Skip to main content

Overview of Robotics in Total Knee Arthroplasty

  • Chapter
  • First Online:
Knee Arthroplasty

Abstract

Robotic-assisted Total Knee Arthroplasty (RATKA) has developed over the last three decades aiming to improve functional outcomes, patient satisfaction and implant survivorship by augmenting the accuracy of implant positioning and alignment over conventional jig-based arthroplasty. This is achieved by enhancing the accuracy of femoral and tibial bone cuts, to best restore a patient’s knee kinematics and soft tissue balance. A number of robotic systems exist, which operate differently and should be considered on their individual merits. This chapter explores the MAKO Robotic-Arm (Stryker Ltd., Kalamazoo, MI, USA), which is a semi-active robotic arm with a sawblade which acts within stereotactic boundaries as pre-defined in the pre-operative plan. There are five distinct steps involved in RATKA, with an associated learning curve. RATKA has shown to reduce periarticular soft tissue trauma, leading to reduced post-operative pain, earlier rehabilitation and improved early functional outcomes. These early advantages are yet to show improvements in long-term outcomes, which will become more apparent as the technology develops. There are substantial setup costs which cannot be overlooked, but is hoped will be recouped through improved outcomes in the long-term. Although questions remain, it is clear that robotic technology is the beginning of a revolution in total knee arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haddad FS. What is the optimal level of expectation? Bone Joint J. 2017;99-B:1121–2.

    Article  CAS  PubMed  Google Scholar 

  2. National Joint Registry: National Joint Registry for England, Wales and Northern Ireland; 16th Annual Report, 2019.

    Google Scholar 

  3. Scott CEH, Turnbull GS, MacDonald D, Breusch SJ. Activity levels and return to work following total knee arthroplasty in patients under 65 years of age. Bone Joint J. 2017;99-B:1037–46.

    Article  CAS  PubMed  Google Scholar 

  4. Luna IE, Kehlet H, Peterson B, Wede HR, Hoevsgaard SJ, Aasvang EK. Early patient-reported outcomes versus objective function after total hip and knee arthroplasty: a prospective cohort study. Bone Joint J. 2017;99-B:1167–75.

    Article  CAS  PubMed  Google Scholar 

  5. Pinsornsak P, Nangnual S, Boontanapibul K. Multimodal infiltration of local anaesthetic in total knee arthroplasty; is posterior capsular infiltration worth the risk?: a prospective, double-blind, randomised controlled trial. Bone Joint J. 2017;99-B:483–8.

    Article  CAS  PubMed  Google Scholar 

  6. Lee G-C. Patient-specific cutting blocks: of unproven value. Bone Joint J. 2016;98-B:78–80.

    Article  PubMed  Google Scholar 

  7. Chen JY, Lo NN, Chong HC, Bin Abd Razak HR, Pang HN, Tay DKJ, Chia SL, Yeo SJ. The influence of body mass index on functional outcome and quality of life after total knee arthroplasty. Bone Joint J. 2016:98-B, 780–785.

    Google Scholar 

  8. Ahmed I, Salmon LJ, Waller A, Watanabe H, Roe JP, Pinczewski LA. Total knee arthroplasty with an oxidised zirconium femoral component: ten-year survivorship analysis. Bone Joint J. 2016;98-B:58–64.

    Article  CAS  PubMed  Google Scholar 

  9. Khan M, Osman K, Green G, Haddad FS. The epidemiology of failure in total knee arthroplasty: avoiding your next revision. Bone Joint J. 2016;98-B:105–12.

    Article  CAS  PubMed  Google Scholar 

  10. Dunbar MJ, Haddad FS. Patient satisfaction after total knee replacement: new inroads. Bone Joint J. 2014;96-B:1285–6.

    Article  CAS  PubMed  Google Scholar 

  11. Devers BN, Conditt MA, Jamieson ML, Driscoll MD, Noble PC, Parsley BS. Does greater knee flexion increase patient function and satisfaction after total knee arthroplasty? J Arthroplast. 2011;26:178–86.

    Article  Google Scholar 

  12. Abdel MP, Ledford CK, Kobic A, Taunton MJ, Hanssen AD. Contemporary failure aetiologies of the primary, posterior-stabilised total knee arthroplasty. Bone Joint J. 2017;99-B:647–52.

    Article  CAS  PubMed  Google Scholar 

  13. Vince K. Mid-flexion instability after total knee arthroplasty: woolly thinking or a real concern? Bone Joint J. 2016;98-B:84–8.

    Article  CAS  PubMed  Google Scholar 

  14. Kutzner I, Bender A, Dymke J, Duda G, von Roth P, Bergmann G. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment. Bone Joint J. 2017;99-B:779–87.

