin M, Yang W, Zhang X, Li X, Zhang D, Zhao Y, Li X, Wang S, Echegoyen L, Autschbach J, Chen N (2019) Diuranium (IV) carbide cluster U2C2 stabilized inside fullerene cages. J Am Chem Soc 141(51):20249–20260

    CAS  PubMed  Google Scholar 

  94. Svitova AL, Ghiassi KB, Schlesier C, Junghans K, Zhang Y, Olmstead MM, Balch AL, Dunsch L, Popov AA (2014) Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage. Nat Commun 5:3568

    CAS  PubMed  Google Scholar 

  95. Junghans K, Ghiassi KB, Samoylova NA, Deng Q, Rosenkranz M, Olmstead MM, Balch AL, Popov AA (2016) Synthesis and isolation of the titanium–scandium endohedral Fullerenes—Sc2TiC@Ih-C80, Sc2TiC@D5h-C80 and Sc2TiC2@Ih-C80: metal size tuning of the TiIV/TiIII redox potentials. Chem Eur J 22(37):13098–13107

    CAS  PubMed  Google Scholar 

  96. Yu P, Shen W, Bao L, Pan C, Slanina Z, Lu X (2019) Trapping an unprecedented Ti3C3 unit inside the icosahedral C80 fullerene: a crystallographic survey. Chem Sci 10(47):10925–10930

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu P, Bao L, Yang L, Hao D, Jin P, Shen W, Fang H, Akasaka T, Lu X (2020) Crystallographic characterization of Ti2C2@D3h(5)-C78, Ti2C2@C3v(8)-C82, and Ti2C2@Cs(6)-C82: identification of unsupported Ti2C2 cluster with cage-dependent configurations. Inorg Chem 59(13):9416–9423

    CAS  PubMed  Google Scholar 

  98. Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ, Olmstead MM, Balch AL (2008) A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(Μ3-O)2@Ih-C80. J Am Chem Soc 130(36):11844–11845

    CAS  PubMed  Google Scholar 

  99. Mercado BQ, Stuart MA, Mackey MA, Pickens JE, Confait BS, Stevenson S, Easterling ML, Valencia R, Rodríguez-Fortea A, Poblet JM, Olmstead MM, Balch AL (2010) Sc2(Μ2-O) trapped in a fullerene cage: the isolation and structural characterization of Sc2(Μ2-O)@Cs(6)-C82 and the relevance of the thermal and entropic effects in fullerene isomer selection. J Am Chem Soc 132(34):12098–12105

    CAS  PubMed  Google Scholar 

  100. Q. Mercado; M. Olmstead; M. Beavers, ; L. Easterling.; Stevenson, S.; A. Mackey; E. Coumbe; D. Phillips.; Paige Phillips, J.; M. Poblet; L. Balch. A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc4(μ3-O)3@Ih-C80. Chem Commun 2010, 46 (2), 279–281

    CAS  Google Scholar 

  101. Yang T, Hao Y, Abella L, Tang Q, Li X, Wan Y, Rodríguez-Fortea A, Poblet JM, Feng L, Chen N (2015) Sc2O@Td(19151)-C76: hindered cluster motion inside a tetrahedral carbon cage probed by crystallographic and computational studies. Chem Eur J. 21(31):11110–11117

    CAS  PubMed  Google Scholar 

  102. Hao Y, Tang Q, Li X, Zhang M, Wan Y, Feng L, Chen N, Slanina Z, Adamowicz L, Uhlík F (2016) Isomeric Sc2O@C78 related by a single-step stone–Wales transformation: key links in an unprecedented fullerene formation pathway. Inorg Chem 55(21):11354–11361

    CAS  PubMed  Google Scholar 

  103. Tang Q, Abella L, Hao Y, Li X, Wan Y, Rodríguez-Fortea A, Poblet JM, Feng L, Chen N (2015) Sc2O@C2v(5)-C80: Dimetallic oxide cluster inside a C80 fullerene cage. Inorg Chem 54(20):9845–9852

