Skip to main content

Metal Organic Frameworks Based Nanomaterial: Synthesis and Applications; Removal of Heavy Metal Ions from Waste Water

  • Chapter
  • First Online:
Metal Nanocomposites for Energy and Environmental Applications

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Heavy metals in the water are a global environmental issue. Heavy metals in the wastewater are increasing day by day which is mainly caused by various industrial effluents. Heavy metal ions including, Cadmium (II), Arsenic (III and V), Chromium (III and VI), Copper (II), Lead (II), and Mercury (II) are accumulated readily in the environment. It has been created a lot of serious problem to the human health. Thus, removal of heavy metals from the wastewater is one of the major challenges for the scientific community. Various techniques and materials have been developed for removal of heavy metals from the waste water. Recently, Metal organic frameworks (MOFs) based nanomaterial has been synthesized and used for removal of heavy metal ions from waste water. Electrochemical, photochemical energy conversion and storage, biomedical imaging, drug delivery and catalysis, have been investigated. Its unique characteristic properties are accountable for the waste water treatment like easily synthesizable, various size cavities with different-different functional group, surface functional groups, various functionality where host–guest interaction takes place and high surface area which responsible for high absorption capacity. In this chapter, the attention is given to understand the synthesis, chemistry of MOF based nano-composites and its various applications especially, and removal of heavy metals from waste water has been discussed. It is expected that this chapter can be helpful to understand the synthesis of MOF-based nano-materials and its application towards the elimination of heavy metal ions from waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarzadeh MJ, Hashemian S, Mokhtarian N (2020) J Environ Chem Eng 8:103703

    Google Scholar 

  • Bachman JE, Smith ZP, Li T, Xu T, Long JR (2016) Nat Mater 15:845

    Article  CAS  Google Scholar 

  • Bennett TD, Saines PJ, Keen DA, Tan JC, Cheetham AK (2013) Chem Eur J 19:7049–7055

    Article  CAS  Google Scholar 

  • Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA (2007) Am J Roentgenol 188:586–592

    Article  Google Scholar 

  • Cai W, Chu C-C, Liu G, WĂ¡ng Y-XJ (2015) Small 11:4806–4822

    Article  CAS  Google Scholar 

  • Cai X, Xie Z, Pang M, Lin J (2019a) Cryst Growth Des 19:556–561

    Article  CAS  Google Scholar 

  • Cai X, Xie Z, Ding B, Shao S, Liang S, Pang M, Lin J (2019b) Adv Sci 6:1900848

    Article  Google Scholar 

  • Cai G, Ding M, Wu Q, Jiang H-L (2020) Natl Sci Rev 7:37–45

    Article  CAS  Google Scholar 

  • Chapman KW, Sava DF, Halder GJ, Chupas PJ, Nenoff TM (2011) J Am Chem Soc 133:18583–18585

    Article  CAS  Google Scholar 

  • Chen JF, Ru Q, Mo YD, Hu SJ, Hou XH (2016) Phys Chem Chem Phys 18:18949–18957

    Article  CAS  Google Scholar 

  • Chen T-Y, Huang Y-J, Li C-T, Kung C-W, Vittal R, Ho K-C (2017) Nano Energy 32:19–27

    Article  CAS  Google Scholar 

  • Corma A, GarcĂ­a H, LlabrĂ©s i Xamena FX (2010) Chem Rev 110:4606–4655

    Google Scholar 

  • Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Science 327:846–850

    Article  CAS  Google Scholar 

  • Ding M, Cai X, Jiang H-L (2019) Chem Sci 10:10209–10230

    Article  CAS  Google Scholar 

  • Downes CA, Marinescu SC (2017) Chemsuschem 10:4374–4392

    Article  CAS  Google Scholar 

  • Duan YX, Meng FL, Liu KH, Yi SS, Li SJ, Yan JM, Jiang Q (2018) Adv Mater 30:1706194

    Article  Google Scholar 

  • Dutta S, Kim J, Hsieh PH, Hsu YS, Kaneti YV, Shieh FK, Yamauchi Y, Wu KCW (2019) Small Methods 3:1900213

    Article  CAS  Google Scholar 

  • Esrafili L, Safarifard V, Tahmasebi E, Esrafili M, Morsali A (2018) New J Chem 42:8864–8873

    Article  CAS  Google Scholar 

  • Fan JM, Chen JJ, Zhang Q, Chen BB, Zang J, Zheng MS, Dong QF (2015) Chem Sus Chem 8:1856–1861

    Article  CAS  Google Scholar 

  • Fan W, Liu X, Cheng Y, Qin Y, Yang S, Lu Z, Liu Y, Cao Q, Zheng L (2020) Sep Purif Technol 239:116559

    Google Scholar 

  • Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) Science 341:1230444

    Article  Google Scholar 

  • Ganguli AK, Ganguly A, Vaidya S (2010) Chem Soc Rev 39:474–485

    Article  CAS  Google Scholar 

  • Gu Y, Huang M, Zhang W, Pearson MA, Johnson JA (2019) Angew Chem Int Ed 58:16676–16681

    Article  CAS  Google Scholar 

  • He Y, Wang Y, Yang X, Xie S, Yuan R, Chai Y (2016) ACS Appl Mater Interfaces 8:7683–7690

    Article  CAS  Google Scholar 

  • He T, Xu X, Ni B, Wang H, Long Y, Hu W, Wang X (2017a) Nanoscale 9:19209–19215

    Article  CAS  Google Scholar 

  • He L, Brasino M, Mao C et al (2017b) Small 13(24):1700504

    Article  Google Scholar 

  • He J, Xu J, Yin J, Li N, Bu X-H (2019) Sci China Mater 62:1655–1678

    Article  CAS  Google Scholar 

  • Hong RY, Pan TT, Li HZJ (2006) Magn Mater 303:60–68

    Article  CAS  Google Scholar 

  • Horcajada P, Serre C, Vallet-RegĂ­ M, Sebban M, Taulelle F, FĂ©rey G (2006) Angew Chem Int Ed 45:5974–5978

    Article  CAS  Google Scholar 

  • Hu Z, Deibert BJ, Li J (2014) Chem Soc Rev 43:5815–5840

    Article  CAS  Google Scholar 

  • Huang R-W, Wei Y-S, Dong X-Y, Wu X-H, Du C-X, Zang S-Q, Mak TC (2017a) Nat Chem 9:689

    Article  CAS  Google Scholar 

  • Huang Y-B, Liang J, Wang X-S, Cao R (2017b) Chem Soc Rev 46:126–157

    Article  CAS  Google Scholar 

  • Huang N, Zhai L, Xu H, Jiang D (2017c) J Am Chem Soc 139:2428–2434

    Article  CAS  Google Scholar 

  • Jiao L, Jiang H-L (2019) Chem 5:786–804

    Article  CAS  Google Scholar 

  • Jiao L, Wang Y, Jiang HL, Xu Q (2018) Adv Mater 30:1703663

    Article  Google Scholar 

  • Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang H-L (2019) Mater Today 27:43–68

    Article  CAS  Google Scholar 

  • Kan J-L, Jiang Y, Xue A, Yu Y-H, Wang Q, Zhou Y, Dong Y-B (2018) Inorg Chem 57:5420–5428

    Article  CAS  Google Scholar 

  • Kaneti YV, Dutta S, Hossain MS, Shiddiky MJ, Tung KL, Shieh FK, Tsung CK, Wu KCW, Yamauchi Y (2017) Adv Mater 29:1700213

    Article  Google Scholar 

  • Karmakar A, Pombeiro AJ (2019) Coord Chem Rev 395:86–129

    Article  CAS  Google Scholar 

  • Kiyonaga T, Higuchi M, Kajiwara T, Takashima Y, Duan J, Nagashima K, Kitagawa S (2015) Chem Commun 51:2728–2730

    Article  CAS  Google Scholar 

  • Krause S, Bon V, Senkovska I, Stoeck U, Wallacher D, Többens DM, Zander S, Pillai RS, Maurin G, Coudert F-X, Kaskel S (2016) Nature 532:348–352

    Article  CAS  Google Scholar 

  • Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2011) Chem Rev 112:1105–1125

    Article  Google Scholar 

  • Kundu T, Mitra S, Diaz Diaz D, Banerjee R (2016) ChemPlusChem 81:728–732

    Google Scholar 

  • Lan G, Ni K, Xu Z et al (2018) J Am Chem Soc 140(17):5670–5673

    Article  CAS  Google Scholar 

  • LĂ¡zaro IA, Forgan RS (2019) Coord Chem Rev 380:230–259

    Article  Google Scholar 

  • Lee H-C, Heil T, Sun J-K, Schmidt BVKJ (2019) Mater Horiz 6:802–809

    Article  CAS  Google Scholar 

  • Li P, Klet RC, Moon S-Y, Wang TC, Deria P, Peters AW, Klahr BM, Park H-J, Al-Juaid SS, Hupp JT, Farha OK (2015) Chem Commun 51:10925–10928

