Skip to main content

In Vitro Production of Phytosterols

  • Chapter
  • First Online:
Nutraceuticals Production from Plant Cell Factory

Abstract

Phytosterols are plant-derived metabolites which are present in edible and nonedible plants and proven to have many health promoting effects. β-sitosterol, campesterol, and stigmasterol are the major phytosterols present in plants. The positive impact on the health came from their ability to reduce plasma cholesterol levels and anti-inflammatory, antidiabetic, and anticancer activities. The beneficial effects of these phytotherapeutic molecules create market need for pharmaceutical and enriched food products based on phytosterols. However, phytosterols production is encountered by many difficulties, since phytosterols levels produced by plants are low and the chemical synthesis offered no actual solution for commercial production, neither practically nor economically. In vitro culture production of phytosterols is an alternative technique with bright future for these biomolecules which includes many successful strategies such as elicitation and metabolic engineering through DNA technologies for overexpression of phytosterols. Phytosterols production by this technique needs to have knowledge with genes and enzymes involved in phytosterols biosynthesis pathway, and the more knowledge you have, the more successful production you get.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aherne SA, O'brien NM (2008) Modulation of cytokine production by plant sterols in stimulated human Jurkat T cells. Mol Nutr Food Res 52(6):664–673

    Article  CAS  PubMed  Google Scholar 

  • Alappat L, Valerio M, Awad AB (2010) Effect of vitamin D and β-sitosterol on immune function of macrophages. Int Immunopharmacol 10(11):1390–1396

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, García-Pérez P, Belchí-Navarro S et al (2016) New strategies for the use of Linum usitatissimum cell factories for the production of bioactive compounds. Plant Physiol Biochem 99:73–78

    Article  CAS  PubMed  Google Scholar 

  • Almeida CAS, Baggio SR, Mariutti LRB et al (2020) One-step rapid extraction of phytosterols from vegetable oils. Food Res Int 130:108891

    Article  CAS  PubMed  Google Scholar 

  • Alsoufi ASM, Pączkowski C, Długosz M et al (2019) Influence of selected abiotic factors on triterpenoid biosynthesis and saponin secretion in marigold (Calendula officinalis L.) in vitro hairy root cultures. Molecules 24(16):2907

    Article  CAS  PubMed Central  Google Scholar 

  • Awad AB, Burr AT, Fink CS (2005) Effect of resveratrol and β-sitosterol in combination on reactive oxygen species and prostaglandin release by PC-3 cells. Prostaglandins Leukot Essent Fat Acids 72(3):219–226

    Article  CAS  Google Scholar 

  • Bathoju G, Rao K, Giri A (2017) Production of sapogenins (stigmasterol and hecogenin) from genetically transformed hairy root cultures of Chlorophytum borivilianum (Safed musli). Plant Cell Tissue Organ Cult 131(3):369–376

    Article  CAS  Google Scholar 

  • Bayer G (2015) Martindale: the complete drug reference. Aust Prescr 38(2):59

    Article  PubMed Central  Google Scholar 

  • Belchí-Navarro S, Almagro L, Lijavetzky D et al (2012) Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate. Plant Cell Rep 31(1):81–89

    Article  PubMed  CAS  Google Scholar 

  • Bhatia S, Bera T, Dahiya R et al (2015) Classical and nonclassical techniques for secondary metabolite production in plant cell culture. In: Modern applications of plant biotechnology in pharmaceutical sciences. Elsevier, London, pp 231–291

    Chapter  Google Scholar 

  • Bin Sayeed MS, Karim SMR, Sharmin T et al (2016) Critical analysis on characterization, systemic effect, and therapeutic potential of beta-sitosterol: a plant-derived orphan phytosterol. Medicines 3(4):29

    Article  PubMed Central  CAS  Google Scholar 

  • Bonfill M, Mangas S, Moyano E et al (2011) Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell Tissue Organ Cult 104(1):61–67

    Article  CAS  Google Scholar 

  • Bru R, Sellés S, Casado-Vela J et al (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agric Food Chem 54(1):65–71