    CAS  PubMed  Google Scholar 

  104. Tang Q, Abella L, Hao Y, Li X, Wan Y, Rodríguez-Fortea A, Poblet JM, Feng L, Chen N (2016) Sc2O@C3v(8)-C82: a missing isomer of Sc2O@C82. Inorg Chem 55(4):1926–1933

    CAS  PubMed  Google Scholar 

  105. Liu A, Nie M, Hao Y, Yang Y, Wang T, Slanina Z, Cong H, Feng L, Wang C, Uhlik F (2019) Ho2O@C74: Ho2O cluster expands within a small non-IPR fullerene cage of C2(13333)-C74. Inorg Chem 58(8):4774–4781

    CAS  PubMed  Google Scholar 

  106. Cong H, Liu A, Hao Y, Feng L, Slanina Z, Uhlik F (2019) Ho2O@C84: crystallographic evidence showing linear metallic oxide cluster encapsulated in IPR fullerene cage of D2d(51591)-C84. Inorg Chem 58(16):10905–10911

    CAS  PubMed  Google Scholar 

  107. Yu Y, Slanina Z, Wang F, Yang Y, Lian Y, Uhlik F, Xin B, Feng L (2020) Ho2O@D3(85)-C92: highly stretched cluster dictated by a giant cage and unexplored isomerization. Inorg Chem 59(15):11020–11027

    CAS  PubMed  Google Scholar 

  108. Yang W, Velkos G, Liu F, Sudarkova SM, Wang Y, Zhuang J, Zhang H, Li X, Zhang X, Büchner B, Avdoshenko SM, Popov AA, Chen N (2019) Single molecule magnetism with strong magnetic anisotropy and enhanced Dy∙∙∙Dy coupling in three isomers of Dy-oxide clusterfullerene Dy2O@C82. Adv Sci 6(20):1901352

    CAS  Google Scholar 

  109. Dunsch L, Yang S, Zhang L, Svitova A, Oswald S, Popov AA (2010) Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. J Am Chem Soc 132(15):5413–5421

    CAS  PubMed  Google Scholar 

  110. Chen N, Beavers CM, Mulet-Gas M, Rodríguez-Fortea A, Munoz EJ, Li Y-Y, Olmstead MM, Balch AL, Poblet JM, Echegoyen L (2012) Sc2S@Cs(10528)-C72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. J Am Chem Soc 134(18):7851–7860

    CAS  PubMed  Google Scholar 

  111. Chen N, Mulet-Gas M, Li Y-Y, Stene R, Atherton C, Rodríguez-Fortea A, Poblet M, Echegoyen L (2013) Sc2S@C2(7892)–C70 : a metallic sulfide cluster inside a non-IPR C70 cage. Chem Sci 4(1):180–186

    Google Scholar 

  112. Cai W, Bocarsly JD, Gomez A, Lee RJL, Metta-Magaña A, Seshadri R, Echegoyen L (2020) High blocking temperatures for DyScS endohedral fullerene single-molecule magnets. Chem Sci 11(48):13129–13136

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Krause M, Ziegs F, Popov AA, Dunsch L (2007) Entrapped bonded hydrogen in a fullerene: the five-atom cluster Sc3CH in C80. ChemPhysChem 8(4):537–540

    CAS  PubMed  Google Scholar 

  114. Zhao C, Tan K, Nie M, Lu Y, Zhang J, Wang C, Lu X, Wang T (2020) Scandium tetrahedron supported by H anion and CN Pentaanion inside fullerene C80. Inorg Chem 59(12):8284–8290. https://doi.org/10.1021/acs.inorgchem.0c00681

    Article  CAS  PubMed  Google Scholar 

  115. Wang T-S, Feng L, Wu J-Y, Xu W, Xiang J-F, Tan K, Ma Y-H, Zheng J-P, Jiang L, Lu X, Shu C-Y, Wang C-R (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-Ih. J Am Chem Soc 132(46):16362–16364

    CAS  PubMed  Google Scholar 

  116. Wu J, Wang T, Ma Y, Jiang L, Shu C, Wang C (2011) Synthesis, isolation, characterization, and theoretical studies of Sc3NC@C78-C2. J Phys Chem C 115(48):23755–23759