    Article  CAS  PubMed  Google Scholar 

  15. Haddad FS. Evolving techniques: the need for better technology. Bone Joint J. 2017;99-B:145–6.

    Article  CAS  PubMed  Google Scholar 

  16. Scott CEH, Oliver WM, MacDonald D, Wade FA, Moran M, Breusch SJ. Predicting dissatisfaction following total knee arthroplasty in patients under 55 years of age. Bone Joint J. 2016;98-B:1625–34.

    Article  CAS  PubMed  Google Scholar 

  17. Haddad FS, Horriat S. Robotic and other enhanced technologies: are we prepared for such innovation? Bone Joint J. 2019;101-B:1469–71.

    Article  PubMed  Google Scholar 

  18. Jakopec M, Harris SJ, Rodriguez y Baena F, Gomes P, Cobb J, Davies BL. The first clinical application of a “hands-on” robotic knee surgery system. Comput Aided Surg. 2001;6:329–39.

    Article  CAS  PubMed  Google Scholar 

  19. Haddad FS. Robotic surgery: edge of tomorrow? Bone Joint J. 2015;97(B):289–90.

    Article  PubMed  Google Scholar 

  20. Haddad FS. Enhanced technologies, to the fore in 2020. Bone Joint J. 2020;102(B):1–2.

    Article  PubMed  Google Scholar 

  21. Oussedik S, Abdel MP, Victor J, Pagnano MW, Haddad FS. Alignment in total knee arthroplasty: what’s in a name? Bone Joint J. 2020;102(B):276–9.

    Article  PubMed  Google Scholar 

  22. Oussedik S, Abdel MP, Cross MB, Haddad FS. Alignment and fixation in total knee arthroplasty: changing paradigms. Bone Joint J. 2015;97(B):16–9.

    Article  PubMed  Google Scholar 

  23. Hood B, Blum L, Holcombe SA, Wang SC, Urquhart AG, Goulet JA, Maratt JD. Variation in optimal sagittal alignment of the femoral component in total knee arthroplasty. Orthopedics. 2017;40:102–6.

    Article  PubMed  Google Scholar 

  24. Almaawi AM, Hutt JRB, Masse V, Lavigne M, Vendittoli P-A. The impact of mechanical and restricted kinematic alignment on knee anatomy in total knee arthroplasty. J Arthroplast. 2017;32:2133–40.

    Article  Google Scholar 

  25. Bellemans J, Colyn W, Vandenneucker H, Victor J. The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res. 2012;470:45–53.

    Article  PubMed  Google Scholar 

  26. Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG. The axes of rotation of the knee. Clin Orthop Relat Res. 1993:259–68.

    Google Scholar 

  27. Kayani B, Konan S, Horriat S, Ibrahim MS, Haddad FS. Posterior cruciate ligament resection in total knee arthroplasty: the effect on flexion-extension gaps, mediolateral laxity, and fixed flexion deformity. Bone Joint J. 2019;101(B):1230–7.

    Article  PubMed  Google Scholar 

  28. Kayani B, Haddad FS. Robotic total knee arthroplasty: clinical outcomes and directions for future research. Bone Joint Res. 2019;8:438–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kayani B, Konan S, Tahmassebi J, Oussedik S, Moriarty PD, Haddad FS. A prospective double-blinded randomised control trial comparing robotic arm-assisted functionally aligned total knee arthroplasty versus robotic arm-assisted mechanically aligned total knee arthroplasty. Trials. 2020;21:194.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kayani B, Konan S, Pietrzak JRT, Haddad FS. Iatrogenic bone and soft tissue trauma in robotic-arm assisted total knee arthroplasty compared with conventional jig-based total knee arthroplasty: a prospective cohort study and validation of a new classification system. J Arthroplast. 2018;33:2496–501.

    Article  Google Scholar 

  31. Bautista M, Manrique J, Hozack WJ. Robotics in total knee arthroplasty. J Knee Surg. 2019;32:600–6.

    Article  PubMed  Google Scholar 

  32. Liow MHL, Chin PL, Pang HN, Tay DK-J, Yeo S-J. THINK surgical TSolution-One® (Robodoc) total knee arthroplasty. SICOT J. 2017;3:63.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lang JE, Mannava S, Floyd AJ, Goddard MS, Smith BP, Mofidi A, Seyler TM, Jinnah RH. Robotic systems in orthopaedic surgery. J Bone Joint Surg Br. 2011;93:1296–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kazarian GS, Lawrie CM, Barrack TN, Donaldson MJ, Miller GM, Haddad FS, Barrack RL. The impact of surgeon volume and training status on implant alignment in total knee arthroplasty. J Bone Joint Surg Am. 2019;101:1713–23.