    Article  CAS  PubMed  Google Scholar 

  • Cabral CE, Klein MRST (2017) Phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular diseases. Arq Bras Cardiol 109(5):475–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JM, Lee EO, Lee HJ et al (2007) Identification of campesterol from Chrysanthemum coronarium L. and its antiangiogenic activities. Phytother Res 21(10):954–959

    Article  CAS  PubMed  Google Scholar 

  • Cunha A, Ferreira MF (1997) Differences in free sterols content and composition associated with somatic embryogenesis, shoot organogenesis and calli growth of flax. Plant Sci 124(1):97–105

    Article  CAS  Google Scholar 

  • Devaraj S, Jialal I, Rockwood J et al (2011) Effect of orange juice and beverage with phytosterols on cytokines and PAI-1 activity. Clin Nutr 30(5):668–671

    Article  CAS  PubMed  Google Scholar 

  • Doering T, Holtkötter O, Schlotmann K et al (2005) Cutaneous restructuration by apple seed phytosterols: from DNA chip analysis to morphological alterations. Int J Cosmet Sci 27(2):142–142

    Article  Google Scholar 

  • Dufourc EJ (2008) The role of phytosterols in plant adaptation to temperature. Plant Signal Behav 3(2):133–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Dyas L, Threlfall DR, Goad LJ (1994) The sterol composition of five plant species grown as cell suspension cultures. Phytochemistry 35(3):655–660

    Article  CAS  Google Scholar 

  • El-Dawayati MM, El-Sharabasy S, Gantait S (2020) Light intensity-induced morphogenetic response and enhanced β-Sitosterol accumulation in date palm (Phoenix dactylifera L. cv. Hayani) callus culture. Sugar Tech 22(6):1122–1129

    Article  CAS  Google Scholar 

  • Feng S, Belwal T, Li L et al (2020a) Phytosterols and their derivatives: potential health-promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Compr Rev Food Sci Food Saf 19(4):1243–1267

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Wang L, Belwal T et al (2020b) Phytosterols extraction from hickory (Carya cathayensis Sarg.) husk with a green direct citric acid hydrolysis extraction method. Food Chem 315:126217

    Article  CAS  PubMed  Google Scholar 

  • Fernandes P, Cabral J (2007) Phytosterols: applications and recovery methods. Bioresour Technol 98(12):2335–2350

    Article  CAS  PubMed  Google Scholar 

  • Fernandes-Ferreira M, Pais MS, Novais J (1992) The effects of medium composition on biomass, sterols and triterpenols production by in-vitro cultures of Euphorbia characias. Bioresour Technol 42(1):67–73

    Article  CAS  Google Scholar 

  • Flores-Sánchez IJ, Ortega-López J, Montes-Horcasitas MDC et al (2002) Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria tomentosa. Plant Cell Physiol 43(12):1502–1509

    Article  PubMed  Google Scholar 

  • García-Llatas G, Rodríguez-Estrada MT (2011) Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem Phys Lipids 164(6):607–624

    Article  PubMed  CAS  Google Scholar 

  • Jagannathan R, Patel SA, Ali MK et al (2019) Global updates on cardiovascular disease mortality trends and attribution of traditional risk factors. Curr Diab Rep 19(7):44

    Article  PubMed  Google Scholar 

  • Jaramillo-Madrid AC, Ashworth J, Fabris M et al (2019) Phytosterol biosynthesis and production by diatoms (Bacillariophyceae). Phytochemistry 163:46–57

    Article  CAS  PubMed  Google Scholar 

  • Jones PJ, Abumweis SS (2009) Phytosterols as functional food ingredients: linkages to cardiovascular disease and cancer. Curr Opin Clin Nutr Metab Care 12(2):147–151

    Article  CAS  PubMed  Google Scholar 

  • Jozwiak A, Ples M, Skorupinska-Tudek K et al (2013) Sugar availability modulates polyisoprenoid and phytosterol profiles in Arabidopsis thaliana hairy root culture. Biochim Biophys Acta Mol Cell Biol Lipids 1831(2):438–447

    Article  CAS  Google Scholar 

  • Khurshid R, Khan T, Zaeem A et al (2018) Biosynthesis of precious metabolites in callus cultures of Eclipta alba. Plant Cell Tissue Organ Cult 135(2):287–298