    Article  CAS  Google Scholar 

  • Li B, Wen HM, Cui Y, Zhou W, Qian G, Chen B (2016a) Adv Mater 28:8819–8860

    Article  CAS  Google Scholar 

  • Li J, Wang Q, Guo Z, Ma H, Zhang Y, Wang B, Bin D, Wei Q (2016b) Sci Rep 6:23558

    Article  CAS  Google Scholar 

  • Li P, Moon S-Y, Guelta MA, Lin L, GĂ³mez-GualdrĂ³n DA, Snurr RQ, Harvey SP, Hupp JT, Farha OK (2016c) ACS Nano 10:9174–9182

    Article  CAS  Google Scholar 

  • Li P, Cheng F-F, Xiong W-W, Zhang Q (2018a) Inorg Chem Front 5:2693–2708

    Article  CAS  Google Scholar 

  • Li G, Zhao S, Zhang Y, Tang Z (2018b) Adv Mater 30:1800702

    Article  Google Scholar 

  • Li D, Xu H-Q, Jiao L, Jiang H-L (2019) EnergyChem 1:100005

    Google Scholar 

  • Li H, Li L, Lin R-B, Zhou W, Xiang S, Chen B, Zhang Z (2019) EnergyChem 1:100006

    Google Scholar 

  • Li X, Yang X, Xue H, Pang H, Xu Q (2020) EnergyChem 2:100027

    Google Scholar 

  • Liang L, Liu L, Jiang F, Liu C, Yuan D, Chen Q, Wu D, Jiang HL, Hong M (2018) Inorg Chem 57(9):4891–4897

    Article  CAS  Google Scholar 

  • Liang Z, Zhao R, Qiu T, Zou R, Xu Q (2019) EnergyChem 1:100001

    Google Scholar 

  • Liao Y-T, Matsagar BM, Wu KC-W (2018) ACS Sustain Chem Eng 6:13628–13643

    Article  CAS  Google Scholar 

  • Lismont M, Dreesen L, Wuttke S (2017) Adv Funct Mater 27:1606314

    Article  Google Scholar 

  • Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y (2014) Chem Soc Rev 43:6011–6061

    Article  CAS  Google Scholar 

  • Liu C-H, Guan Q-L, Yang X-D, Bai F-Y, Sun L-X, Xing Y-H (2020) Inorg Chem 59:8081–8098

    Article  CAS  Google Scholar 

  • Long JR, Yaghi OM (2009) Chem Soc Rev 38:1213–1214

    Article  CAS  Google Scholar 

  • Lu K, He C, Lin W (2014) J Am Chem Soc 136:16712–16715

    Article  CAS  Google Scholar 

  • Lu K, Aung T, Guo N, Weichselbaum R, Lin W (2018) Adv Mater 30:1707634

    Article  Google Scholar 

  • Luo Y-H, Dong L-Z, Liu J, Li S-L, Lan Y-Q (2019) Coord Chem Rev 390:86–126

    Article  CAS  Google Scholar 

  • Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK (2017) Chem Soc Rev 46:3242–3285

    Article  CAS  Google Scholar 

  • Mahmoud ME, Amira MF, Seleim SM, Mohamed AK (2020) J Hazard Mater 381:120979

    Google Scholar 

  • Nishiyabu R, Hashimoto N, Cho T, Watanabe K, Yasunaga T, Endo A, Kaneko K, Niidome T, Murata M, Adachi C (2009) J Am Chem Soc 131:2151–2158

    Article  CAS  Google Scholar 

  • Orellana-Tavra C, Baxter EF, Tian T, Bennett TD, Slater NKH, Cheetham AK, Fairen-Jimenez D (2015) Chem Commun 51:13878–13881

    Article  CAS  Google Scholar 

  • Park J, Jiang Q, Feng D, Zhou HC (2016) Angew Chem Int Ed 55:7188–7193

    Article  CAS  Google Scholar 

  • Qi Y, Luan Y, Yu J, Peng X, Wang G (2015) Chem Eur J 21:1589–1597

    Article  CAS  Google Scholar 

  • Qin L, Sun Z-Y, Cheng K, Liu S-W, Pang J-X, Xia L-M, Chen W-H, Cheng Z, Chen J-X (2017) ACS Appl Mater Interfaces 9:41378–41386