    Article  PubMed  Google Scholar 

  35. Kayani B, Konan S, Huq SS, Tahmassebi J, Haddad FS. Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sports Traumatol Arthrosc. 2019;27:1132–41.

    Article  PubMed  Google Scholar 

  36. Sodhi N, Khlopas A, Piuzzi NS, Sultan AA, Marchand RC, Malkani AL, Mont MA. The learning curve associated with robotic total knee arthroplasty. J Knee Surg. 2018;31:17–21.

    Article  PubMed  Google Scholar 

  37. Siebert W, Mai S, Kober R, Heeckt PF. Technique and first clinical results of robot-assisted total knee replacement. Knee. 2002;9:173–80.

    Article  PubMed  Google Scholar 

  38. Vermue H, Lambrechts J, Tampere T, Arnout N, Auvinet E, Victor J. How should we evaluate robotics in the operating theatre? Bone Joint J. 2020;102(B):407–13.

    Article  PubMed  Google Scholar 

  39. Grau L, Lingamfelter M, Ponzio D, Post Z, Ong A, Le D, Orozco F. Robotic arm assisted total knee arthroplasty workflow optimization, operative times and learning curve. Arthroplasty Today. 2019;5:465–70.

    Article  PubMed  PubMed Central  Google Scholar 

  40. van der List JP, Chawla H, Joskowicz L, Pearle AD. Current state of computer navigation and robotics in unicompartmental and total knee arthroplasty: a systematic review with meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2016;24:3482–95.

    Article  PubMed  Google Scholar 

  41. Kayani B, Konan S, Ayuob A, Onochie E, Al-Jabri T, Haddad FS. Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Rev. 2019;4:611–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Song E-K, Seon J-K, Yim J-H, Netravali NA, Bargar WL. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res. 2013;471:118–26.

    Article  PubMed  Google Scholar 

  43. Bellemans J, Vandenneucker H, Vanlauwe J. Robot-assisted total knee arthroplasty. Clin Orthop Relat Res. 2007;464:111–6.

    Article  PubMed  Google Scholar 

  44. Liow MHL, Xia Z, Wong MK, Tay KJ, Yeo SJ, Chin PL. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. J Arthroplasty. 2014;29:2373–7.

    Article  PubMed  Google Scholar 

  45. Lonner JH, Fillingham YA. Pros and cons: a balanced view of robotics in knee arthroplasty. J Arthroplast. 2018;33:2007–13.

    Article  Google Scholar 

  46. Huang T, Long Y, George D, Wang W. Meta-analysis of gap balancing versus measured resection techniques in total knee arthroplasty. Bone Joint J. 2017;99(B):151–8.

    Article  PubMed  Google Scholar 

  47. Dalury DF. Cementless total knee arthroplasty: current concepts review. Bone Joint J. 2016;98(B):867–73.

    Article  PubMed  Google Scholar 

  48. Mullaji AB, Shetty GM. Correcting deformity in total knee arthroplasty: techniques to avoid the release of collateral ligaments in severely deformed knees. Bone Joint J. 2016;98(B):101–4.

    Article  PubMed  Google Scholar 

  49. Allen MM, Pagnano MW. Neutral mechanical alignment: is it necessary? Bone Joint J. 2016;98(B):81–3.

    Article  PubMed  Google Scholar 

  50. Petrie JR, Haidukewych GJ. Instability in total knee arthroplasty: assessment and solutions. Bone Joint J. 2016;98(B):116–9.

    Article  PubMed  Google Scholar 

  51. Kayani B, Konan S, Tahmassebi J, Rowan FE, Haddad FS. An assessment of early functional rehabilitation and hospital discharge in conventional versus robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study. Bone Joint J. 2019;101(B):24–33.

    Article  PubMed  Google Scholar 

  52. Khlopas A, Chughtai M, Hampp EL, et al. Robotic-arm assisted Total knee arthroplasty demonstrated soft tissue protection. Surg Technol Int. 2017;30:441–6.

    PubMed  Google Scholar 

  53. Kayani B, Konan S, Tahmassebi J, Rowan FE, Haddad FS. Infographic: robotics are guiding arthroplasties to less pain and faster recovery. Bone Joint J. 2019;101(B):22–3.

    Article  PubMed  Google Scholar 

  54. Marchand R, Sodhi N, Khlopas A, Sultan A, Harwin S, Malkani A, Mont M. Patient satisfaction outcomes after robotic arm-assisted total knee arthroplasty: a short-term evaluation. J Knee Surg. 2017;30:849–53.

    Article  PubMed  Google Scholar 

  55. Ren Y, Cao S, Wu J, Weng X, Feng B. Efficacy and reliability of active robotic-assisted total knee arthroplasty compared with conventional total knee arthroplasty: a systematic review and meta-analysis. Postgrad Med J. 2019;95:125–33.