    Article  CAS  Google Scholar 

  • Kim OT, Kim SH, Ohyama K et al (2010) Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots overexpressed ginseng farnesyl diphosphate synthase. Plant Cell Rep 29(4):403–411

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-K, Kim JK, Kim YB et al (2013) Enhanced accumulation of phytosterol and triterpene in hairy root cultures of Platycodon grandiflorum by overexpression of Panax ginseng 3-hydroxy-3-methylglutaryl-coenzyme a reductase. J Agric Food Chem 61(8):1928–1934

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-K, Kim YB, Uddin MR et al (2014) Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. ACS Synth Biol 3(10):773–779

    Article  CAS  PubMed  Google Scholar 

  • Lagarda M, García-Llatas G, Farré R (2006) Analysis of phytosterols in foods. J Pharm Biomed Anal 41(5):1486–1496

    Article  CAS  PubMed  Google Scholar 

  • Lee M-H, Jeong J-H, Seo J-W et al (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45(8):976–984

    Article  CAS  PubMed  Google Scholar 

  • Mackay DS, Jones PJ (2011) Phytosterols in human nutrition: type, formulation, delivery, and physiological function. Eur J Lipid Sci Technol 113(12):1427–1432

    Article  CAS  Google Scholar 

  • Mangas S, Moyano E, Osuna L et al (2008) Triterpenoid saponin content and the expression level of some related genes in calli of Centella asiatica. Biotechnol Lett 30(10):1853

    Article  CAS  PubMed  Google Scholar 

  • Mccarthy FO, Chopra J, Ford A et al (2005) Synthesis, isolation and characterisation of β-sitosterol and β-sitosterol oxide derivatives. Org Biomol Chem 3(16):3059–3065

    Article  CAS  PubMed  Google Scholar 

  • Meyer W, Spiteller G (1997) Oxidized phytosterols increase by ageing in photoautotrophic cell cultures of Chenopodium rubrum. Phytochemistry 45(2):297–302

    Article  CAS  Google Scholar 

  • Miras-Moreno B, Sabater-Jara ABN, Pedreño M et al (2016) Bioactivity of phytosterols and their production in plant in vitro cultures. J Agric Food Chem 64(38):7049–7058

    Article  CAS  PubMed  Google Scholar 

  • Moreau RA, Nyström L, Whitaker BD et al (2018) Phytosterols and their derivatives: structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 70:35–61

    Article  CAS  PubMed  Google Scholar 

  • Mottaki Z, Rezayian M, Niknam V et al (2019) Using hairy roots for production of secondary metabolites in Artemisia. Plant Biotechnol Rep 13(3):263–271

    Article  Google Scholar 

  • Noakes M, Clifton P, Ntanios F et al (2002) An increase in dietary carotenoids when consuming plant sterols or stanols is effective in maintaining plasma carotenoid concentrations. Am J Clin Nutr 75(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Jager CE, Kitasaka Y et al (2004) Brassinosteroid deficiency due to truncated steroid 5α-reductase causes dwarfism in the lk mutant of pea. Plant Physiol 135(4):2220–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normén AL, Brants HA, Voorrips LE et al (2001) Plant sterol intakes and colorectal cancer risk in the Netherlands cohort study on diet and cancer. Am J Clin Nutr 74(1):141–148

    Article  PubMed  Google Scholar 

  • Ohyama K, Suzuki M, Kikuchi J et al (2009) Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis. Proc Natl Acad Sci 106(3):725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opitz S, Nes WD, Gershenzon J (2014) Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings. Phytochemistry 98:110–119

    Article  CAS  PubMed  Google Scholar 

  • Park C, Moon D-O, Rhu C-H et al (2007) β-Sitosterol induces anti-proliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol Pharm Bull 30(7):1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Patil KS, Bhalsing SR (2016) Effect of sugars on production of β-sitosterol from in vitro callus culture of Boerhaavia diffusa L. Acta Biol Szeged 60(2):99–104

    Google Scholar 

  • Piironen V, Lindsay DG, Miettinen TA et al (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80(7):939–966

    Article  CAS  Google Scholar 

  • Rocha M, Banuls C, Bellod L et al (2011) A review on the role of phytosterols: new insights into cardiovascular risk. Curr Pharm Des 17(36):4061–4075

    Article  CAS  PubMed  Google Scholar 

  • Rogowska A, Szakiel A (2020) The role of sterols in plant response to abiotic stress. Phytochem Rev 2020:1–14

    Google Scholar 

  • Rozner S, Garti N (2006) The activity and absorption relationship of cholesterol and phytosterols. Colloids Surf A Physicochem Eng Asp 282:435–456

    Article  CAS  Google Scholar 

  • Sabater-Jara AB, Pedreño MA (2013) Use of β-cyclodextrins to enhance phytosterol production in cell suspension cultures of carrot (Daucus carota L.). Plant Cell Tissue Organ Cult 114(2):249–258

    Article  CAS  Google Scholar 

  • Sabater-Jara AB, Almagro L, Belchí-Navarro S et al (2010) Induction of sesquiterpenes, phytoesterols and extracellular pathogenesis-related proteins in elicited cell cultures of Capsicum annuum. J Plant Physiol 167(15):1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Saiman MZ, Mustafa NR, Pomahočová B et al (2014) Analysis of metabolites in the terpenoid pathway of Catharanthus roseus cell suspensions. Plant Cell Tissue Organ Cult 117(2):225–239

    Article  CAS  Google Scholar 

  • Santas J, Codony R, Rafecas M (2013) Phytosterols: beneficial effects. In: Natural products. Springer, New York, pp 3437–3464

    Chapter  Google Scholar 

  • Seo J-W, Jeong J-H, Shin C-G et al (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66(8):869–877

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Nathawat R, Gour K et al (2011) Establishment of callus tissue and effect of growth regulators on enhanced sterol production in Cissus quadrangularis L. Int J Pharmacol 7(5):653–658

    Article  CAS  Google Scholar 

  • Śliż D, Marcinkiewicz A, Olejniczak D et al (2019) Hypercholesterolemia and prevention of cardiovascular diseases in the light of preventive medical examinations of employees in Poland. Int J Occup Med Environ Health 32(6):865–872

    Article  PubMed  Google Scholar 

  • Tolve R, Cela N, Condelli N et al (2020) Microencapsulation as a tool for the formulation of functional foods: the phytosterols’ case study. Foods 9(4):470

    Article  CAS  PubMed Central  Google Scholar 

  • Uddin MS, Sarker MZI, Ferdosh S et al (2015) Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review. J Sci Food Agric 95(7):1385–1394

    Article  CAS  PubMed  Google Scholar 

  • Valitova J, Sulkarnayeva A, Minibayeva F (2016) Plant sterols: diversity, biosynthesis, and physiological functions. Biochem Mosc 81(8):819–834

    Article  CAS  Google Scholar 

  • Verardo G, Gorassini A, Ricci D et al (2017) High triterpenic acids production in callus cultures from fruit pulp of two apple varieties. Phytochem Anal 28(1):5–15

    Article  CAS  PubMed  Google Scholar 

  • Vivancos M, Moreno JJ (2005) β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med 39(1):91–97

    Article  CAS  PubMed  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  PubMed  CAS  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2013) From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Mol Plant 6(6):1738–1757

    Article  CAS  PubMed  Google Scholar 

  • Woyengo T, Ramprasath V, Jones P (2009) Anticancer effects of phytosterols. Eur J Clin Nutr 63(7):813–820

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lin K, Li Y (2020) Highlights to phytosterols accumulation and equilibrium in plants: biosynthetic pathway and feedback regulation. Plant Physiol Biochem 155:637–649

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. Hegazy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hegazy, M.M., Al-Qahtani, W.H. (2022). In Vitro Production of Phytosterols. In: Belwal, T., Georgiev, M.I., Al-Khayri, J.M. (eds) Nutraceuticals Production from Plant Cell Factory. Springer, Singapore. https://doi.org/10.1007/978-981-16-8858-4_13

Download citation

Publish with us

Policies and ethics