    Article  CAS  Google Scholar 

  • Qin Z-S, Dong W-W, Zhao J, Wu Y-P, Zhang Q, Li D-S (2018) Inorg Chem Front 5:120–126

    Article  CAS  Google Scholar 

  • Qu K, Wang J, Ren J, Qu X (2013) Chem Eur J 19:7243–7249

    Google Scholar 

  • Qu QT, Yun JJ, Wan ZM, Zheng HY, Gao T, Shen M, Shao J, Zheng HH (2014) RSC Adv 4:64692–64697

    Article  CAS  Google Scholar 

  • Rapti S, Sarma D, Diamantis SA, Skliri E, Armatas GS, Tsipis AC, Hassan YS, Alkordi M, Malliakas CD, Kanatzidis MG, Lazarides T, Plakatouras JC, Manos MJ (2017) J Mater Chem A 5:14707–14719

    Article  CAS  Google Scholar 

  • Rath BB, Vittal JJ (2020) Inorg Chem 59:8818–8826

    Article  CAS  Google Scholar 

  • Rieter WJ, Taylor KM, An H, Lin W, Lin W (2006) J Am Chem Soc 128:9024–9025

    Article  CAS  Google Scholar 

  • Rocha J, Carlos LD, Paz FAA, Ananias D (2011) Chem Soc Rev 40:926–940

    Article  CAS  Google Scholar 

  • Rogge SMJ, Bavykina A, Hajek J, Garcia H, Olivos-Suarez AI, SepĂºlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez EV, LlabrĂ©s i Xamena FX, Van Speybroeck V (2017) J Gascon Chem Soc Rev 46:3134–3184

    Google Scholar 

  • Rowe MD, Thamm DH, Kraft SL, Boyes SG (2009) Biomacromol 10:983–993

    Article  CAS  Google Scholar 

  • Shayegan H, Farahani YD, Safarifard V (2019) J Solid State Chem 279:120968

    Google Scholar 

  • Shieh F-K, Wang S-C, Yen C-I, Wu C-C, Dutta S, Chou L-Y, Morabito JV, Hu P, Hsu M-H, Wu KC-W (2015) J Am Chem Soc 137:4276–4279

    Article  CAS  Google Scholar 

  • Sun X, Gao G, Yan D, Feng C (2017) Appl Surf Sci 405:52–59

    Article  CAS  Google Scholar 

  • Taylor KM, Rieter WJ, Lin W (2008a) J Am Chem Soc 130:14358–14359

    Article  CAS  Google Scholar 

  • Taylor KM, Jin A, Lin W (2008b) Angew Chem Int Ed 47:7722–7725

    Article  CAS  Google Scholar 

  • Thunus L, Lejeune R (1999) Coord Chem Rev 184:125–155

    Article  Google Scholar 

  • Tian C, Zhu L, Lin F, Boyes SG, Appl ACS (2015) Mater Interfaces 7:17765–17775

    Article  CAS  Google Scholar 

  • Tsuruoka T, Furukawa S, Takashima Y, Yoshida K, Isoda S, Kitagawa S (2009) Angew Chem Int Ed 48:4739–4743

    Article  CAS  Google Scholar 

  • Vaucher S, Li M, Mann S (2000) Angew Chem Int Ed 39:1793–1796

    Article  CAS  Google Scholar 

  • Wang H-S (2017) Coord Chem Rev 349:139–155

    Article  CAS  Google Scholar 

  • Wang Y, Zhao D (2017) Cryst Growth Des 17:2291–2308

    Article  CAS  Google Scholar 

  • Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) J Am Chem Soc 137:4920–4923

    Article  CAS  Google Scholar 

  • Wang H, Zhu Q-L, Zou R, Xu Q (2017) Chem 2:52–80

    Article  CAS  Google Scholar 

  • Wang XG, Cheng Q, Yu Y, Zhang XZ (2018a) Angew Chem Int Ed 57:7836–7840

    Article  CAS  Google Scholar 

  • Wang H-N, Zhang M, Zhang A-M, Shen F-C, Wang X-K, Sun S-N, Chen Y-J, Lan Y-Q (2018b) ACS Appl Mater Interfaces 10:32265–32270

    Article  CAS  Google Scholar 

  • Wang X, Liu W, Fu H, Yi XH, Wang P, Zhao C, Wang CC, Zheng W (2019) Environ Pollut 249:502–511

    Article  CAS  Google Scholar 

  • Wang K-B, Xun Q, Zhang Q (2020) EnergyChem 2:100025

    Google Scholar 

  • Wang C, He C, Luo YH, Su S, Wang JY, Hong DL, He XT, Chen C, Sun BW (2020) Chem Eng J 379:122337

    Google Scholar 

  • Wen P, Gong P, Sun J, Wang J, Yang S (2015) J. Mater. Chem. A 3:13874–13883

    Article  CAS  Google Scholar 

  • Wu MX, Yang YW (2017) Adv Mater 29:1606134

    Article  Google Scholar 

  • Wu Y-P, Wu X-Q, Wang J-F, Zhao J, Dong W-W, Li D-S, Zhang Q-C (2016) Cryst Growth Des 16:2309–2316

    Article  CAS  Google Scholar 

  • Wu Z, Xie J, Xu ZJ, Zhang S, Zhang Q (2019) J Mater Chem A 7:4259–4290

    Article  CAS  Google Scholar 

  • Xiao JD, Shang Q, Xiong Y, Zhang Q, Luo Y, Yu SH, Jiang HL (2016) Angew Chem Int Ed 55:9389–9393

    Article  CAS  Google Scholar 

  • Xu GW, Wu YP, Dong WW, Zhao J, Wu XQ, Li DS, Zhang Q (2017) Small 13:1602996

    Article  Google Scholar 

  • Xu C, Bi C, Zhu Z, Luo R, Zhang X, Zhang D, Fan C, Cui L, Fan Y (2019) Cryst Eng Comm 21:2333–2344

    Article  CAS  Google Scholar 

  • Yamini Y, Safari M, Morsali A, Safarifard V (2018) J Chromatogr A 1570:38–46

    Article  CAS  Google Scholar 

  • Yang Q, Xu Q, Jiang H-L (2017) Chem Soc Rev 46:4774–4808

    Article  CAS  Google Scholar 

  • Yi FY, Zhang R, Wang H, Chen LF, Han L, Jiang H-L, Xu Q (2017) Small Methods 1:1700187

    Article  Google Scholar 

  • Zhang L, Liu H, Shi W, Cheng P (2019a) Coord Chem Rev 388:293–309

    Article  CAS  Google Scholar 

  • Zhang T, Wang J, Zhang W, Yang C, Zhang L, Zhu W, Sun J, Li G, Li T, Wang J (2019b) J Mater Chem A 7:2845–2854

    Article  CAS  Google Scholar 

  • Zhao M, Ou S, Wu C-D (2014) Acc Chem Res 47:1199–1207

    Article  CAS  Google Scholar 

  • Zhao X, Wang Y, Li D-S, Bu X, Feng P (2018) Adv Mater 30:1705189

    Article  Google Scholar 

  • Zhao J, Liu X, Wu Y, Li D-S, Zhang Q (2019) Coord Chem Rev 391:30–43

    Article  CAS  Google Scholar 

  • Zhou X-P, Xu Z, Zeller M, Hunter AD (2009) Chem Commun 34:5439−5441

    Google Scholar 

  • Zhou H-C, Long JR, Yaghi OM (2012) Chem Rev 112:673–674

    Article  CAS  Google Scholar 

  • Zhu H, Yuan J, Tan X, Zhang W, Fang M, Wang X (2019) Environ Sci Nano 6:261–272

    Article  CAS  Google Scholar 

  • Zhu Q-Q, Zhou Q-S, Zhang H-W, Zhang W-W, Lu D-Q, Guo M-T, Yuan Y, Sun F, He H (2020) Inorg Chem 59:1323–1331

    Article  CAS  Google Scholar 

  • Zou M, Zhao Y, Ding B, Jiang F, Chen Y, Ma P, Lin J (2021) Inorg Chem Front 8:2624

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Khangarot, R.K., Singh, A.K., Kumar, K. (2022). Metal Organic Frameworks Based Nanomaterial: Synthesis and Applications; Removal of Heavy Metal Ions from Waste Water. In: Singh, S.P., Agarwal, A.K., Kumar, K., Srivastav, S.K. (eds) Metal Nanocomposites for Energy and Environmental Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-8599-6_16

Download citation

Publish with us

Policies and ethics