    Article  PubMed  Google Scholar 

  56. Khlopas A, Sodhi N, Hozack WJ, Chen AF, Mahoney OM, Kinsey T, Orozco F, Mont MA. Patient-reported functional and satisfaction outcomes after robotic-arm-assisted total knee arthroplasty: early results of a prospective multicenter investigation. J Knee Surg. 2020;33:685–90.

    Article  PubMed  Google Scholar 

  57. Batailler C, Fernandez A, Swan J, Servien E, Haddad FS, Catani F, Lustig S. MAKO CT-based robotic arm-assisted system is a reliable procedure for total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2020; https://doi.org/10.1007/s00167-020-06283-z.

  58. Liow MHL, Goh GS-H, Wong MK, Chin PL, Tay DK-J, Yeo S-J. Robotic-assisted total knee arthroplasty may lead to improvement in quality-of-life measures: a 2-year follow-up of a prospective randomized trial. Knee Surg Sports Traumatol Arthrosc. 2017;25:2942–51.

    Article  PubMed  Google Scholar 

  59. Song E-K, Seon J-K, Park S-J, Jung WB, Park H-W, Lee GW. Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc. 2011;19:1069–76.

    Article  PubMed  Google Scholar 

  60. Cho K-J, Seon J-K, Jang W-Y, Park C-G, Song E-K. Robotic versus conventional primary total knee arthroplasty: clinical and radiological long-term results with a minimum follow-up of ten years. Int Orthop. 2019;43:1345–54.

    Article  PubMed  Google Scholar 

  61. Jacofsky DJ, Allen M. Robotics in arthroplasty: a comprehensive review. J Arthroplast. 2016;31:2353–63.

    Article  Google Scholar 

  62. Swank ML, Alkire M, Conditt M, Lonner JH. Technology and cost-effectiveness in knee arthroplasty: computer navigation and robotics. Am J Orthop. 2009;38:32–6.

    PubMed  Google Scholar 

  63. Moschetti WE, Konopka JF, Rubash HE, Genuario JW. Can robot-assisted Unicompartmental knee arthroplasty be cost-effective? A Markov decision analysis. J Arthroplast. 2016;31:759–65.

    Article  Google Scholar 

  64. Mont MA, Cool C, Gregory D, Coppolecchia A, Sodhi N, Jacofsky DJ. Health care utilization and payer cost analysis of robotic arm assisted total knee arthroplasty at 30, 60, and 90 days. J Knee Surg. 2019; https://doi.org/10.1055/s-0039-1695741.

  65. Cool CL, Jacofsky DJ, Seeger KA, Sodhi N, Mont MA. A 90-day episode-of-care cost analysis of robotic-arm assisted total knee arthroplasty. J Comp Eff Res. 2019;8:327–36.

    Article  PubMed  Google Scholar 

  66. Wysocki RW, Sheinkop MB, Virkus WW, Della Valle CJ. Femoral fracture through a previous pin site after computer-assisted total knee arthroplasty. J Arthroplast. 2008;23:462–5.

    Article  Google Scholar 

  67. Columbia University Navio Robotic Versus Conventional Total Knee Arthroplasty. Identifier: NCT03519269. In: ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03519269?term=robotic+arthroplasty&draw=2&rank=7. Accessed 1 Oct 2020.

  68. Navamindradhiraj University Comparative Outcomes Between Imageless Robotic-assisted and Conventional Total Knee Arthroplasty. Identifier: NCT04307251. In: ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04307251?term=robotic+arthroplasty&draw=2&rank=6. Accessed 1 Oct 2020.

  69. University Hospital, Grenoble Total Knee Arthroplasty Robot Assisted With MAKO™ Robotic System Compared to the Conventional Total Knee Arthroplasty by Mechanical Ancillary (TKA-MAKO). Identifier: NCT03566875. In: ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03566875?term=robotic+arthroplasty&draw=3&rank=20. Accessed 1 Oct 2020.

  70. University College Hospital, London Inflammatory Response Conventional Total Knee Replacement Versus Mako Total Knee Replacement. Identifier: NCT04192006. In: ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04192006?term=robotic+arthroplasty&draw=3&rank=13. Accessed 1 Oct 2020.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asokan, A.K., Ibrahim, M.S., Kayani, B., Haddad, F.S. (2022). Overview of Robotics in Total Knee Arthroplasty. In: Sharma, M. (eds) Knee Arthroplasty. Springer, Singapore. https://doi.org/10.1007/978-981-16-8591-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8591-0_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8590-3

  • Online ISBN: 978-981-16-8591-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics