Skip to main content

Composite Nanocoatings for Environmental Remediation

  • Reference work entry
  • First Online:
Handbook of Consumer Nanoproducts

Abstract

Nanocomposites are a promising class of hybrid materials that exhibit combinations of special property and possibilities of unique design. It may be of either metal-polymer, metal-metal oxide, metal-ceramic, ceramic-polymer, or mixtures of polymers with exceptional functional properties. Nanocomposite powders and coatings are used in various fields such as hard coatings, biomedical coatings and implants, sensors, aircraft manufacturing, and so on. In nanocomposite coatings, different materials are homogenously embedded with each other in a nanometer scale. This chapter deals about the nanocomposite coating, methods to produce nanocomposite coatings, their possible application in environmental monitoring, and remediation especially in air quality monitoring and water quality monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hussain CM, Mishra AK (2018) Nanotechnology in environmental science, vol 1. Wiley

    Google Scholar 

  2. Hussain CM (2018) Handbook of functionalized nanomaterials for industrial applications, First Edit. Elsevier

    Google Scholar 

  3. Hussain CM (2020) Handbook of nanomaterials for manufacturing applications, First Edit. Elsevier

    Google Scholar 

  4. Hussain C (2020) Handbook of polymer nanocomposites for industrial applications, First Edit. Elsevier

    Google Scholar 

  5. Mallakpour S, Azadi E, Mustansar Hussain C (2020) Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coord Chem Rev 419:213378. https://doi.org/10.1016/j.ccr.2020.213378

    Article  CAS  Google Scholar 

  6. Mallakpour S, Behranvand V (2018) Synthesis of mesoporous recycled poly(ethylene terephthalate)/MWNT/carbon quantum dot nanocomposite from sustainable materials using ultrasonic waves: application for methylene blue removal. J Clean Prod 190:525–537. https://doi.org/10.1016/j.jclepro.2018.04.120

    Article  CAS  Google Scholar 

  7. Mallakpour S, Behranvand V, Mallakpour F (2019) Synthesis of alginate/carbon nanotube/carbon dot/fluoroapatite/TiO2 beads for dye photocatalytic degradation under ultraviolet light. Carbohydr Polym 224:115138. https://doi.org/10.1016/j.carbpol.2019.115138

    Article  CAS  Google Scholar 

  8. Mallakpour S, Khadem E (2019) Linear and nonlinear behavior of crosslinked chitosan/N-doped graphene quantum dot nanocomposite films in cadmium cation uptake. Sci Total Environ 690:1245–1253. https://doi.org/10.1016/j.scitotenv.2019.06.431

    Article  CAS  Google Scholar 

  9. Mallakpour S, Khadem E (2019) Carbon nanotubes for heavy metals removal. In: Kyzas G, Mitrpoulos AC (eds) Compos. Nanoadsorbents. Elsevier, Amsterdam, pp 181–210

    Chapter  Google Scholar 

  10. Mallakpour S, Rashidimoghadam S (2019) Carbon nanotubes for dyes removal. In: Kyzas G, Mitrpoulos AC (eds) Compos. Nanoadsorbents. Elsevier, Amsterdam, pp 211–244

    Chapter  Google Scholar 

  11. Musil J (2012) Hard nanocomposite coatings: thermal stability , oxidation resistance and toughness. Surf Coat Technol 207:50–65. https://doi.org/10.1016/j.surfcoat.2012.05.073

    Article  CAS  Google Scholar 

  12. Argibay N, Prasad SV, Goeke RS, Dugger MT, Michael JR (2013) Wear resistant electrically conductive Au – ZnO nanocomposite coatings synthesized by e-beam evaporation. Wear 302:955–962. https://doi.org/10.1016/j.wear.2013.01.049

    Article  CAS  Google Scholar 

  13. Serbezov V (2013) Pulsed laser deposition : the road to hybrid nanocomposites coatings and pulsed laser deposition : the Road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique. Recent Pat Nanotechnol 7:26–40. https://doi.org/10.2174/187221013804484863

    Article  CAS  Google Scholar 

  14. Nedfors N, Tengstrand O, Flink A, Andersson AM, Eklund P, Hultman L, Jansson U (2014) Reactive sputtering of NbC x -based nanocomposite coatings: an up-scaling study. Surf Coat Technol 253:100–108. https://doi.org/10.1016/j.surfcoat.2014.05.021