    CAS  Google Scholar 

  117. Yang S, Chen C, Liu F, Xie Y, Li F, Jiao M, Suzuki M, Wei T, Wang S, Chen Z, Lu X, Akasaka T (2013) An improbable monometallic cluster entrapped in a popular fullerene cage: YCN@Cs(6)-C82. Sci Rep 3(1):1–5

    CAS  Google Scholar 

  118. Liu F, Wang S, Gao C-L, Deng Q, Zhu X, Kostanyan A, Westerström R, Jin F, Xie S-Y, Popov AA, Greber T, Yang S (2017) Mononuclear clusterfullerene single-molecule magnet containing strained fused-pentagons stabilized by a nearly linear metal cyanide cluster. Angew Chem Int Ed 56(7):1830–1834

    CAS  Google Scholar 

  119. Liu F, Gao C-L, Deng Q, Zhu X, Kostanyan A, Westerström R, Wang S, Tan Y-Z, Tao J, Xie S-Y, Popov AA, Greber T, Yang S (2016) Triangular monometallic cyanide cluster entrapped in carbon cage with geometry-dependent molecular magnetism. J Am Chem Soc 138(44):14764–14771

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Shen W, Hu Z, Yu P, Wei Z, Jin P, Shi Z, Lu X (2020) An experimental and theoretical study of LuNC@C76,82 revealing a cage-cluster selection rule. Inorg Chem Front 7(23):4563–4571

    CAS  Google Scholar 

  121. Hummelen JC, Knight B, Pavlovich J, González R, Wudl F (1995) Isolation of the heterofullerene C59N as its dimer (C59N)2. Science 269(5230):1554–1556

    CAS  PubMed  Google Scholar 

  122. Brown CM, Cristofolini L, Kordatos K, Prassides K, Bellavia C, González R, Keshavarz-K, Wudl F, Cheetham AK, Zhang JP, Andreoni W, Curioni A, Fitch AN, Pattison P (1996) On the crystal structure of Azafullerene (C59N)2. Chem Mater 8(11):2548–2550

    CAS  Google Scholar 

  123. Akasaka T, Okubo S, Wakahara T, Yamamoto K, Kobayashi K, Nagase S, Kato T, Kako M, Nakadaira Y, Kitayama Y, Matsuura K (1999) Endohedrally metal-doped heterofullerenes: La@C81N and La2@C79N. Chem Lett 28(9):945–946

    Google Scholar 

  124. Zuo T, Xu L, Beavers CM, Olmstead MM, Fu W, Crawford TD, Balch AL, Dorn HC (2008) M2@C79N (M = Y, Tb): isolation and characterization of stable endohedral metallofullerenes exhibiting M−M bonding interactions inside Aza[80]fullerene cages. J Am Chem Soc 130(39):12992–12997

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Fu W, Zhang J, Fuhrer T, Champion H, Furukawa K, Kato T, Mahaney JE, Burke BG, Williams KA, Walker K, Dixon C, Ge J, Shu C, Harich K, Dorn HC (2011) Gd2@C79N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J Am Chem Soc 133(25):9741–9750

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Chaur MN, Melin F, Ashby J, Elliott B, Kumbhar A, Rao AM, Echegoyen L (2008) Lanthanum nitride endohedral fullerenes La3N@C2n (43 <= n <= 55): preferential formation of La3N@C96. Chem Eur J 14(27):8213–8219

    CAS  PubMed  Google Scholar 

  127. Hu Z, Dong B-W, Liu Z, Liu J-J, Su J, Yu C, Xiong J, Shi D-E, Wang Y, Wang B-W, Ardavan A, Shi Z, Jiang S-D, Gao S (2018) Endohedral metallofullerene as molecular high spin qubit: diverse Rabi cycles in Gd2@C79N. J Am Chem Soc 140(3):1123–1130

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Lu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shen, W., Yu, P., Tian, X., Lu, X. (2022). Introduction and Classification of Endohedral Metallofullerenes. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8994-9_25

Download citation

Publish with us

Policies and ethics