    Article  CAS  Google Scholar 

  15. Nathanael AJ, Yuvakkumar R, Hong SI, Oh TH (2014) Novel zirconium nitride and hydroxyapatite nanocomposite coating: detailed analysis and functional properties. ACS Appl Mater Interfaces 6. https://doi.org/10.1021/am5023557

  16. Kuptsov KA, Sheveyko AN, Zamulaeva EI, Sidorenko DA, Shtansky DV (2019) Two-layer nanocomposite WC / a-C coatings produced by a combination of pulsed arc evaporation and electro-spark deposition in vacuum. Mater Des 167:107645. https://doi.org/10.1016/j.matdes.2019.107645

    Article  CAS  Google Scholar 

  17. E.V.R, Sergeev VP, Kalashnikov MP, Bozhko IA, Sergeev OV, Voronov AV, Fedorischeva MV (2017) Formation of optically transparent nanocomposite protective coatings on glass produced by ionic implantation and magnetron sputtering methods for space applications. J Phys Conf Ser 857:012038

    Article  Google Scholar 

  18. Al Meldrum B, Haglund RF, Boatner LA, White CW (2001) Nanocomposite materials formed by ion implantation. Adv Mater 13:1431–1444

    Article  CAS  Google Scholar 

  19. Porada OK, Ivashchenko VI, Ivashchenko LA, Kozak AO, Sytikov OO (2019) Plasma enhanced CVD equipment for deposition of nanocomposite nanolayered films. J Superhard Mater 41:32–37. https://doi.org/10.3103/S1063457619010040

    Article  Google Scholar 

  20. Abedi M, Abdollah-zadeh A, Vicenzo A, Bestetti M, Movassagh-alanagh F, Damerchi E (2019) A comparative study of the mechanical and tribological properties of PECVD single layer and compositionally graded TiSiCN coatings. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.07.100

  21. Peter B, Premkumar A, Dasgupta A, Kuppusami P, Parameswaran P, Mallika C, Nagaraja KS, Raghunathan VS (2006) Synthesis and characterization of Ni and Ni / CrN nanocomposite coatings by plasma assisted metal-organic CVD. Chem Vap Depos 12:39–45. https://doi.org/10.1002/cvde.200506415

    Article  CAS  Google Scholar 

  22. Xiao W, Jiang X (2004) Optical and mechanical properties of nanocrystalline aluminum oxynitride films prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition. J Cryst Growth 264:165–171. https://doi.org/10.1016/j.jcrysgro.2004.01.019

    Article  CAS  Google Scholar 

  23. Wang N, Gadgil B, Damlin P, Janáky C, Kvarnström C (2017) Electrochemical deposition of polyviologen-reduced graphene oxide nanocomposite thin films. Electrochim Acta 231:279–286. https://doi.org/10.1016/j.electacta.2017.02.065

    Article  CAS  Google Scholar 

  24. Rahmanabadi F, Sangpour P, Sabouri-Dodaran AA (2019) Electrochemical deposition of MnO2/RGO nanocomposite thin film: enhanced supercapacitor behavior. J Electron Mater 48:5813–5820. https://doi.org/10.1007/s11664-019-07361-w

    Article  CAS  Google Scholar 

  25. Gerasopoulos K, Chen X, Culver J, Wang C, Ghodssi R (2010) Self-assembled Ni/TiO2 nanocomposite anodes synthesized via electroless plating and atomic layer deposition on biological scaffolds. Chem Commun 46:7349–7351. https://doi.org/10.1039/c0cc01689f

    Article  CAS  Google Scholar 

  26. Sankara Narayanan TSN, Seshadri SK, Park IS, Lee MH (2016) Electroless nanocomposite coatings: synthesis, characteristics, and applications. In: Aliofkhazraei M, Makhlouf ASH (eds) Handbook nanoelectrochemistry electrochemical synthesis methods, properties, and characterization techniques. Springer, Cham, pp 1–23. https://doi.org/10.1007/978-3-319-15207-3_48-1

    Chapter  Google Scholar 

  27. Gan JA, Berndt CC (2014) Nanocomposite coatings : thermal spray processing , microstructure and performance. Int Mater Rev 60:195–244. https://doi.org/10.1179/1743280414Y.0000000048

    Article  CAS  Google Scholar 

  28. Lyasnikova AV, Grishina IP, Dudareva OA, Markelova OA, Lyasnikov VN (2018) A study of plasma-sprayed nanocomposite coatings based on magnesium-substituted tricalcium phosphate. Prot Met Phys Chem Surf 54:389–392. https://doi.org/10.1134/S2070205118030103

    Article  CAS  Google Scholar 

  29. Stewart DA, Shipway PH, Mccartney DG (1999) Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC – Co coatings. Wear 225–229:789–798

    Article  Google Scholar 

  30. Yu M, Li W (2018) Metal matrix composite coatings by cold spray. In: Cavaliere P (ed) Cold-spray coatings recent trends future perspect. Springer, Cham, pp 297–318. https://doi.org/10.1007/978-3-319-67183-3_10

    Chapter  Google Scholar 

  31. Kuroda S, Kawakita J, Watanabe M, Katanoda H (2008) Warm spraying — a novel coating process based on high-velocity impact of solid particles. Sci Technol Adv Mater 9:033002. https://doi.org/10.1088/1468-6996/9/3/033002

    Article  CAS  Google Scholar 

  32. Amiri S, Rahimi A (2016) Hybrid nanocomposite coating by sol--gel method: a review. Iran Polym J 25:559–577. https://doi.org/10.1007/s13726-016-0440-x

    Article  CAS  Google Scholar 

  33. Jiang P, McFarland MJ (2004) Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J Am Chem Soc 126:13778–13786. https://doi.org/10.1021/ja0470923

    Article  CAS  Google Scholar 

  34. Nathanael AJ, Im YM, Oh TH, Yuvakkumar R, Mangalaraj D (2015) Biomimetic hierarchical growth and self-assembly of hydroxyapatite/titania nanocomposite coatings and their biomedical applications. Appl Surf Sci 332:368–378. https://doi.org/10.1016/j.apsusc.2015.01.168

    Article  CAS  Google Scholar 

  35. Viswanathan V, Laha T, Balani K, Agarwal A, Seal S (2007) Challenges and advances in nanocomposite processing techniques. Mater Sci Eng R 54:121–285. https://doi.org/10.1016/j.mser.2006.11.002

    Article  CAS  Google Scholar 

  36. Su P, Peng Y (2014) Sensors and Actuators B : Chemical Fabrication of a room-temperature H 2 S gas sensor based on PPy / WO 3 nanocomposite films by in-situ photopolymerization. Sensors Actuators B 193:637–643

    Article  CAS  Google Scholar 

  37. Wang L, Yang Y, Dong L, Zhao Y, Zhao J, Sun D (2018) A simple graphene NH 3 gas sensor via laser direct writing. Sensor 18(4405):1–10. https://doi.org/10.3390/s18124405

    Article  CAS  Google Scholar 

  38. Yoo K, Kwon K, Min N, Jin M, Jin C (2009) Sensors and Actuators B : chemical Effects of O 2 plasma treatment on NH 3 sensing characteristics of multiwall carbon nanotube / polyaniline composite films. Sensors Actuators B 143:333–340. https://doi.org/10.1016/j.snb.2009.09.029

    Article  CAS  Google Scholar 

  39. Yan H, Guo Y, Lai S, Sun X, Niu Z (2016) Flexible room-temperature gas sensors of nanocomposite network-coated papers. Chem Sel 1:2816–2820. https://doi.org/10.1002/slct.201600648

    Article  CAS  Google Scholar 

  40. Mishra SK, Tripathi SN, Choudhary V, Gupta BD (2014) Sensors and Actuators B : Chemical SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA / reduced graphene oxide prepared by in situ polymerization. Sensors Actuators B Chem 199:190–200. https://doi.org/10.1016/j.snb.2014.03.109

    Article  CAS  Google Scholar 

  41. Penza M, Aversa P, Cassano G, Wlodarski W, Kalantar-zadeh K (2007) Layered SAW gas sensor with single-walled carbon nanotube-based nanocomposite coating. Sensors Actuators B 127:168–178. https://doi.org/10.1016/j.snb.2007.07.028

    Article  CAS  Google Scholar 

  42. Zhang D, Liu J, Jiang C, Li P (2017) Sensors and actuators B : chemical high-performance sulfur dioxide sensing properties of layer-by-layer self-assembled titania-modified graphene hybrid nanocomposite. Sensors Actuators B Chem 245:560–567. https://doi.org/10.1016/j.snb.2017.01.200

    Article  CAS  Google Scholar 

  43. Ge C, Xie C, Zeng D, Cai S (2007) Formaldehyde-, benzene-, and xylene-sensing characterizations of Zn–W–O nanocomposite ceramics. J Am Ceram Soc 3267:3263–3267. https://doi.org/10.1111/j.1551-2916.2007.01895.x

    Article  CAS  Google Scholar 

  44. Khoang ND, Trung DD, Van Duy N, Hoa ND, Van Hieu N (n.d.) Sensors and actuators B : chemical design of SnO 2 / ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sensors Actuators B Chem 174:594–601

    Google Scholar 

  45. De Girolamo A, Mauro D, Grimaldi AI, La Ferrara V, Massera E, Miglietta ML, Polichetti T, Di Francia G (2009) A simple optical model for the swelling evaluation in polymer nanocomposites. J Sens 2009:703203. (6 pages). https://doi.org/10.1155/2009/703206

    Article  CAS  Google Scholar 

  46. Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275. https://doi.org/10.1016/j.memsci.2014.11.019

    Article  CAS  Google Scholar 

  47. Daraei P, Siavash S, Salehi E, Ghaemi N, Sadeghi H, Ali M, Rostami E (2013) Novel thin film composite membrane fabricated by mixed matrix nanoclay / chitosan on PVDF microfiltration support : Preparation , characterization and performance in dye removal. J Membr Sci 436:97–108. https://doi.org/10.1016/j.memsci.2013.02.031

    Article  CAS  Google Scholar 

  48. Lannoy D, Jassby D, Gloe K, Gordon AD, Wiesner MR (2013) Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes. Environ Sci Technol 47:2760–2768. https://doi.org/10.1021/es3045168

    Article  CAS  Google Scholar 

  49. Chan W, Chen H, Surapathi A, Taylor MG, Shao X, Marand E, Al CET (2013) Zwitterion functionalized carbon nanotube / polyamide nanocomposite. ACS Nano 7:5308–5319. https://doi.org/10.1021/nn4011494

    Article  CAS  Google Scholar 

  50. Baroña GNB, Choi M, Jung B (2012) High permeate flux of PVA / PSf thin film composite nanofiltration membrane with aluminosilicate single-walled nanotubes. J Colloid Interface Sci 386:189–197. https://doi.org/10.1016/j.jcis.2012.07.049

    Article  CAS  Google Scholar 

  51. Alshabanat M (2019) Removal of heavy metal ions using polystyrene nanocomposite thin films. Egypt J Chem 62:149–156. https://doi.org/10.21608/EJCHEM.2018.4056.1354

    Article  Google Scholar 

  52. Chen Y, Ding Y, Zheng J (2020) A polymer nanocomposite coating with enhanced hydrophilicity, antibacterial and antibiofouling properties: role of polymerizable emulsifier/anionic ligand. Chem Eng J 379:122268. https://doi.org/10.1016/j.cej.2019.122268

    Article  CAS  Google Scholar 

  53. Kumar S, Ye F, Dobretsov S, Dutta J (2019) Chitosan nanocomposite coatings for food, paints, and water treatment applications. Appl Sci 9(2409):1–27

    Google Scholar 

  54. Al-naamani L, Dobretsov S, Dutta J, Burgess JG (2017) Chemosphere chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere 168:408–417. https://doi.org/10.1016/j.chemosphere.2016.10.033

    Article  CAS  Google Scholar 

  55. Njoku DI, Cui M, Xiao H, Shang B, Li Y (2017) Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier , active and self- healing functionalities : EIS and spectroscopic techniques. Sci Rep:1–15. https://doi.org/10.1038/s41598-017-15845-0

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nathanael, A.J., Kumar, P.S. (2022). Composite Nanocoatings for Environmental Remediation. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-16-8698-6_64

Download citation

Publish with us

Policies and ethics